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Abstract  This paper deals with measuring inconsistency and incompatibility of  pair-wise comparison matrix with fuzzy 
elements. Here we deal with some properties of  such pair-wise comparisons, particularly, reciprocity consistency and 
compatibility. Moreover, we show how to measure it defining two new indices. The first index of  inconsistency is based on 
the classical concept of  consistency, however, instead of  principle eigenvector method used in AHP we apply the 
logarithmic least squares method. Defining the second index of  incompatibility we look for a consistent matrix in the form 
of  the ratio matrix with the maximal membership grade “as close as possible” to the original fuzzy matrix. This leads to 
solving a nonlinear optimization problem which can be transformed to a sequence of  LP ones. We compare properties and 
application areas of  both indices. The first index FI is suitable for non-interactive elements of  fuzzy matrices, particularly, 
when uncertainty of  individual elements of  the matrix can be reflected/measured. The second index GI is appropriate for 
interactive elements of  fuzzy matrices. By GI a measure of  compatibility of  fuzzy matrix with the closest consistent matrix 
is expressed. Illustrating examples and simulations are supplied to characterize the concepts and derived properties. 
 
Keywords  data analysis; decision making; uncertainty; pair-wise comparison; inconsistency; incompatibility   
 
1. INTRODUCTION 

Pair-wise comparison is a popular method for solving DM problems of  finding the best alternative among more than 2 
ones. This method is frequently used when ranking alternatives, evaluating the relative importance of  the individual criteria 
in MCDM problem and/or when evaluating alternatives according to qualitative criteria, e.g. design, taste, likeness, etc.  

The core of  the method is how to aggregate the results into the final prioritization or ranking. In this paper we deal 
with some properties of  such pair-wise comparisons, particularly with consistency of  pair-wise comparisons. Consistency 
means that if  an element i is a-times better than element j and element j is b-times better than element k, then i is a.b-times 
better than k. If  this property is valid for all compared elements i, j and k, we say that the matrix of  pair-wise comparisons is 
consistent. If, at least for one triple of  elements, the property is not satisfied, then the matrix is inconsistent. It is important 
to measure intensity of  inconsistency as in some cases the pair-wise comparison matrix can be “close” to a consistent matrix, 
in the other ones inconsistency can be strong, meaning that there exist numerous inconsistent triples eventually with large 
differences between corresponding values. For crisp pair-wise comparison matrices there exists numerous inconsistency 
measurement methods (indices), see e.g. Aguaron (2003), Koczkodaj (1993), Gass (2004), Stein (2007), and others. However, 
in these papers it was proven that all the consistency indices are linear or nonlinear transformations of  the original Saaty’s 
consistency ratio (Saaty, 1991). Moreover, these indices cannot be directly used for measuring consistency of  a matrix with 
fuzzy elements. The earliest work in AHP using fuzzy sets as data was published by van Laarhoven and Pedrycz (1983). 
They compared fuzzy ratios described by triangular membership functions. The method of  logarithmic least squares was 
used to derive local fuzzy priorities. Later on, using a geometric mean, Buckley et al. (1985) determined fuzzy priorities of  
comparison ratios whose membership functions were assumed trapezoidal. The issue of  consistency in AHP using fuzzy 
sets as elements of  the matrix was first tackled by Salo (1996). Departing from the fuzzy arithmetic approach, fuzzy weights 
using an auxiliary mathematical programming formulation describing relative fuzzy ratios as constraints on the membership 
values of  local priorities were derived. Later on Leung and Cao (2000) proposed a notion of  tolerance deviation of  fuzzy 
relative importance that is strongly related to Saaty’s consistency ratio. 

Instead of  principal eigenvector method used in classical AHP, here, we use the logarithmic least squares method, see 
Van Laarhoven, (1983) and Ramik (2010). The first index – inconsistency index – is based on the logarithmic least squares 
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function. Defining the second index – incompatibility index - we look for a consistent crisp matrix in the form of  the ratio 
matrix with the maximal membership grade “as close as possible” to the original fuzzy matrix. This leads to solving a 
nonlinear optimization problem which can be transformed to a sequence of  LP ones. Recently, in the literature we can find 
papers dealing with applications of  pair-wise comparison method where evaluations are performed by fuzzy values, 
particularly, evaluating regional projects, web pages, e-commerce proposals etc.  
     This paper is organized as follows. In Section 2 the basic concept of  Triangular Fuzzy Positive Reciprocal (TFPR) 
matrix is introduced. In Section 3, a general concept of  inconsistency index FI of  TFPR matrix based on the metric 
function is defined, in Section 4, the fuzzy logarithmic LSQ method is introduced and applied. Section 5, deals with the 
incompatibility index GI of  TFPR matrix. Finally, in Section 6, illustrating examples and simulation experiments are 
supplied in order to characterize the concepts and derived properties. Finally, in Section 7, concluding remarks of  the paper 
are presented. 

 
2. TRIANGULAR FUZZY POSITIVE RECIPROCAL MATRIX 

Triangular fuzzy numbers are suitable for modeling uncertain values by DMs in practice. A triangular fuzzy number a  

can be equivalently expressed by a triple of  real numbers, i.e. ( ; ; )L M Ua a a a= , where aL is the Lower number, aM is the 

Middle number, and aU is the Upper number, aL ≤ aM ≤ aU. If  aL = aM = aU, then a  is said to be the crisp number (non-fuzzy 

number). Evidently, the set of  all crisp numbers is isomorphic to the set of  real numbers. If    aL  aM  aU , then the 

membership function  of   is supposed to be continuous, strictly increasing in the interval [aL, aM] and strictly decreasing in [aM, 

aU]. Moreover, the membership grade is equal to zero for x[aL, aU] and equal to one for x = aM. As usual, the membership 

function  is assumed to be piece-wise linear, see Figure 1, where the evaluation “moderately more important” is expressed 

by the triangular fuzzy number on the scale S = [1/9, 9]. If   aL = aM  and/or aM = aU, then the membership function  is 

discontinuous. It is well known that the arithmetic operations +, -, * and / can be extended to fuzzy numbers by the 

Extension principle, see e.g. Buckley (2001).  

   The elements of  Triangular Fuzzy Positive Reciprocal (TFPR) matrix are positive triangular fuzzy numbers
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Arithmetic operations with fuzzy numbers are defined as follows, see Buckley (1986) or Ramik (2010). Let 

);;(~ UML aaaa  and );;(~ UML bbbb  , where 0La , 0L
ib , be positive triangular fuzzy numbers. We define the following 

arithmetic operations: 

 Addition:  ( ; ; )L L M M U Ua b a b a b a b+ = + + + ; 

 Subtraction:  ( ; ; )L U M M U La b a b a b a b- = - - -  ; 

 Multiplication: * ( * ; * ; * )L L M M U Ua b a b a b a b=  ; 

 Division:  / ( / ; / ; / )L U M M U La b a b a b a b=  . 

Particularly:  
1 1 1 1

; ;
U M La a a a

æ ö÷ç ÷= ç ÷ç ÷çè ø
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     It should be noted, that for triangular fuzzy numbers with piece-wise linear membership functions the above 
formulae for multiplication (and also for division) are not obtained by the Extension principle. They are only approximate 
ones, e.g. multiplication is a triangular fuzzy number with piece-wise linear membership function, whereas the membership 
function of  the exact operation defined by the Extension principle would be non-linear. For using matrices with triangular 
fuzzy elements there exist at least following reasons: 

 The membership function of triangular fuzzy elements is piece-wise linear, i.e. it is easy to understand. 
 Triangular fuzzy numbers can be easily manipulated, e.g. added, multiplied. 
 Crisp (non-fuzzy) numbers are special cases of triangular fuzzy numbers. 
 The TFRP matrix can be considered by the DM as a model for his/her fuzzy pair-wise preference representations 

concerning n elements (e.g. alternatives). In this model, it is assumed that only n(n-1)/2 judgments are needed, the rest 
is given by reciprocity condition. 

 In practice, when interval-valued matrices are employed, the DM often gives ranges narrower than his or her actual 
perception would authorize, because he/she might be afraid of expressing information which is too imprecise. On 
the other hand, triangular fuzzy numbers express rich information because the DM provides both the support set of 
the fuzzy number as the range that the DM believes to surely contain the unknown ratio of relative importance, and 
the grades of possibility of occurrence (i.e. membership function) within this range. 

 Triangular fuzzy numbers are appropriate in group decision making where aL can be interpreted as the minimum 
possible value of DMs judgments,  aU is interpreted as the maximum possible value of DMs judgments, and aM – the 
geometric mean of the DMs judgments is interpreted as the mean value, or, the most possible value of DMs 
judgments, see Buckley (1985). 

.  

 
Figure 1. Elements of  Triangular Fuzzy Positive Reciprocal (TFRP) matrix 

 
 
3. INCONSISTENCY INDEX FI OF TFPR MATRIX 

Construction of  a new measure - inconsistency index of  the reciprocal matrix with triangular fuzzy elements is based 
on the idea of  distance of  the TFPR matrix to the “ratio” matrix measured by a particular metric function, see Ramik 
(2010). 

Let M be a set of  nn matrices with triangular fuzzy elements, and let Φ be a real function defined on MM, i.e.     
Φ : MM  R satisfying the 3 assumptions:  

(i)     Φ(A ,B ) ≥ 0 for all A ,B  M. 

(ii)    If  Φ(A ,B ) = 0 then A  = B . 

(iii)   Φ(A ,B ) + Φ(B ,C ) ≥ Φ(A ,C ) for all A ,B ,C  M. 
Then Φ is called the metric function on M. 

Let { }i

j

x
X

x
=




, i,j = 1, 2,...,n, be a ratio matrix with positive triangular fuzzy numbers ( ; ; )L M U

k k k k
x x x x= . The vector 

of  positive triangular fuzzy numbers 
1
( ,..., )

n
x x x=   is called the vector of  fuzzy weights if   
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Given { }
ij

A a=  - nn reciprocal matrix with triangular fuzzy elements (n>2), where the support supp(
ij
a )  S, S = [1/ , 

] ,  > 1, ( ; ; )L M U

ij ij ij ij
a a a a= , i,j = 1, 2,...,n, and let Φ and Ψ be metric functions on M.  

The new inconsistency index ( )FI A  of  { }
ij

A a=  is designed in two steps (Ramik, 2010): 

Step 1: Solve the following optimization problem: 

Φ(A ,X ) → min;                   (3) 
subject to  

1

1
n

M

k
k

x
=

=å , 0U M L

k k k
x x x³ ³ ³ , k = 1, 2,...,n.              (4) 

 

Step 2: Set the inconsistency index In of A  as  

 In(A ) = inf{ Ψ(A ,W ); W - optimal solution of  (3), (4)}.            (5) 

 

Remark. In Ramik (2010), Ramik and Korviny defined Φ and Ψ as follows: 

Φ(A ,X ) = 

2 2 2

,

max log log , log log , log log
L M U
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Ψ(A ,W ) = 
,
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ij ij ijU M Li j
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where   is a normalizing constant. Here, in Step 1 and Step 2, in contrast to Ramik (2010), we apply metric function Φ 
according to (6) and we set Ψ = Φ. 

Here, inconsistency index  of  TFPR matrix A  is defined by (5) as follows: 

( )FI A  =

2 2 2

,

max log log , log log , log log
L M U

L M Ui i i
ij ij ijL M U

i j j j j
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a a a
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å .             (8) 

 
This definition was recommended also in Brunelli (2011). A TFRP matrix  is said to be F-consistent if  = 0. Clearly, this new 
index (8) is identical to the former inconsistency index, for crisp matrices all three parts within the inner parentheses in (8) 
coincide. 

 
4. FUZZY LOGARITHMIC LSQ METHOD 

Instead of  principle eigenvector method used in classical AHP, here, we use the logarithmic least squares method 
modified for fuzzy values. The advantage of  the logarithmic least squares method over the classical least squares method is 
the symmetry of  values from the scale [1, 9] and the reciprocal values from [1/9, 1]. 
Let  be a TFPR matrix. Now, solve the optimization problem: 

2 2 2
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Theorem 1. Let  
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solution of  problem (9), (10).  
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The proof  is easy, see Ramik (2010). 
 

Notice, that optimal solution of  problem (9), (10): , k =1,2,...,n, can be used for ranking the alternatives and/or 
criteria in MCDM problem. 

The following properties of  inconsistency index ( )FI A of  TFPR matrix A  follow directly from Theorem 1: 

(i) 0 ≤ ( )FI A . 

(ii) If ( )FI A = 0, i.e. A  is F-consistent, then A  is crisp (i.e. nonfuzzy). 

Now, we will show that if  fuzziness of  the elements of  a TFPR matrix increases then the inconsistency index FI of  this 
matrix increases, too. 

Let { } {( ; ; )}L M U
ij ij ij ij

A a a a a= =   be a FPR matrix and let   1 and let 1{( ; ; )}L M U
ij ij ij

A a a ad d
d=  be called 

-fuzzification of  matrix { }
ij

A a=  .  

    Now, we show that if  fuzziness of  the elements of  the matrix Ad
 increases then the inconsistency index ( )FI Ad

  

increases, too. In order to show this property, we need the following result. 

Proposition 1.  Let   1 and L M U

i i i i
w w w w= = = , i = 1,2,...,n, be an optimal solution of  (9), (10) with respect to crisp 

matrix A = {aij} , 
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å . Then the inconsistency index FI of  -fuzzification of  matrix A = {aij} 

satisfies the following formula: 
2

, 1

( ) 2 |log log | log
n

i
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i j j

w
FI A a

wd d
=
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The proof  of  formula (11) follows directly from Theorem 1, as ,for  i,j = 1, 2,...,n, ij,  and , for i=1,2,...,n. Now, it 

follows easily from (11) that inconsistency index FI( Ad
 ) increases with increasing   1 as

2

, 1

( ) 2 |log log | log
n

i
ij

i j j

w
FI A a

wd d
=

æ ö÷ç ÷ç= - + ÷ç ÷ç ÷÷çè ø
å  log increases with increasing  .  

 
5. RESULTS AND ANALYSIS 

Here we look for a (crisp) consistent matrix in the form of  the ratio matrix with the maximal membership grade i.e. “as 
close as possible” to the original fuzzy matrix. We define an incompatibility index GI based on Ohnishi (2008). Later on, we 
will show that GI has different behavior when comparing to FI. Again, let { } {( ; ; )}L M U

ij ij ij ij
A a a a a= =   be a TFPR matrix, 

where 
ij

m  is a membership function of  
ij
a . Let 

( )1
( ,..., ) min{ |1 , }i

j

w

n ij w
G w w i j nm= £ £ .              (12) 

Then ( )GI A , called the incompatibility index of , is defined as 

1
1

( ) 1 max ( ,..., )| 1, 0, 1,2,...,
n

n j i
j

GI A G w w w w i n
=

ì üï ïï ï= - = ³ =í ýï ïï ïî þ
å .          (13) 

Theorem 2. Let  be a TFPR matrix.                            

Then *

0
( ) 1GI A x= - , where  is an optimal solution of  the following optimization problem: 

 

0
x  max;                     (14) 

 
subject to 

0 0
( ) ( ),L M L U U Mi

ij ij ij ij ij ij

j

x
a x a a a x a a

x
+ - £ £ - -               (15) 
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0
0 1, 0, 1 , ,

k
x x i j k n£ £ ³ £ £ .               (16) 

The proof  of  Theorem 2 is easy and it follows directly from (12) and (13).  

Optimization problem (14) – (16) is nonlinear in variables x0, x1,…,xn,  however, it can be transformed into a sequence 
of  LP problems which can be solved by “dichotomy” method, see Ohnishi (2008). 

The following two properties of  incompatibility index ( )GI A  of  TFPR matrixA follow directly from (12) – (16): 

(i) 0 ≤ ( )GI A ≤ 1. 

(ii) If ( )GI A = 0, then ( )FI A  = 0, i.e. A is F-consistent. 

(iii) There exists a TFPR non-crisp matrix *A with ( *) 0GI A = . 

Now, we will prove the following property: Incompatibility index ( )GI A could decrease when fuzziness of  the 

elements of  the matrix would increase. 
Let  be a TFPR matrix, and let 1{( ; ; )}L M U

ij ij ij
A a a ad d

d=  be -fuzzification of  matrix { }
ij

A a=  ,   1. Notice that . 

Let optimization problem (P) be as follows: 
(P) 
subject to 

0
x  max;                                                                             (17) 
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k
x x i j k n£ £ ³ £ £              (20) 

 

Proposition 2. Let 0 < 1 < 2 and let 
0 1
( , ,..., )

n
x x x x=  be a vector of  feasible solution of  (P), i.e. xk satisfies   

(17)-(20) with  =1. Then  is a feasible solution of  
2

( )Pd , i.e. xk satisfies (17)–(20) with  =2.  

Proof: To prove the proposition it is sufficient to show that for all i,j = 1,2,...,n 

0 0

2 2 1 1

1 1 1 1
( ) ( ),L M L L M L

ij ij ij ij ij ij
a x a a a x a a

d d d d
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and 

1 0 1 2 0 2
( ) ( )U U M U U M

ij ij ij ij ij ij
a x a a a x a ad d d d+ - £ + - .              (22) 

Evidently, (21) is equivalent to the following inequality: 

0

1 2

1 1
0 (1 )L

ij
a x

d d

æ ö÷ç ÷ç£ - -÷ç ÷ç ÷è ø
.                 (23) 

Similarly, (22) is equivalent to 

( )2 1 0
0 (1 )U

ij
a xd d£ - - .                (24) 

As 0 < 1 < 2 , 
0

0 1x£ £ , 0 ,L
ij
a£ and 0 U

ij
a£ , inequations (23), (24) are satisfied for all i,j = 1,2,...,n , q.e.d. 

From Proposition 2 it is clear that if  x0 is the maximum value of  the objective function of   and  is the maximum 

value of  the objective function of  , and 0≤1≤2 , then *

0 0
x x£ . Moreover,  

1 0
( ) 1GI A xd = -  and 

2

*

0
( ) 1GI A xd = - , 

then . Consequently, is non-increasing function of    1. Comparing this result to that of  Proposition 1, inconsistency index 

FI(Ad
 ) increases with increasing   1 . 
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6. EXAMPLES AND SIMULATIONS  

In this section we present some illustrating examples showing that the new inconsistency/incompatibility indices are 
convenient tools not only for measuring consistency/compatibility of  pair-wise comparison matrices with fuzzy elements, 
but also for measuring consistency/compatibility of  crisp pair-wise comparison matrices. The last example is a simulation 
case study comparing the both presented indices. 

Example 1. 
Consider the following TFPR (crisp) matrix: 

1
2
1 1
6 3

(1; 1; 1 ) (2; 2; 2) (6; 6; 6)
1 2 6

1 1 1
( ; ; ) (1; 1; 1) (3; 3; 3) 1 3
2 2 2

11 1 1 1 1 1
( ; ; ) ( ; ; ) (1; 1; 1)
6 6 6 3 3 3

A

é ù
ê ú é ùê ú ê úê ú ê úê ú= = ê úê ú ê úê ú ê úê ú ë ûê ú
ê úë û

          

Let S = [1/9, 9] be the scale. Then by Theorem 1 we calculate:
1 1 1 1
( ; ; )L M Uw w w w= =(2.289; 2.289; 2.289), 

2 2 2 2
( ; ; )L M Uw w w w= =(1.145; 1.145; 1.145),

3 3 3 3
( ; ; )L M Uw w w w= =(0.382; 0.382; 0.382). Consequently, )~( AFI = 0, then  

A~  is F-consistent . 

Example 2. 
Consider the following TFPR (fuzzy) matrix: 

(1; 1; 1 ) (1; 3; 4) (4; 5; 6)

1 1
( ; ;1) (1; 1; 1) (3; 4; 5)
4 3
1 1 1 1 1 1
( ; ; ) ( ; ; ) (1; 1; 1)
6 5 3 5 4 3

B

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û

 .          

The scale is S = [1/9, 9] and by Theorem 1 we calculate:
1 1 1 1
( ; ; )L M Uw w w w= =(1.587; 2.466; 2.884),

2 2 2 2
( ; ; )L M Uw w w w=

=(0.909; 1.101; 1.710), ( )GI B = 0.511. 

Example 3.  Consider the following TFPR (fuzzy) matrix  

13
13 13

13 13 13

2
(1; 1; 1 ) ( ; 2; 2 ) ( ; ; )

1 1 3
( ; ; ) (1; 1; 1) ( ; 3; 3 )
2 2 2
1 1 1 1
( ; ; ) ( ; ; ) (1; 1; 1)

3 3 3

a
a a

A

a a a

d

d d
d d

d
d

d d
d d

d d

é ù
ê ú
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

 ,         

where δ[1,9]. 

 
Figure 2.  δ -fuzzification of  element “2” 
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Comparison of  FI and GI index for TFPR matrix Ad
 : 

 
Figure 3. FI(δ ) 

 

 
Figure 4. GI(δ ) 

 
It is clear that the results depicted in Figure 3 and Figure 4 confirm the conclusions of  Propositions 1 and 2. 
 
7. CONCLUSION 

When comparing FI and GI we can give the following recommendation: 
 FI is suitable for non-interactive elements of fuzzy matrices; 
 GI is appropriate also for interactive elements of fuzzy matrices; 
 by FI uncertainty of individual elements of the matrix can be reflected/measured; 
 by GI a measure of compatibility of fuzzy matrix with the closest consistent matrix is expressed. 
Consistency itself  is a necessary condition for a better understanding of  relations between elements in MCDM. In 

MCDM every criterion may have its own inconsistency/incompatibility index. Then inconsistency/incompatibility of  the 
whole problem is given as maximum of  the individual inconsistencies/incompatibilities.  
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