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Abstract  Both the earliest arrival flow and the contraflow problems have been highly focused in the research of 
evacuation planning. We formulated the earliest arrival contraflow problem, where as many evacuees as possible should be 
sent from dangerous places to safe destinations in every time period by reversing the direction of roads at time zero. A 
strongly polynomial time algorithm for the earliest arrival contraflow problem on a two-terminal series-parallel graph model 
having capacities and transit times on the arcs has been presented. 
 
Keywords Evacuation planning; series-parallel graphs; polynomial algorithms; maximum contraflow; quickest contraflow; 
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1. INTRODUCTION 

In order to solve emergency problems caused by different disasters, evacuation plans are developed for buildings, 
stadiums, ships, districts, cities or whole sub-national regions. After any kind of disasters like hurricane, earthquakes, 
tsunami, flooding, industrial and nuclear accidents, fire and terrorist attacks, etc, there are different real life questions. Most 
cited examples include the Chichi, Bam and Kashmir earthquakes in Taiwan, Iran and Pakistan, the tsunami in the Indian 
Ocean and Japan, Asian flooding including China, the September 11 attacks, two major hurricanes Katrina and Rita and 
recent hurricane Sandy in the USA. There is limited time to take the evacuees from the dangerous state to safe place. We 
want to evacuate as many evacuees as possible within the limited time because no one wants to die. During the evacuation 
process, the mathematical model of the transportation network plays an important role. However, it is remarkable that these 
dynamic network flow models are not limited to the evacuation scenarios but also do have applications in transportation 
planning like rush office hours, sporting events, concert and mass-meetings, data evacuation on a path in communication 
networking and quickest execution of jobs by linked processors in network scheduling, for example, Baumann (2007) and 
Hoppe and Tardos (2000).  

A building or a region to be evacuated is given as a network modeled as the set of nodes (i.e., rooms in a building or 
intersection of streets in a region) and arcs (i.e., doors between rooms, or streets in region), each arc having a capacity and 
travel time. The sources contain the evacuees and the sinks wait for them with certain capacities.  The group of evacuees is 
considered as flow which passes through the evacuation network. For the transportation system planners the main issue has 
been the traffic jam. A variant of mathematical modeling have been dealt covering discrete as well as continuous time 
problems, macroscopic and  microscopic behavioral considerations, optimization and simulations techniques and 
approximate solution techniques including heuristics. More realistic results depend on the time-varying and dynamic time 
frame with continuous time periods. However, these models and the microscopic based models are very much time 
consuming through they would provide better accuracy, if a solution could be obtained in reasonable time. In practice, time 
can be discretized converting a continuous model to a discrete one for approximate solutions in reasonable time. An 
assumption of constant parameters such as travel time in dynamic network flow results in a lower bound of the real 
evacuation time. 

A majority of the linear programming based methods, which are still applicable for small evacuation scenarios like 
building evacuations, are heavily suffered from computational time and seek some relaxations on parameters and constraints. 
The easy heuristic solution methods must compromise with quality although reliable on computational time and scalability.  
Although a large number of investigations have been made and developed solution methods and algorithms by the 
communities in mathematics, engineering, computer science and information technology, there is still a lack of efficient 
solution methods and software implementation because of fast growing applications of huge size problems in this area. We 
consider the discrete flow over time model. 
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Ford and Fulkerson (1958) defined a maximal dynamic flow (MDF) problem to obtain the maximum amount of flow 
from the sources to the sink for given time period 𝑇𝑇. The general MDF is equivalent to the static flow in the time-expanded 
graph they introduced.  However, the single source single sink version of the MDF has been solved by temporarily 
repeating the polynomial time static solution in the given graph itself considered the transit times of the arcs as cost 
coefficients. A significant research has been carried out since then for the maximum flow and quickest flow evacuation 
problems. The latter problem concerns with transferring the given number of evacuees from the sources to the destinations 
in the earliest possible time. Burkard et al. (1993) solve the single-source single sink quickest flow problem in polynomial 
time by linking it with the maximum flow problem and then making use of  the binary search and parametric search 
techniques. Hoppe and Tardos (2000) solve the general quickest flow problem via lexicographically maximum flow solution 
in the framework of  nonstandard chain decomposition. The lexicographically maximum flow problem maximizes the 
amount of  flow leaving each terminal in a given priority order.  

Extending this concept of  Ford and Fulkerson (1958) and Gale (1959) introduced the earliest arrival flow (EAF) 
(equivalently, universal maximal flow) to obtain the maximum amount of  flow for every time steps    where 0 T  . 
solution to this problem avoids the estimated evacuation time requirement and also saves the computational cost by 
continued maximum solution from the very beginning. Minieka (1973) and Wilkinson (1971) gave exact algorithms for the 
EAF problem which needed exponential time. Both solutions adopt the successive shortest path augmenting algorithm. 
Hoppe (1995) reviews these algorithms and represents as chain decomposable flows. A fully polynomial time approximation 
scheme for this problem with a single source and a single sink was presented by Hoppe and Tardos (1994). Tjandra (2003) 
proposed an algorithm for the problem with time dependent transit times and capacities which is polynomial in the time 
horizon T .  and the maximum capacity. For multiple sources and a single sink, Baumann (2007) and Baumann and 
Skutella (2009) gave an algorithm which is polynomial time in the input and output size of  the instance. Their solution 
method does not rely on time-expansion rather recursively construct an earliest arrival flow pattern and then convert it into 
earliest arrival flow. The earliest arrival flow does not necessarily exist in network with multiple sources and multiple sinks 
(Schmidt and Skutella, 2010). Gross et al. (2012) presented constructive approximations of  time and value for earliest arrival 
flows in arbitrary networks with multiple sinks. Fleischer and Tardos (1998) present a number of  efficient continuous-time 
dynamic network flow algorithms extending the respective discrete-time dynamic flow algorithms.  

Steiner (2009) and Ruzika et al. (2011) presented a polynomial time algorithm for the earliest arrival flow problem on 
series-parallel graphs. They constructively proved the existence of  a temporally repeated flow on series-parallel graphs with 
a single source and a single sink having the earliest arrival property. Their exact greedy algorithm is based on a result of  Bein 
et al. (1985) for solving minimum cost flow problem on series-parallel graphs. Their algorithm does not use negative 
circulations as the augmenting paths do not use backward arcs differing to the general graph approach.  

In order to solve the problem of traffic jam, contraflow has been considered as a potential remedy by increasing the 
outbound evacuation route capacity which also maximizes the number of evacuees reaching to the safe destination for each 
time period. There are only few optimization techniques dealing with contraflow problem in literature. It has been 
formulated as integer programming problem (Kim et al., 2008). The first polynomial algorithm for contraflow transportation 
network has been presented by Rebennack et al. (2010) and Arulselvan (2009) that solves the maximum static contraflow 
problem in general and the maximum dynamic contraflow problem for networks with a single source and a single sink in 
general graphs. They also showed that the quickest contraflow problem can be solved in a strongly polynomial time 
complexity for a single source and a single sink but the problem in the multiple sources and multiple sinks are NP-hard.  

Some heuristic approaches like greedy heuristic and bottleneck relief heuristic of Kim et al. (2008), tabu search heuristic 
of Tuydes and Ziliaskopoulos (2007) are presented in the literature. Experimental results applied to the real-world problems 
illustrate that the contraflow approach can reduce the evacuation time by 40 percent or more by reversing 30 percent or less 
of the total arcs. Kim and Shekhar (2005) proposed an iterated simulated annealing heuristic which yields a local minimum 
with evacuation egress time as the objective function, and random flipping based perturbations. Theodoulon and Wolshon 
(2004) proposed a non analytical approach of contraflow problem which relies on simulation based methods and decision 
tools. Unfortunately, there is still lack of study on contraflow approach analytically (see Pardalos and Arulselvan (2009) for 
the comments). 

The maximum flow, the quickest flow and the earliest arrival flow evacuations are the mostly considered objectives in 
the literature. The requirement of earliest arrival solution also fulfills the other two goals. On the other hand, the contraflow 
approach though not enough analyzed theoretically takes an important place from the prospective of reducing the traffic 
mitigation. Our approach combines the earliest arrival flow model as central aspect of evacuation planning and the 
contraflow configuration as widely implemented evacuation model in practice; for instance (Schmidt and Skutella, 2010; 
Kim et al., 2008).  

In this paper, we introduce the earliest arrival contraflow evacuation problem and present a polynomial time algorithm 
for this problem on the class of series-parallel graphs. Our algorithm is based on the algorithms of Rebennack et al. (2010) 
and Arulselvan (2009) for computing the maximum dynamic contraflow on general directed graphs and algorithms of 
Ruzika et al. (2011) and Steiner (2009) for computing the earliest arrival flow on series-parallel graphs. To the best of our 
knowledge, this is the first polynomial time algorithm to find the earliest arrival contraflow. We organize the paper as 
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follows. Section 2 provides some classical results and notions used in the article. In Section 3, we establish our main result 
on the earliest arrival contraflow on series-parallel graphs. Concluding remarks are given in Section 4. 

 
2. PRELIMINARIES   

A dynamic network is defined as a directed graph ( , , )G V E T , where 𝑉𝑉 is the set of nodes including a sourceS

and a sink S and E  is the set of arcs with capacity 
e

u Z  and transit time 
e

Z  for each e E . For each arc

e E , the tail and head are denoted by ( )t e  and ( )h e , respectively. A directed path 
0 1 1 2

( , , , ,..., , )
k k

P i e i e e i  is an 

alternating sequence of nodes and arcs with 
1

( ) ( )
l l l
i t e h e   for all 

0 1
1,..., - 1, ( )l k i t e  and ( )

k k
i h e . A path 

with 
0k

i i  is a directed cycle. The capacity 
e

u Z  denotes the maximum amount of flow that may enter the arc 

e E  per time period and the transit time 
e

Z   gives the time needed to travel one unit of flow on the arc e from 

node ( )t e  to node ( )h e . We assume a finite time horizon
e

Z   for the flow to travel through the network with 
discrete time steps.  

Let x  be a dynamic network flow function defined as 
0

: {0,..., }x E T R   and ( )
e

x  be the amount of flow 

that enters arc e  at time   and reaches node ( )h e  at time 
e

  . Let ( ) ( , )G y V E E    be the residual 

network of graph ( , )G V E , where
0

:y E R , is a static network flow, { }
e e

E e e y u     , i.e., the set of 

forward arcs having capacity 
e e

u y  and transit time
e
  and - {- ( ( ), ( ) 0}

e
E e h e t e y   ,i.e., the set of backward 

arcs having capacity 
e

y  and a transit time of 
e
 . Assume that there are neither arcs 𝑒𝑒 with ( )h e S  nor with

( )t e S .  

The MDF problem to obtain the maximum amount of flow from the sourceS  to the sinkS within given time 
period  T can be formulated as a linear programming problem (Ford and Fulkerson, 1958). The formulation is restated as 
follows (Ruzika et al., 2011).  
max f                      (1) 

0
( )

. . ( )
T

e
e E
t e S

s t x f





 


                     (2) 

0
( )

( )
T

e e
e E
h e S

x f


 


 


                     (3) 

( ) ( )

( ) ( )
e e e

e E e E
h e i t e i

x x  
 

 

  
 

    \ , , 0,...,i v s s T                           (4)  

 

 0
e e

x u    , 0,...,e E T                   (5) 

The objective (1) is to maximize the total amount of flow value f that can be sent from the source S to the sink 
S within the time horizonT . The flow conservation at nodes is described by the constraints (2), (3) and (4). The flow must 
leave node  t e  at time 

e
   to reach node  h e  at time  . The constraint (5) gives the boundary of capacity that 

may enter arc e  at time  0,...,T  . The constraints (2) to (5) should be fulfilled by every feasible dynamic flow. It is 

assumed that no flow can wait at the intermediate nodes.  
For graph  , ,G V E T , a dynamic network flow is equivalent to a static flow in the time expanded network 

 ,
T T T

G V E  and vice versa (Ford and Fulkerson, 1958; 1962). Time expanded networks are defined as the expansion of 

the dynamic network where each node i  of the static graph is copied T  times to obtain a node  i   for each i V

and each  0,...,T  . For each arc  ,e i j E  , let  i   be the tail and  s
j    be the head of arc e  having 

capacity 
e

u , called movement arcs. For each arc  ,e i j E  , let ( )i   be the tail and ( )
e

i    be the head of arc 

e  having capacity ∞, called holdover arcs which allows storage at the nodes. We use only movement arcs of the time 
expanded network because holdover arcs need not be considered for the MDF (Ford and Fulkerson, 1958), and as they do 



4 
Dhamala and Pyakurel: Earliest Arrival Contraflow Problem on Series-Parallel Graphs 
IJOR Vol. 10, No. 1, 1−13 (2013) 
 

 

not improve the EAF, (Hoppe and Tardos, 1994), see also Hamacher and Tjandra (2002) for details. But time expanded 
networks have pseudo-polynomial time complexity.  

Consider the underlying static network  ,G V E  to find the minimum cost of sending a flow of given value from 

the source to the sink, where transit times of arcs are interpreted as cost coefficients. However, a solution of the MDF 
problem needs to maximize the flow so that the cost of this flow is minimal and the flows arrive at the sink within the given 
time bound T . Ford and Fulkerson (1958) presented a primal dual algorithm to solve the minimum cost flow problem 
with respect to the time horizon and then decomposed the obtained flow into the standard chain flows. Afterwards, they 
obtained the MDF in polynomial time by the temporary repeated flows of these chain flows over time as far as the time 
permits. The max-flow min-cut theorem on the time-expanded graph establishes a proof that this obtained flow is maximal. 
Recall that if 

k
P  be the chains obtained from the chain decomposition of the optimal minimum cost flow problem, then 

the maximum dynamic flow is given by  1
k

k kp
T x   where 

k
x  is the flow along the thk  path and 

k
  is time 

taken to travel the thk  path. 
On the other hand, Klein (1967) presented a polynomial time algorithm which transforms a maximum flow x 

obtained by some appropriate algorithm on the underlying static network into a minimal cost flow. He makes a use of the 
result of Busacker and Satty (1965) that a flow x in the static network is of minimal cost if and only if there does not exist a 
directed cycle of negative total cost in the residual graph  G x . However, his algorithm has to be altered to get a 

temporary repeated flow for solving the MDF problem. In order to overcome this, an additional arc e   from the sink to 
the source with infinite capacity and transit time (T 1)  , has been added. The transit time 

e
  of this modified network 

 ,G V E   with  E E e 

  is then interpreted as costs of arcs. Then a minimum cost circulation flows (MCCF) 

problem can be solved as in Algorithm 1. The flow along arc e   is ignored and the resulting flow from S  to S  be 
decomposed into paths. Along each path the static flow value obtained in the path decomposition is sent at each time step 
for which the flow can reach the sink before time T . The flow obtained by this process is called temporally repeated flow 
which solves the MDF, (Ford and Fulkerson ,1962), see also Ahuja et al. (1993), Steiner (2009) and Ruzika et al. (2011). 

 

Algorithm 1: Minimum Cost Circulation Flows (MCCF)  

Input: Dynamic network  , ,G V E T  with  
e

u   and  
e
   , an arc    ,S Se   with ,  s

s
u     , and 

 
,

  1
s s

T      . 

1. Set the flow 0
ij

x   for all arcs  ,i j E   

2. Apply “Minimum Cost Flow Algorithm of Klein (1967)” to find a minimum cost flow *x  with transit time of each arc 
as cost. 

3. Decompose *x  into path flows using “The Algorithm of Ford and Fulkerson (1958)”. 
 

Output: A maximal dynamic flow 
But the approach of standard chain decomposition fails to address a number of other emerging evacuation problems 

unless some restrictions are imposed, for instance, zero transit times on all arcs. A non-standard flow decomposition 
approach has been introduced by Hoppe (1995) and Hoppe and Tardos (2000) to solve various evacuation problems 
including the general lexicographically maximum dynamic flow problem and the multi-terminal quickest flow problem. Note 
that among these efficient decompositions of flows, the former uses the edges in the same direction of flow whereas the 
latter allows oppositely directed flow on the edges. The most related problem to the MDF problem is the EAF problem that 
search a feasible dynamic flow from S  to S  which is maximal for all time periods 0 T  . The flow to be 
maximal for all times 0 T  is called the earliest arrival property. By definition, every EAF is also a MDF. Steiner 
(2009) observed with an example that the converse is not true in general graph. Note that neither every MDF (EAF) is 
temporarily repeated nor vice versa. It is well known that there might not exist any temporally repeated flow having the 
earliest arrival property in general networks. 

Steiner (2009) and Ruzika et al. (2011) considered the earliest arrival flow problem on two-terminal series-parallel 
graphs as a proper subset of acyclic digraphs. Then, they find temporally repeated flow by standard chain decomposition for 
the MDF problem and the particular EAF problem in this class of graphs. There exists none series-parallel graph for which 
a MDF exists by Algorithm 1 that does not satisfy the earliest arrival flow property (c.f., fig. 3(a), Subsection 3.1) 

A single arc   ,e S S   is series-parallel with starting terminal S  and end terminal S . Let 
1

G  and 
2

G   be 
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two series-parallel graphs with starting terminals 
1

S  and 
2

S  and the end terminals 
1

S  and 
2

S  , respectively. Then the 

graph 
1 2

(G ,G )S  obtained by identifying 
1

S   as 
2

S   in the series combination is a series-parallel graph, with 
1

S  and 

2
S   as its terminals. The graph 

1 2
P(G ,G )  obtained by identifying 

1
S   as 

2
S   and also 

1
S   as 

2
S   in the parallel 

combination is a series-parallel graph with  1 2
S S    and  1 2

S S   as its terminals. A two-terminal series parallel 

graph is denoted by TTSP-graph. Note that Valdes et al. (1982) presented a polynomial time algorithm for the recognition 
of  the class of  series parallel graphs. The algorithm requires verification of  the transitive closure and transitive reduction of  
the series-parallel graph which can be performed in the time proportional to the size of  the input. The recursive structure 
of  the series-parallel graphs can be represented by a decomposing tree (Valdes et al., 1982). 

The two-terminal series-parallel graph in fig. 1 is supposed to represent an evacuation network representing the cities 
by the nodes and the connections between them by the arcs. Each arc (i, j) contains the integer capacity 

ij
u  and the integer 

travel time 
ij
 , for example, the arc from S to A  has 10 units capacity and 2 unit travel time. The following property 

plays a central role in obtaining the min-cost solution with earliest arrival property without taking the negative cycles into 
consideration. Let ,P i j    be the sub-graph of  series-parallel graph  G  including all paths from a vertex i  to a vertex j  in 

G . In this representation ,P i j     corresponds to the smallest subtree including all arcs e  with  h e j  or   t e i . 

Thus ,P i j     is the inclusion-wise maximal (series or parallel) composition having i  and j  as its terminals. Any 

 S S   path using an arc of  this sub-graph must use both i  and j .  
Bein et al. (1985) presented a greedy algorithm that solves the minimum cost flow problem on series-parallel graphs 

which can be implemented in strongly polynomial time  logO V E E E  for all flow values upto the maximal flow 

value 
max
f . Their algorithm starts with zero flow, uses a greedy approach and iteratively finds the currently cheapest path 

k
P with cost  

k

k e
e P

c P 


   and assigns the flow value  k
f P  to it. Their augmenting path algorithm does not use 

backward arcs. The cheapest path capacity has been totally used by this successive shortest paths computing algorithm 
before flow has to be sent along any other expensive path. It is remarkable that the special minimum cost flow problem on 
series-parallel graphs constructed from a tree by adding one source S to all arcs with  t e S and   h e v for all 

nodes   without predecessors of  it can be solved in  logO E E steps (Brucker 1982).  

Combining Algorithm 1 and greedy algorithm of  Bein et al. (1985), Steiner (2009) and Ruzika et al. (2011) presented 
Algorithm 2 for series-parallel graphs which solves the MDF and EAF problems in polynomial time although their 
algorithm does not look for negative directed cycles which was not necessary for obtaining minimum cost flow in this 
special class of  graphs. The latter modification rejects a path if  its cost exceeds the given time horizon. In fact an inclusion 
of  a path from the sink to the source with cost –(T+ 1) in Ford and Fulkerson (1958) has the same meaning.  
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Figure 1. Series-parallel graph 
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Figure 2. Minimum cost flow on series-parallel graphs 
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Algorithm 2: Minimum Cost Circulation Flows (MCCF) on TTSP-Graphs 

Input:: TTSP-graph  , ,G V E T with cost 
ij

c Z   and capacity 
ij

u Z  for each arc ( , )i j E . An additional arc 

   ,S S   with capacity 
,

 
S S

u      and cost  
,

1
S S

Tc       

 
for all( , )i j E  do 

0, 0
ij

x k    

end for 
while there exists a path connecting S and S  in G do 

1k k     
Find a minimum cost path

k
P and the corresponding cost  k

c P value. 

Expand 
k

P  to a circulation kC  by directing the flow that flows from S  through 
k

P  toS  using arc  ,S S  . 

If    1k
c P T  then 

  min | , k
k ij
f u i j    

else 
Stop the algorithm. 
end if 
for all  , ki j C do 

ij ij k
u u f   

If 0
ij

u  then   \ ,E E i j  

end for 
end while 
Output: Minimum cost paths  

k
P , corresponding costs ( )

k
c P , lengths 

k
f  of  

k
P  and also output the last value * k of the 

counting variable 𝑘𝑘 for which a flow was sent along the shortest S S   path *k
P . 

Example 1. Consider fig. 1. In order to find a minimum cost flow on TTSP-graph, the greedy algorithm of Bein et al. (1985) 
uses only forward arcs from the source node to sink node. It is assumed that the flow would be only from the source to sink 
but not backward. The travel time 

ij
  has been used as cost 

,i j
c . Using the algorithm of Bein et al. (1985), the first 

minimal cost path is  1
,A,B,SP S    with total costs  1

4c P   and the maximum flow value  1
5f P  . Now 

by updating the capacities we get 
,,

5, 0
A BS A

u u    and 
,

1
B S

u   . Then the arc  ,A B  is deleted.  In the next 

iteration, we get second minimal cost path  2
, , ,DP S SE    with total costs  2

5c P   and the maximum flow 

value  2
5f P  . The update of the capacities gives 

,,
0, 5

D ES D
u u    and 

,
4

E S
u   . Arc  ,S D  is deleted. 

Similarly, the next iteration gives the third minimal cost path  3
,A,C,P S S   with total costs  3

6c P  and the 

maximum flow value  3
5f P  . The update of the capacities gives

,,
0, 3

ACS A
u u   and 

,
5

C S
u   . Arc  ,S A  is 

deleted. Since there exists no longer path from S to S  the algorithm terminates.   

According to MCCF Algorithm 2, add an additional arc  ,S S   with infinite capacity and  1T    transit 

time in fig. 2. Consider the MDF problem with T = 6. Let the first directed cycle be  1 , , , ,S A B S S    with cost 

1( ) 4 7 3c      and flow is  1 5f  . nsider the residual network  1
G x . We find  2 , ,, ,S D E S S     with 

cost 2( ) 5 7 2c       and flow is  2 5f   on  1
G x . We update flow x  by adding the flow on 2C  and consider 

the residual network  2
 G x . Then again we find another dicycle  3 , ,, ,S A C S S    with cost 3( ) 6 7 1c      

and the flow is  3 5f  . Since there is no any other directed cycle within the boundary cost  ( ) 1 0
k

c P T    the 

algorithm terminates. We update the flow 𝑥𝑥 which is the MDF, see Theorem 1.  
Moreover, note that this flow has the earliest arrival property, see Theorem 2. 
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Theorem 1. (Ruzika et al., 2011) Algorithm 2 solves the MDF problem for TTSP-graph  , ,G V E T with given capacity 

ij
u Z   

and transit time 
ij

Z   on each arc ,i j E optimally.  

Recall that a MCCF solution has minimum cost if and only if the corresponding residual network does not contain a 
cycle with negative cost (Ahuja et al., 1993). Ruzika et al. (2011) and Steiner (2009) exploit the property of series-parallel 
graph and showed that every cycle in the residual network has non-negative cycle.  Thus, they proved that Algorithm 2 
solves the MCCF problem introduced by Ford and Fulkerson (1958) for the MDF problem. The temporally repeated flow 
obtained by Algorithm 2 is maximal by Theorem 1. On the other direction, Bein et al. (1985) proved an additional stronger 
result that if Algorithm 2 fails to find a MDF solution, then the underlying graph is not series-parallel. 

This MDF solution also satisfies the earliest arrival property by Theorem 2 (Ruzika et al., 2011; Steiner, 2009). However, 
it is not true that every earliest arrival flow on series-parallel graph satisfies the temporarily repeated property. A proof of 
Theorem 2 is similar to the proof of Theorem 5 second part, in Subsection 3.2. 

 
Theorem 2. (Ruzika et al., 2011) Let  , ,G V E T be a TTSP-graph. Let 𝑥𝑥 be the MDF of 𝐺𝐺 obtained by applying Algorithm 2. 

Then, 𝑥𝑥 is also an optimal solution to the EAF problem. 
 

3.  Contraflow Problems on Series-Parallel Graph 
In this section, we present a polynomial time algorithm solving the earliest arrival contraflow (EACF) problem on 

series-parallel dynamic network (c.f. Subsection 3.2). First we describe polynomial time maximum dynamic contraflow 
(MDCF) algorithm of Rebennack et al. (2010) on general dynamic network with single-source and single-sink (c.f. 
Subsection 3.1). 

 
3.1 Maximum Dynamic Contraflow Problem 

Arulselvan (2009) and Rebennack et al. (2010) study contraflow problems with respect to the computational 
complexity. Given a directed graph  , ,G V E T with a single source S  and a single sink S  having travel time 

ij
Z   with 

ij ji
   for ( , ),( , )i j j i E  and capacity 

ij
u Z  for each ( , )i j E , the MDCF problem requires 

to find the maximum amount of  flow that can be sent within the given integer time 𝑇𝑇 units from the source to the sink 
S  if  the direction of  the arcs can be reversed at time 0. 

Arulselvan (2009) and Rebennack et al. (2010) presented strongly polynomial time algorithms for the single-source 
and single-sink MDCF problem and for the multi-terminal maximum static contraflow problem. The time complexities of  

these algorithms are     2 3
, ,O S V E S V E and    1 2

, ( ,O S V E S V E , respectively, where 

  2

1
, .S V E O V E

    
 solves the maximum flow problem,    2

, .S V E O V E solves the flow decomposition 

problem and   2 3

3
, . . logS V E O V E V

    
 solves the minimum cost flow problem. They also prove that the 

quickest contraflow problem with single-source and single-sink is solvable in polynomial time. By reductions from the 
problems 3-SAT and from PARTITION, respectively, Kim et al. (2008) and Rebennack et al. (2010) proved that the MDCF 
problem remains NP-hard in the strong sense even with two sources and one sink or vice versa. 

We modify the MDCF algorithm of Arulselvan (2009) and Rebennack et al. (2010) making use of the modified MCCF 
algorithm of Steiner (2009) and Ruzika et al. (2011) (c.f. Algorithm 2) on TTSP- graphs. As a result, we obtained a MDCF 
solution (c.f. Algorithm 3) on series-parallel graphs which has the earliest arrival property.  

 
Example 2. Consider a dynamic contraflow problem as given in fig. 3(a). In fig. 3(b), the arcs of the network from the 
source to the sink are reversed towards the outgoing arcs at time zero. The new increased capacities  

ij
u are obtained by 

adding capacities of both arcs, however the travel times  
ij
  remain the same. A complication arises on the intersecting 

paths. For example, which direction of arc( , )A B  or ( , )B A  with added capacity gives the efficient flow through the 
network? Here, we are choosing the arc ( , )A B  randomly.  

For the MDCF problem, we consider maximum flow paths within time horizon 6T   as shown in fig. 3(c). The 
paths s A s     and s B s    are sufficient for a maximum flow and the arc ( , )A B  or ( , )B A  does not 
affect for the flow value. Fig. 3(c) represents the temporally repeated flow obtained by Ford and Fulkerson (1958). The 
MDCF problem has the same solution according to the algorithm of Rebennack et al. (2010). 
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But for the EACF problem, as we need shortest distance paths at all successive time periods, a flow through the 
arc ( , )A B  is essential due to the shortest path        0 1 2 4s A B s    as shown in fig. 3(d) at the beginning. A 

flow of maximum value 4 is reached to the sink at the earliest time T = 4 through this path. But it is not yet guaranteed 
whether this orientation remains valid for the latter time periods. Note that, a solution with this path structure does not 
represent a temporally repeated flow since the chain flow        0 1 2 4s A B s     is only started at times zero and 

one but not at two, though there would be enough time for that chain flow to reach the sink. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
It is observed from this example that the algorithm of Rebennack et al. (2010) is unable to find the MDF solution 

having the earliest arrival property. Moreover, the network given in fig. 3(b) and also with another orientation ( , )B A  in fig. 
3(a) is not a series-parallel graph. Hence the algorithm presented by Rebennack et al. (2010) could not find the EACF 
solution unless the graph is series-parallel. A complication of the EACF problem arises because of the flipping requirements 
of such intermediate arcs with respect to the time. The dynamic multi-source problem is already NP-hard and an existence 
of a solution to the dynamic multi-sink problem is uncertain.  

Algorithm 3 modifies the algorithm of Rebennack et al. (2010) for the MDCF problem on general graphs replacing 
Step 2 by Algorithm 2 for the earliest arrival flow on series-parallel graphs. Our Algorithm solves the MDCF problem for 
TTSP-graphs that also satisfy the earliest arrival property.  
 
Algorithm 3: Maximum Dynamic Contraflow (MDCF) on TTSP-Graphs 
 

Step 1: Construct the graph  ' , ,G V E T   with arc set defined as  ,i j E  if  ,i j E or  j, i E   

The arc capacity function 𝑢𝑢′ is given by ' 
ij ij ji

u u u   

For all arcs  ,i j E  the transit time is  ' '
if ( , )

Otherwise 
ij

ij ji
ji

i j E
 



   
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Figure 3(a). Evacuation scenario without contraflow 
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Figure 3(b). Evacuation scenario with contraflow 
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 Figure 3(c). Maximum dynamic contraflow for fig. 3(b)  

 

10 20 

10 10 20 

10 

20 

 

10 

4 
4 

10 𝑠𝑠+(0) 

 
𝑠𝑠+(1) 

 

𝑠𝑠+(2) 

 
𝑠𝑠+(3) 

 
𝑠𝑠+(4) 

 

𝑠𝑠+(5) 

 

𝑠𝑠+(6) 

 
𝐴𝐴(0) 

 
𝐴𝐴(1) 

 

𝐴𝐴(2) 

 
𝐴𝐴(3) 

 
𝐴𝐴(4) 

 

𝐴𝐴(5) 

 

𝐴𝐴(6) 

 
𝐵𝐵(0) 

 
𝐵𝐵(1) 

 

𝐵𝐵(2) 

 
𝐵𝐵(3) 

 
𝐵𝐵(4) 

 

𝐵𝐵(5) 

 

𝐵𝐵(6) 

 
𝑠𝑠−(0) 

 
𝑠𝑠−(1) 

 

𝑠𝑠−(2) 

 
𝑠𝑠−(3) 

 
𝑠𝑠−(4) 

 

𝑠𝑠−(5) 

 

𝑠𝑠−(6) 

 
Figure 3(d). A contraflow for fig. 3(a) w.r.t fig. 3(b) 
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Figure 3. Maximum contraflow and earliest arrival contraflow on general graph 
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Step 2: Generate a dynamic temporally repeated flow on transformed series-parallel graph ' G with capacity ' u and travel 
time '

ij
  using Algorithm 2. 

Step 3: Obtain flow decomposition into path and cycle flows of the network of Step 2. Remove the cycles. 
Step 4: Arc ( , )j i E  is reversed, if and only if the flow along arc( , )i j  is greater than  

ij
u  or if there is a non-negative 

flow along arc ( , )i j E and the resulting flow is MDF with the arc reversal for the graph ( , , )G V E T . 
We give the proofs of Lemma 1 and Theorem 3 for the sake of completeness similar to the results of Rebennack et al. 

(2010) that yields the correctness of Algorithm 3.  
 

Lemma 1.  For TTSP-graph ( , , )G V E T , the maximum amount of flow in the MDCF problem is less than or equal to the optimal 

flow in the maximum contraflow for the corresponding time expanded graph  ,E
T T T

G V . 

 
Proof:  

Every feasible flow to the MDCF problem has an equivalent feasible flow to the maximum contraflow problem of the 
time expanded graph of the given series-parallel graph. 
 
Theorem 3.  Algorithm 3 solves the MDCF problem for TTSP- graph  , ,G V E T optimally. 

 
Proof:  

To show the feasibility of Algorithm 3, it is enough to show that only Step 4 is well defined because Steps 1-3 are feasible. 
After the flow decomposition, the optimal solution outcomes in a set of paths from source to sink and a set of cycles with 
positive flows obtained from Step 3.  The positive flow along all cycles could be cancelled and hence there is no flow along 
any cycle. Therefore, there is either a flow along arc  ,i j  or  ,j i  but never in both arcs. This proves that the flow is not 

greater than the reversed capacities on all the arcs at all time units. 
Next, we show the optimality. Depending on the feasibility we conclude that every feasible MDF of the dynamic flow 

problem in the transformed series-parallel graph  ' , ,G V E T   is feasible to the MDCF in the series- parallel graph 

 , ,G V E T , i.e., 

   ',,
MDFoptMDCFopt

G V E G V E   
                            (6) 

  

According to Lemma 1, we have    ,,
T T T MDFoptMDCFopt

G V E G V E    
     . 

Now the maximum contraflow in graph  ,E
T T T

G V  is equivalent to the maximum flow in the graph  ,E
T T T

G V  , 

where the arc set E is defined as  ,
T

i j E  , if  ,
T

i j E  or  ,
T

j i E and the capacity function u   is given by 

' ' ' 
ij ij ji

u u u    . Thus, we have    ' ', ,
T T T T T TMCFopt MFopt

G V E G V E         
. 

 
According to the (Ford and Fulkerson 1958) and the MCCF algorithm, the maximum flow in the time expanded graph 

 ,E
T T T

G V   can be obtained by a temporally repeated chain flow of the static series-parallel graph  ,EG V  . This 

implies that  
 

     ' ', , ,
T T TMDCFopt MDFoptMFopt

G V E G V E G V E        
     

                (7)

   
Combining results (6) and (7), we obtain the result.  
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Example 3. We use the contraflow model to the network given in fig. 4(a). By Step 1 of Algorithm 3, reverse all backward 
arcs towards the sink S  as shown in fig. 4(b). The contraflow configuration of this series-parallel graph will give the 
MDCF solution. The MDF is obtained by solving the minimum cost flow problem using Algorithm 2 as the case without 

contraflow. Here the MDF value is 30. The flow along the backward arc  ,S S   is ignored and the flows from S  to 

S  are decomposed into the directed cycles. Let the first directed cycle be  1 , ,, ,SSA BS     with cost 

1( ) 4 7 3c      and flow is  1 10f  . Consider the residual network  '
1

G x  and look for another dicycle. The 

second directed cycle is  2 , ,, ,S D E S S    with cost 2( ) 5 7 2c      and flow is  2 10f  . We update 

flow x  by adding the flow on 2C  and again consider the residual network '
2

G ( )x . Then we find another directed cycle 

 3 , ,, ,S A C S S    with cost 3( ) 6 7 1c      and the flow is  3 10f  . Since there is no any other 

directed cycle within the boundary cost  ( ) 1 0
k

c P T    the algorithm terminates. The MDCF solution is represented 

in fig. 5.  
 
The complexity in case of TTSP-graph has been improved in comparison to the general graphs. 

 
Theorem 4.  Algorithm 3 solves the MDCF problem in strongly polynomial time for TTSP-graphs. 
 
Proof:  

Step 1 and Step 4 are solved in linear time. The flow decomposition in Step 3 can be done in  O V E   time. The 

running time of the Algorithm 2 is  O V E E log E    (Ruzika et al., 2011). Hence total complexity of the Algorithm 

3 is  O V E E log E   .   

 
3.2 Earliest Arrival Contraflow Problem 

Given a directed TTSP-graph  , ,G V E T  with single-source  S V   and single-sink  S V  having travel time 

ij
Z   on each arc  e E  with 

ij ji
    if ( , )( , )i j j i E  and capacity 

ij
u Z  for each arc ( , )i j E , the 

EACF problem on series-parallel graphs requires the maximum amount of flow that can be sent in every time period 
, 0 T    from the source to the sink with arc reversal capability at time zero. The problem of EACF could be 

formulated similarly on general graphs.  
We show that Algorithm 3 also solves the EACF problem for series-parallel graphs.  
 
 
 
 

Figure 4(a). Evacuation scenario of TTSP-graph 
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Figure 4(b). Contraflow configuration of TTSP-graph 
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Theorem 5. Any MDCF solution induced by Algorithm 3 has earliest arrival property for TTSP-graph. 
 
Proof:  

Algorithm 3 gives a MDCF solution on the transferred series-parallel graph  , ,G V E T  . The fact that the 

temporarily repeated MDCF flow obtained by Algorithm 3 has the earliest arrival flow property, follows from Theorem 2 of 
Ruzika et al. (2011). They prove by contradiction that  the temporally repeated flow obtained from Algorithm 3 does not 
improve on its residual graphs proposed by Minieka (1973). This proof makes use of an inclusion-wise minimal parallel 
components in series-parallel graphs. 

 
Theorem 6. Algorithm 3 solves the EACF problem optimally in strongly polynomial time for TTSP-graphs. 

A proof of Theorem 6, follows directly from Theorems 3-5, and Algorithm 3. From the definition, all the EACF 
solutions are the MDCF solutions. Theorem 3 proves that all the MDCF has the earliest arrival property for a series-parallel 
graph. Therefore, we state  

 
Corollary 1. Any MDCF solution is also an EACF solution and vice versa for TTSP-graphs. 
 
Example 4. Fig. 5 represents the time-expanded network of fig. 4(b), which gives an EAF solution. The first 10 flow units 
arrive to the sink through the path S A B S    at time 4. Another 20 flow units is added through the paths 
S A B S     and S D E S     at time 5. Another 30 more flow units reach to the sink at time 6 through 
three paths S A B S     , S D E S     and S A C S    . Hence 60 flow units has reached at the 
sink in total up to time six. Note that this flow is temporally repeated because all paths are used continuously to flow from 
the source to sink and it will be continuous with the increment of the time horizon 𝑇𝑇. There is a temporally repeated flow 
obtained by Algorithm 3 and has the earliest arrival property in TTSP-graphs. 
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Figure 5. Earliest arrival contraflow for series- parallel graph of fig. 4(b) 
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4. CONCLUSION 

Arulselvan (2009) and Rebennack et al. (2010) present a strongly polynomial time algorithm that gives the maximal 
dynamic contraflow solution for general graphs. Steiner (2009) and Ruzika et al. (2011) present a strongly polynomial time 
algorithm that gives the earliest arrival flow solution on two-terminal series-parallel graphs. Based on their algorithms, we 
presented a strongly polynomial time algorithm for two-terminal series-parallel graphs that computes the MDCF solution 
within the time horizon 𝑇𝑇 in a discrete time setting. The solution relies on the temporally repeated flows. The presented 
algorithm also gives the EACF solution because it yields the existence of temporally repeated flow on series-parallel graphs 
which has the earliest arrival property. If the algorithm is unable to find the MDCF having the earliest arrival property, it is 
concluded that the underlying graph is not series-parallel. 

To the best of our knowledge, this paper introduces a mathematical modeling of the earliest arrival contraflow problem 
in evacuation planning.  
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