Second-Order Symmetric Duality for Minimax Mixed Integer Programs over Cones

T. R. Gulati1 and S. K. Gupta2

1Department of Mathematics, Indian Institute of Technology, Roorkee-247 667 (India)

2School of Mathematics and Computer Applications, Thapar University, Patiala-147 004 (India)

Received April 2006; Revised August 2006; Accepted February 2007

Abstract—A duality theorem for a pair of Wolfe-type second-order minimax mixed integer symmetric dual programs over cones is proved under separability and η-bonvexity/η-boncavity of the function $k(x, y)$ appearing in the objective, where $k : R^n \times R^m \mapsto R$. Mond-Weir type symmetric duality over cones is also studied under η-pseudobonvexity/η-pseudoboncavity assumptions. Self duality (when the dual problem is identical to the primal problem) theorems are also obtained.

Keywords—Integer programming, Symmetric duality, Minimax, Self duality, η-bonvexity

* Corresponding author’s email: trgmaiitr@rediffmail.com