
*Corresponding author’s email:tenghuim@mail.chihlee.edu.tw 

1813-713X Copyright © 2013 ORSTW 

International Journal of  Operations Research Vol. 10, No. 1, 38—47 (2013) 

Quality Inspectability Investment on Imperfect Production Processes 
under Limited Capital 

Hui-Ming Teng* 

Department of Business Administration, Chihlee Institute of Technology, Banciao City, New Taipei County, Taiwan 

Received September 2012; Revised December 2012; Accepted March 2013 

 
Abstract Imperfect production processes lead to imperfect products and decrease the profit of a business. Improvement in 
the production process by increasing the investment cost will decrease the defective percentage of items. This study develops 
an EPQ model with investments on imperfect production processes under limited capital. An algorithm is developed to derive 
the replenishment and investment policies such that the expected unit time profit is maximized. An alternative approach for 
the solution procedure is provided. 
 
Keywords Inventory, Economic production quantity; Imperfect quality; Investment. 

1. INTRODUCTION 

There exists a vast literature on imperfect items, among which most assume a random defective percentage to discuss 
related issues. However, very few studies considered how to improve the defective percentage to increase profits. Relative 
costs are necessary to improve the defective percentage. This study discusses the trade-off between increased production costs 
and increased revenue. 

Imperfect production processes lead to imperfect products and decrease the profit of a business. Most studies during the 
past decades assumed that perfect items were produced. Rosenblatt and Lee (1986) were early researchers who considered that 
defective items and imperfect quality existed in production processes. Salameh and Jaber (2000) developed an inventory model 
considering imperfect items using the EPQ/EOQ formulae. Wee et al. (2007) extended the approach by Salameh and Jaber 
(2000) and developed a generalized production lot size model with backordering. Maddah and Jaber (2008) rectified a flaw in 
the work of Salameh and Jaber (2000) on the EOQ model and proposed a new model that rectified this flaw using renewal 
theory. Lo et al. (2007) developed an integrated production and inventory model. The model assumed a varying rate of 
deterioration, partial backordering, inflation, imperfect production processes and multiple deliveries. Castro (2008) considered 
a combined maintenance strategy to find the optimal interval in which the repair of system failures is performed only in an 
interval of time of the working period.  

Recently, Sarkar et al. (2010) considered the joint determination of optimal production lot size, safety stock and reliability 
parameter under the realistic assumptions that the production facility was subject to random machinery system breakdown and 
changes in the variable reliability parameter. Sarkar et al. (2011) dealt with an economic manufacturing quantity model for a 
time-dependent (quadratic) demand pattern. By using the Euler–Lagrange theory to build up the necessary and sufficient 
conditions for the optimality of dynamic variables they determined the optimal product reliability and production rate that 
achieves the biggest total integrated profit for an imperfect manufacturing process. However, large percentages of defective 
items are a perplexing problem in a supply chain. Improving the production processes by increasing the investment cost will 
decrease the defective percentage of the items. This study focuses on determining the investment cost on production 
processes for optimal profit. 

Improving the firm’s business by increasing the investment cost is needed to be considered by managers. Affisco et al. 
(2002) investigated the potential impact of investments in quality improvement and setup cost reduction. Gurnani et al. (2007) 
studied the impact of product pricing and timing of investment decisions on supply chain co-operation. Hsu et al. (2010) 
developed a deteriorating inventory policy when retailers invest on preservation technology to reduce the rate of product 
deterioration. Kulkarni (2008) considered a multi-product environment where production lot-sizing and investing on quality 
improvements in several production processes were desired. Klingelhöfer (2009) offered a general approach to valuating 
investments in end-of-pipe-technologies (EOP-technologies) with special regard to an emissions trading scheme. Other 
researchers such as Liu and Çetinkaya (2007), Mathur and Shah (2008), and Lin (2009) considered different investment issues. 
However, little attention has been paid to research in the investment on imperfect production processes. 

In this study, we develop an EPQ model with the investment on imperfect production processes under limited 
investment cost. The renewal theory is considered in the model. An algorithm is developed to derive replenishment and 
investment polices under limited capital such that the expected unit time profit is maximized.  
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2. ASSUMPTIONS AND NOTATION  

The mathematical models presented in this study have the following assumptions: 
 
(1) The customer’s demand is ( )D t a , constant. 
(2) The production rate, M, is known and constant with M a  
(3) The lead-time is known and constant. 
(4) The screening process and demand proceeds simultaneously. 
(5) The defective items exist in each production. The defective percentage, p, has a uniform distribution over [0,  ], 

where 0 1  . 
(6) No shortages are allowed. 
(7) A single product is considered. 

The following notations are used: 

 
 

 

 

 

 

 

 

 

 

 

3. MATHEMATICAL MODEL 

In this study, the customer’s demand of  D t a  is considered. We assume an imperfect production process with a 
constant production rate of M, the production cost of c per unit and a setup cost of K per production. Each lot produced 
contains some percentage of defectives, p, with uniformly distribution over [0, β(r)] which β(r) is a decreasing function of the 
investment cost of r (Please refer to Figure 1). The selling price of good quality items is s per unit. The items with imperfect 
quality assumed a 100% screening of the production process at a constant rate of x per unit time. Items of poor quality are kept 
in stock and sold prior to the next production as a single batch at a discounted price of v . No shortages are allowed. Two cases 
may occur: first, when the screening rate is higher than the production rate (i.e., x M ), the screening time of tx is shorter 

T production cycle length 
t1 production run time per cycle, decision variable 
M production rate 
x screening rate, x > D(t) 

c production cost per unit 
K setup cost per production 
p defective percentage in per production, which is a random variable with uniformly distribution over [0, β(r)] 

which the defective percentage function,  r , is a decreasing function of the investment cost of r. 
s selling price of good quality items per unit  s c  
v  selling price of defective items per unit, c v   
r investment cost on production processes, decision variable 
d screening cost per unit 
h inventory holding cost per item 
TR total revenue per cycle; which is the sum of total sales of good quality and imperfect quality items  
TC total cost per cycle 
TPU   net profit per unit time  
ETPU expected value of TPU with investing on production processes 
ETPUw expected value of TPU without investing on production processes 

r 

β(
r)

 

0 

2β

 

1β =0.00

 

1β =0.0

 1β =0.0

 

Figure 1. The defective percentage function, β(r), against the investment cost for different value of 
1

 . 
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than the production run time of t1, the behavior of the inventory level is illustrated in Figure 2. Second, when the screening rate 
is lower than the production rate (i.e., x M ), the screening time of tx is longer than the production run time of t1, the 
behavior of the inventory level is illustrated in Figure 5. In relation to the real world, the investment cost is limited; we need to 
consider the limited capital in the study. The optimum operating inventory strategy is obtained by trading off the total revenues 
per unit time, the production cost per unit time, the inventory holding cost per unit time and the item screening cost per unit 
time so that the sum is the maximum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1. Case I   when x M 

To avoid shortages, it is assumed that the number of good items at t1 is at least equal to the demand during production 

time, that is
1 1

(1 ) 0,p Mt at    and can be rewritten as 

(1 ) 0.p M a   (1 ) 0.p M a                                                                                                                                  (1) 

The random variable p is uniformly distributed over 0, ( )r    , where 0 ( ) 1r  , ( )r is assumed to be a decreasing 

function of the investment cost of r. We define TR(t1, p) as the total revenue that is the sum of total sales of good quality and 

the imperfect quality items. One has  

1 1 1
( , ) ( , )TR t p aT t p s pMt   . (Please refer to (5))                                                                                                         (2) 

1
( , , )TC r t p  is the sum of setup cost per cycle, investment cost per cycle, production cost per cycle, screening cost per cycle, 

and holding cost per cycle. One has 

2
1 1 1 1

1 1 1

( ) [(1 ) ] ( ( , ) )
( , , )

2 2

M a t p M a t T t p t
TC r t p K r cMt dMt h

                 
.                                                (3)                                                                   

The total profit per unit time of
1

( , , )TPU r t p  given by dividing the total profit per cycle by the cycle length of T  is  

1 1
1

1

( , ) ( , , )
( , , )

( , )

TR t p TC r t p
TPU r t p

T t p


 .                                                                                                                             (4) 

here   
1 1 1

M - a t - pM t a(= T - t )  (please refer to Figure 2), and T  can be rewritten as  

1
1

( )
( , )

M pM t
T t p

a


 .                                                                                                                                                    (5) 

The expected value of 
1

( , , )TPU r t p  is 

1 1
1

1

( , ) ( , , )
( , ) [ ].

( , )

TR t p TC r t p
ETPU r t E

T t p


                                                                                                                        (6) 

T 

pMt1 

M-a 
M 

Inventory 
Level 

0 t1 

a 

Figure 2. Inventory system when x M. 
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Since the process of generating the profit is renewal (with renewal points at production epochs), the expected profit per unit 

time is given by the renewal-reward theorem (Maddah and Jaber, 2008) as   

1 1
1

1

[ ( , ) ( , , )]
( , )

[ ( , )]

E TR t p TC r t p
ETPU r t

E T t p


 ,                                                                                                                       (7) 

Where 

1 1
( ( , )) [ ( )( )]E TR t p Mt s E p s v                                                                                                                                    (8) 

2
1

1 1 1

( )
( ( , , )) {

2

M a t
E TC r t p K r cMt dMt h


       

                         
2 2 2

2
1

[1 2 ( ) ( )] 2(1 ( )
}

2

E p E p M E p Ma a
t

a

    
 . 

                         
(9) 

1
1

[1 ( )]
( ( , ))

E p Mt
E T t p

a


 . (10) 

And 

( )

0

( )1
( )

( ) 2

r r
E p p dp

r

 


  .                                   
(11)                                 

2( )
2 2

0

( )1
( )

( ) 3

r r
E p p dp

r

 


  .                               
(12)                                 

Due to the constraint of (1), and since the defective percentage p is a random variable with uniformly distribution over [0, β(r)], 

and if the investment cost, r, is limited by R, then our problem can be formulated as:  

 
Max:       ETPU(r, t1) 
Subject to:  (1 ( )) 0r M a   ,

1
0, 0.rR t    

 (13) 
(14)                                                            

  
3.2. Optimal solution  

In order to confirm the optimal solution in ETPU(r, t1), the following sufficient conditions must be satisfied: 

2
2 2 2

2 2
1 1

0
ETPU ETPU ETPU

r t r t

                         
,                                                                                                                    (15) 

and one or both  
2

2
0

ETPU

r





,  

2

2
1

0
ETPU

t





. 

However, (15) is hard to prove. As a result, a solution procedure is developed. We first prove that the optimal production run 

time per cycle, t1, is unique for any given invested capital r. Next, we provide a simple algorithm to find the optimal investment 

cost and production schedule for the proposed model. Since 
2 2 2 2

1 1
1 2

1 1

[ ( ) 3 ( ) 3] 3 [1 ( )] 6 ( )
( , )

3 [ 2 ( )]

hM t E p E p hMt a E p a K r
ETPU r t

t Mt E p

     


  
.                                                        (16) 

2

12 3
1 1

2 ( )
( , ) 0.

(1 ( ))

a K r
ETPU r t

t M E p t

 
 

 
                                                                                                                       (17) 

Where 0 ( ) 1E p  . Therefore,  1
,ETPU r t  is concave in

1
t , and gets an optimal solution of 

1
t  for any given invested 

capital, r. The optimal solution,
1

*
r

t , by setting
1

1

( , ) 0ETPU r t
t





  can be formulated as: 
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1 2 2

6 ( )
*

[ ( ) 3 ( ) 3] 3 [1 ( )]r

a K r
t

hM E p E p hMa E p




   
.                                                                                                   (18) 

 Therefore, the solution procedure of optimal (r*, t1*) is described as follows: 

 

 
 
 
 
 
 
 
 
 
 
 

 

Example 1. In this example, a=50000, M=80000, x=90000, K=500, h=5, d=0.5, c=35, s=50, v =5, and R=2000. The 

percentage defective random variable, p, can take any value in the range [0, β(r)] with   0.1
..

1 0.01
r

r
  


, 

where
1β and 2β are constants ( 2β denotes the original probability of defective items). With the given data, the optimal decision 

is obtained by using the software MATHCAD, the solution is r*=$1090 and t1*=0.115 year. The EPQ is Q*=Mt1*=9248 units, 

and the maximum profit per year ETPU(r*, t1*)=$701299. When considering no investment on production processes, the 

optimal solution is t1*=0.066 year, ETPU(0, t1*)=$635017. This result shows that the effects of the investment are significant; 

the percentage of profit increase is (701299/635017)-1=10.4%. 

Alternative approach for solution procedure 

The solution procedure of optimal (r*, t1*) described above is calculated step by step. In this section, an alternative 

approach for the solution procedure referred to Teng et al. (2012) is developed. As in (18), for a given invested capital, r, the 

optimal solution of ETPU is
1

*
r

t .   The optimal expected value function ETPU(r, t1r*(r)) is well-defined to illustrate the 

optimal value behavior of ETPU when r varies. Figure 3 depicts the optimal expected value behavior in [0,2000] with the 

parameters used in Example 1. It shows the approximate position of optimal expected value. Figure 4 depicts the more 

accurate position of optimal expected value behavior in [1080,1100]. The details are described in Example 2. 

 

0 1 103× 2 103×
6.2 105×

6.4 105×

6.6 105×

6.8 105×

7 105×

7.2 105×

ETPU z t1r z( ),  ( )

z
 

1.08 103× 1.09 103× 1.1 103×
7.012982 105×

7.012983 105×

7.012984 105×

7.012985 105×

7.012986 105×

7.012987 105×

ETPU z t1r z( ),  ( )

z
 

 

 

Solution Procedure 

Step 1  Start with j=1 

Step 2  Set r j , If r satisfies the domain constraint (i.e., (1 ( )) 0r M a   ), then find the optimal production run 

time per cycle, *
1r
t by (18). Otherwise go to Step 4.  

Step 3  Use the result in Step 2 to calculate the  1
,

r
ETPU r t   by (7). 

Step 4 1j j  , if j R , then go to Step 2, otherwise go to Step 5. 

Step 5  Determine the maximal value Ω of  1
,

r
ETPU r t  derived from Step 2, Ω is the optimal solution. Stop. 

ETPU(r, t1r*(r)) 
 

Figure 3. Optimal expected value behavior in [0,2000]  
when x>M. 

 
 

Figure 4. Optimal expected value behavior in [1080,1100] 
when x>M. 

 
 

ETPU(r, t1r*(r)) 

r 
 

r 
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Example 2. In order to compare with Example 1, the parameters in Example 1 are also used in this example. With the 

parameters, 
1

( , )ETPU r t  can be calculated by software Maple as follows:

 

11 11 10 9 2 8 2
1 1 1 1 1 1

, 0.00625 1.0907 10 9.8 10 2.14 10 2.28( ) 10 1.1 1( 6 0
r

ETPU r t t t t t r t r            

   7 2 2 8 7 2 3
1 1

1.2 10 5 10 1.1 10 70000 100 /) 95  100t r r r r r r t          
    

From (18), 
1

* ( )
r

t r can be calculated by software Maple as follows: 

9 11 7 2 9 11 7 2
1

* ( ) 10 (2.28 10 1.0907 10 1.2 10 )( 500)(100 ) / (2.28 10 1.0907 10 1.2 10 )
r

t r r r r r r r             .

 

 

From (17), the optimal r* =$1090 is derived by setting *
1

1

( , ( )) 0ETPU r t r
t





, and  1

t
r

r  = 0.115 year. These results are 

the same as that of Example 1. These results are the same as that of Example 1 and the approach is easier. 

3.3. Case II  when x  M  

To avoid shortages, it is assumed that the number of good items, (1-p)Mt1, is equal or greater than the demand during  

[0, tx], that is (please refer to Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
(1 ( )) 0

x
r Mt at   ,                                                                                                                                                (19) 

where    1
x

Mt
t

x
 .                                                                                                                                                          (20) 

1 1 1
( , ) ( ( , )TR t p a T t p s pMt   .                                                                                                                                    (21) 

1
1 1 1 1

( , , ) [( ) ]
2

t
TC r t p K r cMt dMt h M a t

     

1
1 1

( )
2( ) ( )

2
x

x

t t
M a t a t t

      

1
1

( ( , ) )
[(1 ) ]

2
x

x

T t p t
p Mt at

    
.                                                                                                                               (22) 

1
1

( )
( , )

M pM t
T t p

a


 .                                                                                                                                                     (23) 

One has 

1 1
1

1

[ ( , ) ( , , )]
( , )

[ ( , )]

E TR t p TC r t p
ETPU r t

E T t p


 .                                                                                                                       (24) 

T 

PMt1 M-a 

M 

Inventory 
Level 

t1 tx 
Time 0 

a  

a 

Figure 5. Inventory system when x  M 
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Due to the constraint of (19), and since the defective percentage p is a random variable with uniformly distribution over 

[0, β(r)], and if the investment cost, r, is limited by R, then our problem can be formulated as: 

Max:        
1

( , )ETPU r t  

Subject to: 
1

(1 ( )) 0
x

r Mt at   , 
1

0, 0R r t   .                                                                                            (25) 

Since 
2 2 2 2

1 1
1 2

1 1

[2 ( ) 2 ( ) ( )] 2 ( )
( , )

2 [1 ( )]

hM t xE p aE p x hxE p hMt xa xa K r
ETPU r t

t Mxt E p

     


 
.                                             (26)

 
2

12 3
1 1

2 ( )
( , ) 0.

(1 ( ))

a K r
ETPU r t

t M E p t

 
 

 
                                                                                                                       (27) 

Therefore, it means that 
1

( , )ETPU r t is concave in
1
t , and gets an optimal solution of 

1
t for any given invested capital, r. The 

optimal solution, 
1

t
r
 , can be formulated as: 

1 2 2

2 ( )
*

[2 ( ) 2 ( ) ( )]r

xa K r
t

hMxa hM xE p aE p x hxE p

 


   
  .                                                                                           (28) 

Example 3.  

In this example, a=50000, M=80000, x=60000, K=500, h=5, d=0.5, c=35, s=50, v =5, and R=1200. The percentage 

defective random variable, p, can take any value in the range [0, β(r)] with 2

1

0.1
( )

1 1 0.01
r

r r







 
. With the given data and 

the solution procedure, the optimal decision is obtained by using the software MATHCAD, the solution is r*=$1093 and 

t1*=0.115 year. The EPQ is Q*=Mt1*=9234 units, and the maximum profit per year ETPU(r*, t1*)=$701258. 

4. SENSITIVITY ANALYSIS 

Sensitivity analysis is carried out when the parameters 
1β , 

2β and x are changed. Table 1 (Figure 6), Table 2 (Figure 7), 
and Table 3 (Figure 8) show the changes in the investment cost, r, the production run time, t1, the expected net profit, ETPU 
and the expected net profit without investing, ETPUw. The % profit increase is [( ETPU- ETPUw)/ETPUw)]*100%. 

Table 1 and Figure 6 show ( 1β ) at 0.003, 0.004,…,0.017 with other variables unchanged. It is shown that as 1β  increases, 
the investment cost decreases, while the expected net profit increases. Table 2 and Figure 7 show (

2β ) at 0.03, 0.04,…,0.17 
with other variables unchanged. It is shown that as 

2β  increases, the investment cost increases, while the expected net profit 
decreases. Table 3 and Figure 8 show the screening rate, x, at 53000, 54000,…, 67000 with other variables unchanged. It is 
shown that as x increases, the investment cost decreases, while the expected net profit increases. Furthermore, from Table 1 to 
Table 3, we can see the significant % profit increase.  
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 Figure 6. The effect of 
1

  on the expected value of TPU. Figure 7. The effect of 
2

  on the expected value of TPU. 
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Table 1. Sensitivity analysis of

1
 . 

 
Table 2. Sensitivity analysis of

2
 . 

 
 

a=50000, M=80000, x=60000, k=500, h=5, d=0.5, 
c=35, s=50, v =5, 2β =0.1. 

1β  r t1 ETPU ETPUw % profit 
increase 

0.003 2147 0.149 692320 634728 9.1% 

0.004 1828 0.14 694807 634728 9.5% 

0.005 1613 0.133 696575 634728 9.7% 

0.006 1456 0.128 697921 634728 10% 

0.007 1336 0.124 698994 634728 10.1% 

0.008 1239 0.121 699876 634728 10.3% 

0.009 1160 0.118 700620 634728 10.4% 

0.01 1093 0.115 701258 634728 10.5% 

0.011 1036 0.113 701815 634728 10.6% 

0.012 987 0.112 702301 634728 10.6% 

0.013 943 0.11 702744 634728 10.7% 

0.014 905 0.108 703137 634728 10.8% 

0.015 871 0.107 703494 634728 10.8% 

0.016 840 0.106 703819 634728 10.9% 

0.017 812 0.105 704118 634728 10.9% 

 

a=50000, b=40000, M=80000, x=60000, k=500, 
h=5, d=0.5, c=35, s=50, v =5, 1β =0.01. 

2β  r t1 ETPU ETPUw % profit 
increase 

0.03 478 0.09 707471 692009  2.2% 

0.04 584 0.095 706248 684079 3.2 % 

0.05 682 0.099 705195 676067 4.3 % 

0.06 773 0.103 704262 667971  5.4% 

0.07 859 0.107 703418 659791 6.6% 

0.08 940 0.11 702645 651524 7.8% 

0.09 1018 0.113 701928 643170 9.1%  

0.1 1093 0.115 701258 634728 10.5% 

0.11 1166 0.118 700628 626195 11.9% 

0.12 1236 0.12 700033 617570 13.4% 

0.13 1304 0.123 699467 608852 14.9% 

0.14 1370 0.125 698928 600040 16.5% 

0.15 1435 0.127 698412 591131 18.1% 

0.16 1499 0.129 697917 582125 19.9% 

0.17 1561 0.131 697441 573019 21.7% 
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Table 3. Sensitivity analysis of screening rate, x. 
 

a=50000, b=40000, M=80000, k=500, h=5, d=0.5, 
c=35, s=50, v =5, 

1β =0.01, 
2β =0.1. 

x r t1 ETPU ETPUw % profit 
increase 

53000 1095 0.115 701237 634576 10.5% 

54000 1094 0.115 701240 634600 10.5% 

55000 1094 0.115 701243 634623 10.5% 

56000 1094 0.115 701247 634646 10.5% 

57000 1094 0.115 701250 634667 10.5% 

58000 1093 0.115 701253 634688 10.5% 

59000 1093 0.115 701255 634708 10.5% 

60000 1093 0.115 701258 634728 10.5% 

61000 1093 0.115 701261 634747 10.5% 

62000 1093 0.115 701263 634765 10.5% 

63000 1092 0.115 701266 634783 10.5% 

64000 1092 0.115 701268 634800 10.5% 

65000 1092 0.115 701271 634817 10.5% 

66000 1092 0.115 701273 634833 10.5% 

67000 1092 0.116 701275 634849 10.5% 

 
Figure 8. The effect of screening rate, x, on the expected value 

of TPU. 

 

 

5. CONCLUSION 

Under limited capital conditions, managers are faced with the key problem of how to improve the firm’s business by 
increasing the investment cost. This study develops an EPQ model with an investment on improving the production process 
under the limited capital. An algorithm is developed to derive replenishment and investment policies such that the expected 
profit per unit time is maximized. Numerical examples and sensitivity analysis are provided to illustrate the theory. Sensitivity 
analysis shows that as x increases, the investment cost decreases, while the expected net profit increases. In addition, a 
significant % profit increase is observed when the investment cost is considered. The results will provide managerial insights to 
managers for improved decision making. Future research can be done for stochastic demand.  
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