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Abstract  In this paper, we propose a revision of  the linear relaxation algorithm [Carlsson and Shi (2013):  A linear 

relaxation algorithm for solving the sum-of-linear-ratios problem with lower dimension. OR Letters, 41(4): 381-389] for 

solving the Sum-of-Linear-Ratios (SOLR) problem. Carlsson and Shi casted the SOLR problem into an equivalent problem 

with linear objective and a set of  linear and nonconvex quadratic constraints. By dropping out the nonconvex quadratic 

constraints, they proposed a linear relaxation for the SOLR problem and designed a branch-and-bound algorithm to solve the 

SOLR problem with lower dimension. 

To circumvent the nonconvex quadratic constraints, we do not drop them out but make a linear relaxation for the 

nonconvex constraints with some extra variables. Therefore, this linear relaxation is generally tighter than the previous one. 

With the help of  the new relaxation, we propose an algorithm for solving the SOLR problem and prove the convergence of  

the algorithm. The numerical experiments are conducted and the results indicate that our method is more efficient than the 

previous. 
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1. INTRODUCTION 

Over the past decades, the Sum-of-Linear-Ratio (SOLR) problem has attracted theoretical and practical interest of  many 

researchers and practitioners. The SOLR problem poses some theoretical and computational challenges in nonconvex 

optimization because of  its NP-hardness (Matsui, (1996)). The 3-partition problem (Michael, (1979)), Traveling Salesman 

Problem (TSP) can be written in the form of  the SOLR problem. It is well known that the SOLR problem generally has 

multiple local optimizers which are not globally optimal even for low dimension (Schaible, (1977)). From a practical point view, 

the SOLR problem has a wide variety of  applications such as multistage stochastic shipping problem (Almogy et al. (1970)), 

multi-objective bond portfolio optimization problem (Konno and Inori, (1989), Konno and Watanabe, (1996)), minimum 

ratio spanning tree problem (Skiscim and Palocsay, (2001)), finance and investment (Choi and Bricker, (1996)), and a number 

of  geometric problems and others problems (Chen et al. (2000)).  

In this paper, we focus on a revision of  the linear relaxation algorithm (Carlsson and Shi, (2013)) with lower dimension. 

A variety of  problems in application domains including layered manufacturing (Majhi et al., (1999)), camera resectioning (Kim and 

Hong, (2007)), homograph estimation, star cover problem, triangulation problem and others can be appropriately formulated as the 

SOLR problem with lower dimension. The problems of  this class are characterized by a small number of  variables and a large 

number of  ratios. The following are some specific examples with detailed description.  

Camera Resectioning A recursive Camera Resectioning algorithm is proposed for solving this problem (Kim and Hong, 

(2007)). In the algorithm, the estimation of  camera motion can be simply computed by the following expectation 

( ) ( )

1

[ | ] .

M

i i

t t t t

i

E X Y x



   

Here M is the number of  samples (usually M is large),
( )i

t
 is the weight of  the i-th sample, and

( i )

t
x is the model of  the 

probability distribution of  camera system state at time t for sample i. Clearly, this problem can be formulated into the SOLR 

problem in R3 if  the probability distribution is linear ratio for each sample.  
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The star cover problem This problem was introduced by Karen Daniels at the 5th MSI workshop on Computational 

Geometry in 1995 (Daniels, (1995)). Later, Chen et al. (2005) converted this problem into 
2

( )O n number of  the SOLR 

subproblems, where each the SOLR problem has an objective function with the number ( )O n  of  ratios in R2.  

Triangulation Kuno and Masaki (2013) built a pinhole camera model for this problem and formulated it into 

minimizing the following form 

T

T

1

q
p

i i

i i i

n x a

d x b




 , 

where x is subject to a compact convex region in R3 and q=1 or 2. Obviously, this problem is equivalent to the SOLR problem 

when q=1 and the symbol of  each ratio does not change in its feasible region. Actually, the Charnes-Cooper transformation 

(Charnes and Cooper, (1962)) can be applied to solve this problem even the symbol of  each value can be changed on its 

feasible region. Several other problems such as optimal penetration problem (Chen et al., (2001)) and others also share the 

same characters mentioned above. Therefore, the SOLR problem with lower dimension is an important class in the application 

domain.  

Over the past decades, many global algorithms have been proposed to solve the SOLR problem. Most of  these 

algorithms were designed to solve problems derived from economic field where the number of  ratios is small (Konno and Abe, 

(1999), Benson, (2007)). It is well known that the SOLR problem with a single ratio is equivalent to a linear programming 

problem (Charnes and Cooper, (1962)). Some algorithms have been developed by using simplex-like method pivoting or the 

parametric simplex method for two ratios (see, for instance, (Cambini et al., (1989), Konno et al., (1991)). Various algorithms 

are developed for globally solving the problem when the number of  ratios is less than 4. Some of  them transform the problem 

into a relaxation linear programming problem by introducing new extra variables, then methods such as branch-and-bound can 

be exploited to obtain a global optimal solution within a given tolerance. More precisely, the branch-and-bound method is 

performed on a p-dimensional region rather than the native n-dimension with introducing p variables (e.g., Falk (1994), Wu et 

al., (2008)). It was reported (Kuno, (2002)) that the SOLR problem cannot be solved in a reasonable time with a number of  

ratios greater than 16 (e.g. p>16) by using such approach. In addition, Depetrini and Locatelli (2011) proposed an algorithm 

like sampling method to obtain an approximation optimal solution, but their algorithm takes much CPU time for solving the 

SOLR problem even the number of  ratios is 3. For an excellent review of  the applications, theoretical results, algorithms for 

the SOLR problem, the reader is referred to Schaible and Shi (2003).  

Recently, Carlsson and Shi (2013) developed an algorithm to solve the SOLR problem with lower dimension based on a 

linear relaxation of  the objective function. The SOLR problem can be reformulated as a problem with a linear objective and a 

set of  linear and bilinear constraints by introducing auxiliary variables, then the SOLR problem can be globally solved by 

branch-and-bound approach in a space of  native variables with a lower dimension. It is reported that their approach can solve 

the problem efficiently even the number of  ratios goes up to 75 (Carlsson and Shi, (2013)). However, a set of  quadratic 

(bilinear) constraints is discarded to make a linear relaxation problem in their research. In this paper, we make a linear 

relaxation of  the quadratic constraints to create a tighter lower bound of  the minimum, which will improve the efficiency of  

the previous algorithm. In addition, Kuno and Masaki (2013) also focused on the problem with lower dimension and 

proposed an algorithm for solving a kind of  the SOLR problem with different branch rules.  

This paper is organized as follows. In Section 2, we give a standard form of  the SOLR problem and show how to make a 

relaxation of  its equivalent problem. In Section 3, we give a branch and bound algorithm for solving the problem and prove 

the convergence of  the proposed algorithm. Section 4 gives a numerical example to illustrate the efficiency of  the new 

algorithm and reports the results of  numerical experiments with randomly generated datasets. We conclude this study and 

outline the further work in Section 5.  

 

2. EQUIVALENT TRANSFORMATION AND LINEAR RELAXATION 

In this paper, we consider the SOLR problem defined as follows 

 

T

T

1
0

m in im iz e ( )

( )

| , 0

p

i i

i i i

n

n x a
f x

d x bP

su b je c t to x X x R A x c x








    


 

where 2p  , 
i

n , 
i

d  are vectors in n
R  for 1, ,i p , ,

i i
a b are real numbers for 1, ,i p , A  is an m n matrix, c  

is a vector in m
R . We suppose that 0

T

i i
d x b  on X for all 1, , .i p  

Because the set X is nonempty and bounded, we can construct a rectangle [ , ]B l u  which contains the feasible 

region X. We denote that 
T T

1 2 1 2
[ , , , ] , [ , , , ] ,

n n
l l l l u u u u   where ,

j j
l u  are the optimal values of  the linear 

programming problem (1) and (2), respectively.  



30 

Hu, Shi and Watanabe: A Revised Algorithm for Solving the Sum of Linear Ratios Problem with Lower Dimension using Linear Relaxation 
IJOR Vol. 11, No. 1, 028−039 (2014) 

 

 

 
: m in im iz e

j j
l x

su b je c t to x



 
 (1) 

 
: m a x im iz e

j j
u x

su b je c t to x



 
 (2) 

Considering problem (P0) with the box  ,B l u  as follows.  

  
1

1

m in im iz e

p

i i

i i j

n x a

d x b
P

su b je c t to A x c

l x u













 



 (3) 

where 0 l u  . Because X B  from (1) and (2), problem (P0) is equivalent to problem (P1). Let us apply the 

Charnes-Cooper transformation (Charnes and Cooper, (1962)) to (3), by introducing 2p variables as follows:  

T

1
: , : , 1, 2 , , .

+

i

i i

i i

y z x z i p
d x b

    

It is easy to see that A x c  if  and only if  0A y c z  and that [ , ]x l u if  and only if  0y lz   and in the sense 

that 
T T

/ ( + ) , 1 / ( + ) .
i i i i

y x d x b z d x b   

Denote that  
T

: m in |
i i i

d x b x X    and  
T

: m a x | .
i i i

d x b x X     Then we have  

  

 
1

2

m in im iz e

1,

0 ,

1 1
, , 1, 2 , . . . , .

y ,

,

p

i

i i i

i

i

i i i

i

i

i

i i

i j

j i

i

i i

n y a z

su b je c t to d y b z

A y c z
P

z i j p

z y z

z l y z u

 








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

 




  








  



 (4) 

We will see that problem (P2) is equivalent to problem (P1) from the following theorem.  

 

Theorem 1. Problem (P2) is equivalent to problem (P1). 

Proof: The following proof  is similar to Theorem 1 in (Carlsson and Shi, (2013)). For self-contained we give a proof  below.  

Let *
x  be an optimal solution to problem (P1). Define that 

* * T * * T *
( ) : / ( + ) , : 1 / ( + )

i

i i i i i
y x d x b z d x b   then we see 

that 
* *

( ( ) , )
i

i
y z  are feasible for problem (P2). Suppose there is a feasible solution (( ) , )

i

i
y z   of  (P2) such that  

    
* *

1 1

( ) ( ) .

p p

i i

i i i i i i

i i

n y a z n y a z
 

 

      (5) 

Thus, we see that with ( ) /
i

i
x y z    

   
T *

* *

*

1 1 1 1

( ) , ( )

p p p p

i ii i i i

i i i i i i

i i i ii i i i

n x a n x a
n y a z n y a z

d x b d x b



 

 

   

  
    

  
     

and x  is also a feasible solution to (P1). Therefore, the inequality (5) contradicts the optimality of  *
x  for (P1). And similar 

to vice versa.   □ 

 

From Theorem 1, in order to globally solve (P0), we may solve (P2) instead because all (P0), (P1) and (P2) are equivalent. 

However, the constrains 
i j

j i
y z y z  for , 1, ,i j p  in (4) are quadratic and nonconvex. Therefore, this problem can 
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be solved in the category of  nonconvex quadratic programming, which is general, of  course, NP -hard.  

It is trivial that we can make a relaxation for (P2) by discarding 
i j

j i
y z y z  for all , 1, ,i j p  as follows:  

  

 
1

0

m in im iz e

1,

, 0 ,

1, 2 , . . . ,1 1
,

p

i

i i i

i

i

i i i

i

i

i

i i

i

i i

n y a z

su b je c t to d y b z

Q l u A y c z

i p
z

z l y z u

 









 


  




 




  



，

 (6) 

The problem (6) is a linear programming problem. In their paper (Carlsson and Shi, (2013)), Carlsson and Shi 

fundamentally exploited this linear form (6) to obtain the lower bounds of  (4) and design a branch and bound algorithm for 

solving the SOLR problem.  

In this study, we devise a linear relaxation of  
i j

j i
y z y z  with 0

i

i
y lz    and 0 .

i

i
y u z   Note that 

1 / 1 /
i i i

z   and 0
i

z   for all i. Thus we see that for each i 

1 /
i i

y   and 1 /
i i

y  for all , 1, , .i j p  

We consider two sets Bcurv and Btria that are defined below. 

 cu rv
: ( , , ) | ,1 / 1 / , / /

i i

i j j i j j j j i i i i
B t y z t y z z l y u          

and 

 

1
,

1
,

: , , 1 / 1 / , / / .
1

,

1
,

i

i j j

j i j i

i

i j j

j i i ji i

tr ia i j j j j j i i

i

i j j

j i i j

i

i j j

j i i j

l l
t y z

u u
t y z

B t y z z l y u
u u

t y z

l l
t y z

   

   
   
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 

 

 
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It is easy to see that  

Lemma 1. The relation 
cu rv tria

B B holds. 

Proof: We first prove the case that 
1

.
i

i j j

j i j i

l l
t y z

   
    For 

cu rv
( , , ) ,

i

i j j
t y z B  , 1, , .i j p  

1

1

1
( )( )

i

j i j

j i j i

i i

j j

j i j i

i

j

j i

l l
y z t

l l
y z y z

l
z y
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 

  

   
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Since 1 /
j j

z   and /
i i

y l  , we have 
1

0 .
i

j i j

j i j i

l l
y z t

   
     Using the similar way, we can easily prove 
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that the other cases in the lemma hold. □ 

Lemma 1 indicate that the following problem 
1
( , )Q l u can be exploited to find an lower bound for problem 

0
( , )Q l u  

with a box [ , ] :l u  
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, 1, 2 , . . . , .i j p











 (7) 

Next we will develop a branch and bound algorithm to find the optimal solution to (3) by solving a series of  the linear 

programming problems (7).  

 

3. ALGORITHM AND ITS CONVERGENCE 

In our algorithm, the branching process is executed in the space of  Rn. Suppose 

 |: , 1, 2 , ,
k

i i i
B x R x x x i n      is a rectangle that contains an optimal solution in the process. Then k

B  is divided 

into two subrectangles 2 k
B , 2 1k

B
 according to the following bisection branch rules R1-R3:  

R1. Let  0
a rg m a x | 1, 2 , , .i

i
i x x i n    

R2. Let  0
00

1
.

2
i ii

x x    

R3. Let  
0 0 0

2
| , 0 , ,

k n

i
i i i i i

B x R x x x i i x x         

        0
0 0

2 1

0
| , , .

k n

i ii i i i
B x R x x x i i x x


        

Starting from 
1 1 1

{ [ , ] [ , ]}B l u l u   that is generated by solving problem (1) and (2), we solve 
1

( , )
k k

Q l u  for 

1, 2 ,k  . The rectangle k
B  will be discarded at the k-th iteration if  the optimal value of  

1
( , )

k k
Q l u  is greater than the 

current best value at the solution 0 0

0

/ ,
i i

i
x y z    0

a rg m a x | 1, 2 , , .k
i

k
i f x i p   Now the algorithm is ready to be 

described in detail as follows:  

Let    , : m a x | 1, 2 , , ,
k k k k

i i
l u u l i n     
   which denote the size (diameter) of  box , .

k k
l u 
   Hereafter, we also 

use   to denote the size of  box. The convergence of  Algorithm 1 can be shown by the following Lemma 2 and Theorem 2.  

Algorithm 1 Branch and bound algorithm for SOLR 

1: Initial settings: Set k=1. Let { [ , ]} { [ , ]}
k k k

l u l u B be the initial rectangle. ,L    .U    

2: Solve 
1

( , )
j j

Q l u with .
j k

B  B  If  
1

( , )
j j

Q l u  is feasible then obtain the optimal value Lk and 

/ ,k k

k

i i

i
x y z  and   m in | 1, 2 , , .k

ik

k
U f x i p  , .

k k k
L U U L If  

1
( , )

k k
Q l u  is infeasible then 

terminate.  

3: Set a tolerance 0 .   

4: while k
U  L  do 

5:   Discard rectangles j k
B  B such that the value of  

1
( , )

j j k
Q l u U . 
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6:   Select 0
j k

B  B  with 0 .
j k

L  L  

7:  Divide 0
j

B  into two subrectangles 2 k
B , 2 1k

B
  according branching rules R1-R3, and update 

     0 2 2 1
\ { } .
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
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1
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k
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
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10:   Set k=k+1. 

11: end while 

12: Return U as an m inim ize   of  (P0) with a minimizer / [ , ] .k k

k

j j

j
x y z l u   

Lemma 2. Suppose that ( , )
i i

i
y z  for 1, ,i p  are obtained from solving (7) and 0

0

/ [ , ] .
i

i
x y z l u  Then  

 0 0
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T

T

T

1 1
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i ii

i i i
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Proof: This proof  is almost as the same as Theorem 1 in (Carlsson and Shi, (2013)). For self-contained we give the proof  

below. 

Without loss of  generality, we suppose that 
0

1 .i   Let / .
i i

i
x y z  Since ,

i

i
y z  are feasible solutions of  (7), it follows 

that i
x  for 1, ,i p are feasible for (3). We see that for each i,  
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i i
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x y z  for all 1, ,i p  and x are 

points in [ , ]
k k

l u . Then we can confirm the following inequalities.  
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Therefore, the assertion holds as 0  . □ 
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Theorem 2. For a given tolerance  , a global  -minimizer of  problem  0
P  can be found within finitely many iterations. 

Proof: A sufficient condition for a global optimization to be convergent to the global minimum, for instance, stated in 

Hosrt and Tuy (1996), is that the bounding operation must be consistent and the selection operation must be bound 

improving. A bounding operation is called consistent if  at every step any unfathomed partition can be further refined, and if  

at any infinitely decreasing sequence of  successively refined partition elements satisfies:  

 lim ( ) 0 ,
k

k

U
 

 L  (9) 

where U  and kL are the computed upper bound and the current best bound at iteration k , respectively.  

Since the subdivision process is bisection, the process is exhaustive. Clearly, Lemma 2 keeps (9) holding, which implies 

that the employed bounding operation in our algorithm is consistent.  

A selection operation is called bound improving if  at least one partition element where the actual lower bound is attained 

will be selected for further partition after a finite number of  refinements. Clearly, the partition element at step 6 in Algorithm 

1 where the current lower bound is attained will be selected for further partition at the next iteration in our algorithm. 

Therefore, the employed selection operation is bound improving. We complete the proof  of  convergence. □ 

 

4. NUMERICAL EXPERIMENTS 

In this section, we will give a numerical example to compare the efficiency between the revision and its previous 

algorithm. We also report the results of  the numerical experiments which were conducted using randomly generated data sets 

to verify the performance of  the revised algorithm. The algorithm is coded in MATLAB®  and implemented on Panasonic 

CF-SX3 with a quad-core Core(i7)-4600U in Muroran Institute of  Technology.  

We use the following Example 1 to see the empirical evidence that the new algorithm works efficiently well.  

Example 1. (Chen et al., (2005). p.78) 

1 2 1 2

1 2 1 2

1 2

1 2

1 2

2 2 4 -3 4
m in im iz e +

3 4 + 5 -2 + + 3

1 .5

0 1,0 1 .

x x x x

x x x x

su b je c t to x x

x x

x x

   



 



   

 

Example 1 was solved by Algorithm SOLiRat in (Carlsson and Shi, (2013)) and its revision Algorithm 1 that is proposed 

in this study, respectively. That is, Example 1 was solved based on two different linear relaxations Q0 in (6) and Q1 in (7) with

0 .0 5  . The minimum of  Example 1 is 1.62318. In Figure 1, the horizontal and vertical axises are the number of  iterations 

in the process and the lower ＆ upper bounds the algorithms obtained at the iterations, respectively. The blue line depicts the 

lower bounds and the red is for upper bounds which were calculated by the revised algorithm. We see that the gaps between the 

red and blue lines become very tiny after about only 5 iterations in this example. The gaps, in contrast, between the sky-blue 

and black lines keep a relative wider range even after 60 iterations. Figure 1 indicates that 

 The new linear relaxation Q1 is likely to be more efficient than Q0. 

To investigate the difference in the ability to produce a tighter lower bound between Q0 and Q1, we solve problem (P0) 

with a variety of  size (diameter)  of  the box constraints l x u  . The problem used in this numerical experiment is with

= 5 3 .p n ， Figure 2 indicates that 

 The new linear relaxation Q1 makes a better lower bound for any size  of  the box constraints. 

 For both Q0 and Q1, the larger the size of  the box constraints is, the worse the lower bounds become. 

 The larger the size of  box constraints is, the larger the difference in the lower bounds obtained from Q0 and Q1 is. 

We also conducted the numerical experiments to evaluate the general behavior of  the revised algorithm with lower 

dimension problems.  

The datasets of  the test problems used in this study are set as follows: The dimension of  variables is 3 and the tolerance 

0 .0 5 .  The coefficients ,
i i

n d are i.i.d. generated in the ranges of  5 , 5
i j i j

n d   , for 1, ,i p  and 1, 2 , 3 .j   The 

constants ( 1, , )
i

a i p are randomly chosen from [0 , 5 0 ] and ( 1, , )
i

b i p are fixed to 50.  

Problem (P0) with a variety of  2 , 5 ,1 0 ,1 5p  was solved. For a fixed p, a set of  10 instances of  the problem was solved 

by model Q0 and model Q1, respectively. The recorded CPU times in second, the number of  iterations and the number of  
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branches in the execution are reported in Table 1. The columns titled ‘AVERG.’ provide the information about the average 

value of  CPU time, the number of  iterations and the number of  branches out of  the 10 runs in the execution. As their names 

indicate, the rows Q1 delivers the results that obtained from model Q1 while rows Q0 for the results obtained from model Q0. 

Table 1 indicates the following observations.  

 The number of  branches is heavily reduced at least about to 5% of  the previous algorithm. A smaller number of  

branches in a branch-and-bound algorithm usually results in less time-consuming in implementation. In this study, 

the proposed algorithm consists of  two parts: bounding based on a LP relaxation and branching. The LP can be 

solved in polynomial time, so the reduction of  the number of  branches is fundamentally important to design an 

algorithm. 

 The proposed LP relaxation is very efficient for solving problem (P0) when p is not large ( 1 5p  ). The proposed 

algorithm achieves superiority over the previous algorithm in CPU time, number of  iterations  

 

Figure 1：Bounds and iterations with 0 .0 5   for solving Example 1 

 

Figure 2: Average lowbound of  two models with different size of  box p=5, n=3 
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and number of  branches on average, as well as max and min values. 

Because that Q1 is a linear programming with a number of  
2

p n p n p  variables, Q1 has a large number of  variables 

when p is large. We see that such a large number has two sides:  

1) Theoretically, the size of  
2

p n p n p   is a polynomial of  the size of  input data, and LP can be solved by a 

polynomial time of  the input data size, therefore we strongly expect that the proposed algorithm keeps its good 

efficiency even for a large-scale problem if  we use a sophisticated software to solve the involved LP problems. 

2) In reality, in our numerical experiments solving the problems with 1 5p  the implementation reached the 

maximum number of  iterations in MATLAB® . To take full advantage of  this LP relaxation developed in this study the 

software products that can solve large scale linear programming efficiently are highly recommended to use.  
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Table 1: Numerical results for solving problem (P0) with Q1 and Q0 with various p and n=3 

Model #of  p CPU time(s) # of  Iterations # of  Branches 

MIN. AVERG. MAX. MIN. AVERG. MAX. MIN. AVERG. MAX. 

Q1 2 0.13 0.25 0.54 1 1.71 2 1 1.67 2 

Q0 2 0.45 2.30 6.18 3 17.00 48 3 27.33 89 

Q1 5 0.97 6.12 11.85 1 2.80 5 1 2.16 5 

Q0 5 3.55 20.32 36.10 12 54.58 117 14 88.33 200 

Q1 10 16.90 52.78 203.20 5 9.00 24 7 18.00 54 

Q0 10 27.14 125.46 243.32 46 192.42 362 71 317.67 622 

Q1 15 33.38 84.63 173.05 5 12.80 28 7 21.00 47 

Q0 15 549.43 3684.40 12537.86 538 3610.80 12434 893 6882.40 23972 

Table 2: Results of  the 4 instance of  the numerical experiments with p=60 and n=3 

Instance Model CPU time(s)  # of  Iterations # of  Branches 

I1 
Q1 729.45 7 12 

Q0 9162.30 4383 7424 

I2 
Q1 1278.31 12 18 

Q0 27843.25 11166 18992 

I3 
Q1 436.94 5 9 

Q0 1675.83 792 1142 

I4 
Q1 882.48 9 17 

Q0 9066.27 3055 4957 

 

To evaluate the performance of  the proposed algorithm with a larger p, we set 6 0p   and conducted the numerical 

experiments by using GUROBI to solve all LP problems for both model Q1 and Q0. Table 2 shows the results of  4 random 

instances with the fixed data 4 8
i i

a b  for all i, and the other datasets that were i.i.d. generated as same as previous. Table 2 

indicates the following observations.  

 The number of  branches on average in Q1 is only 0.34% of  Q0. Such a great reduction of  the number of  branches 

results in a sharp decrease in the CPU time for Q1. Actually, the CPU time for Q1 is about 12% of  Q0 on average. 

 The proposed relaxation is much more efficient for solving problem (P0) in the four instances with 6 0p  . Though 

we have only conducted the experiments with a fixed p, we firmly believe that, if  we use an efficient LP solver for 

the large-scale problem, the proposed algorithm performs well because we have only a limited number of  LP 

problems to solve in the branches of  Q1. 

5. CONCLUSION AND FURTHER WORK 

In this paper, we have made a new linear relaxation for the SOLR problem and designed a branch and bound algorithm 

for solving the SOLR problem with lower dimension. The proposed algorithm shares the similarities to the previous algorithm 

(Carlsson and Shi, (2013)) that its branching process works on a space with dimensions n, the dimensions of  native variables 

while its bounding process works on a space with dimensions of  
2

p n p n p  , p is the number of  terms of  ratios. 

Theoretically, the proposed algorithm finds an  -minimizer for any pre-given 0  within finitely many iterations.  

We conducted the numerical experiments to investigate the behavior of  the proposed algorithm. The results obtained 



38 

Hu, Shi and Watanabe: A Revised Algorithm for Solving the Sum of Linear Ratios Problem with Lower Dimension using Linear Relaxation 
IJOR Vol. 11, No. 1, 028−039 (2014) 

 

 

from the small-scale experiments indicate that the proposed algorithm is superior to the previous algorithm in CPU time, 

number of  iterations and numbers of  branches. The proposed algorithm solving the large-scale problems with 6 0p   is 

also very efficient. The numerical experiments show that the CPU time is only about 12% of  the previous on average.  

In this study the experiments are not very large-scale. We plan to conduct large-scale experiments to look into the detailed 

behavior of  the new algorithm as further work. It is fundamentally important to make a theoretical analysis on the number of  

iterations in which the new algorithm finds a minimizer. An error bound between a minimizer and an  -minimizer is an 

important feature. We leave them as our further work.  

 

REFERENCES 

1. Almogy, Y. and Levin, O. (1970). Parametric analysis of a multi-stage stochastic shipping problem. Operational Research, 

69: 359–370.  

2. Benson, H. P. (2007). Solving sum of ratios fractional programs via concave minimization. Jouranl Optimization Theory 

Application, 135(1): 1–17.  

3. Cambini, A., Martein, L., and Schaible, S. (1989). On maximizing a sum of ratios. Journal of Information and Optimization 

Sciences, 10(1): 65–79.  

4. Carlsson, J. G. and Shi, J. (2013). A linear relaxation algorithm for solving the sum-of-linear-ratios problem with lower 

dimension. Operations Research Letters, 41(4): 381–389.  

5. Charnes, A. and Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research logistics quarterly, 

9(3-4): 181–186.  

6. Chen, D. Z., Daescu, O., Dai, Y., Katoh, N., Wu, X., and Xu, J. (2000). Optimizing the sum of linear fractional 

functions and applications. In Proceedings of  the eleventh annual ACM-SIAM symposium on Discrete algorithms, 

pages: 707–716. Society for Industrial and Applied Mathematics.  

7. Chen, D. Z., Daescu, O., Dai, Y., Katoh, N., Wu, X., and Xu, J. (2005). Efficient algorithms and implementations for 

optimizing the sum of linear fractional functions, with applications. Journal of  Combinatorial Optimization, 9(1): 69–90.  

8. Chen, D. Z., Daescu, O., Hu, X. S., Wu, X., and Xu, J. (2001). Determining an optimal penetration among weighted 

regions in two and three dimensions. Journal of  Combinatorial Optimization, 5(1): 59–79. 

9. Choi, J. C. and Bricker, D. L. (1996). Effectiveness of a geometric programming algorithm for optimization of 

machining economics models. Computers & operations research, 23(10): 957–961.  

10. Daniels, K. (1995). The restrict evaluate subdivide paradigm for translational containment. In Fifth MSI Stony Brook 

Workshop on Computational Geometry.  

11. Depetrini, D. and Locatelli, M. (2011). Approximation of linear fractional-multiplicative problems. Mathmatical 

Programming, 128(1-2): 437–443.  

12. Falk, J. E. and Palocsay, S. W. (1994). Image space analysis of generalized fractional programs. Journal of  Global 

Optimization, 4(1): 63–88.  

13. Horst, R. and Tuy, H. (1996). Global optimization: Deterministic approaches. Springer.  

14. Kim, J.-S. and Hong, K.-S. (2007). A recursive camera resectioning technique for on-line video-based augmented reality. 

Pattern recognition letters, 28(7): 842–853.  

15. Konno, H. and Abe, N. (1999). Minimization of the sum of three linear fractional functions. Journal of  Global 

Optimization, 15(4): 419–432. 

16. Konno, H. and Inori, M. (1989). Bond portfolio optimization by bilinear fractional programming. Journal of  the 

Operations Research Society of  Japan, 32(2): 143–158.  

17. Konno, H. and Watanabe, H. (1996). Bond portfolio optimization problems and their applications to index tracking: a 

partial optimization approach. Journal of  the Operations Research Society of  Japan-Keiei Kagaku, 39(3): 295–306. 

18. Konno, H., Yajima, Y., and Matsui, T. (1991). Parametric simplex algorithms for solving a special class of nonconvex 

minimization problems. Journal of  Global Optimization, 1(1): 65–81.  

19. Kuno, T. (2002). A branch-and-bound algorithm for maximizing the sum of several linear ratios. Journal of  Global 

Optimization, 22(1-4): 155–174.  

20. Kuno, T. and Masaki, T. (2013). A practical but rigorous approach to sum-of-ratios optimization in geometric 

applications. Computational Optimization and Applications, 54(1): 93–109.  

21. Majhi, J., Janardan, R., Schwerdt, J., Smid, M., and Gupta, P. (1999). Minimizing support structures and trapped area in 

two-dimensional layered manufacturing. Computational Geometry, 12(3): 241–267.  

22. Matsui, T. (1996). Np-hardness of linear multiplicative programming and related problems. Journal of  Global Optimization, 

9(2): 113–119.  

23. Michael, R. G. and Johnson, D. S. (1979). Computers and intractability: A guide to the theory of np-completeness. WH 

Freeman & Co., San Francisco.  

24. Schaible, S. (1977). A note on the sum of a linear and linear-fractional function. Nava Research Logistics Quarterly, 24(4): 



39 

Hu, Shi and Watanabe: A Revised Algorithm for Solving the Sum of Linear Ratios Problem with Lower Dimension using Linear Relaxation 
IJOR Vol. 11, No. 1, 028−039 (2014) 

 

 

691–693.  

25. Schaible, S. and Shi, J. (2003). Fractional programming: the sum-of-ratios case. Optimization Methods and Software, 2(18): 

219–229.  

26. Skiscim, C. C. and Palocsay, S. W. (2001). Minimum spanning trees with sums of ratios. Journal of  Global Optimization, 19: 

103–120.  

27. Wu, W.-Y., Sheu, R.-L., and Birbil, Ş. İ. (2008). Solving the sum-of-ratios problem by a stochastic search algorithm. 

Journal of  Global Optimization, 42(1): 91–109.  


