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Abstract  Genetic algorithms are commonly used in mathematical programming to deal with problems related to optimal 

values; however, the success of  the search process depends largely on the values selected for the parameters. This paper 

proposes a robust method for determining the parameters of  genetic algorithms, in which the Taguchi method is applied 

over continuous or discrete areas using a simple optimal-point-search strategy. Thus, the proposed method is well-suited to 

both continuous and discrete parameters. Numerical results for two well-known test cases demonstrate the effectiveness of  

the proposed method. We also applied this method to a complex, practical binary-integer problem dealing with scheduling 

the Taiwan High Speed Rail system and compared the results with two existing methods, the Taguchi method and the 

response surface method. The solution obtained from the genetic algorithm with parameter settings provided by the 

proposed method proved superior to the original scheduling solution. 
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1. INTRODUCTION 

Genetic algorithms, which search for optimal solutions, are important tools in mathematical programming. Problems 

to which they can be effectively applied include examination timetables (Pillay and Banzhaf, 2010), flexible job-shop 

scheduling (Zhang et al., 2011) and multi-depot and periodic vehicle routing (Vidal et al., 2012). The values selected for the 

parameters of  a genetic algorithm largely determine the performance of  the search process and assigning appropriate values 

can be very difficult, particularly when dealing with large-scale programming problems that often require excessive 

computational time.  

De Jong (1975) and Grefenstette (1986) proposed methods for the selection of  parameters based on the relationship 

between parameter values and the performance of  algorithms using a full factorial experimental design. These studies 

remain an important reference for the developers of  genetic algorithms. Other researchers developed methods to control 

the value of  parameters in each generation of  a run (Julstrom, 1995; Hinterding et al., 1996; Lobo and Goldberg, 2004). 

However, optimal parameter settings vary from problem to problem (Schaffer et al., 1989). This has led to the application 

of  the Taguchi method, which uses orthogonal arrays for the design of  parameters to optimize search performance 

(Pongcharoen et al., 2002; Anagun and Qzcelik, 2005; Hippolyte et al., 2008).  

The results obtained using the Taguchi method can often overcome the effects of  interaction among parameters; 

however, this approach is applicable only to the selection of  optimal parameter values from several discrete levels. Thus, the 

response surface method was developed for cases in which the range of  parameters are continuous intervals (Najafi et al., 

2009; Niaki and Ershadi, 2012; Shahsavar et al., 2010). This method uses experimental data to formulate a mathematical 

model to represent the relationship between the performance of  the algorithm and parameter values, whereupon the 

optimal parameter settings are selected from extreme points in the model. However, the response surface method often 

produces a mathematical model that inaccurately describes the relationship. In addition, this approach often breaks down 

when it reaches the parameter boundaries, where the value is fixed but does not necessarily provide an optimal solution.  

The paper proposes a robust new method, which is free from mathematical modeling. The proposed method features 

two main advantages. First, it combines the Taguchi method with a simple optimal-point-search strategy in either 

continuous or discrete areas, and is not susceptible to the boundary problems associated with the response surface method. 

Second, it can provide hints regarding the establishment of  factors for use in the Taguchi experiment. The optimal 

parameter settings often vary according to the different runtimes (i.e., different phases of  a run), which can undermine their 

overall reliability. This may explain why so few empirical studies addressing the issue of  parameter design in genetic 

algorithms have performed experiments to confirm their results. The effects of  parameter settings must be considered with 

regard to the performance of  an algorithm in a fixed runtime. Genetic algorithms generate a greater number of  solutions as 
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the population size (PS) or the maximum number of  generations (MG) is increased; therefore, we combined these two 

runtime-related parameters into a single factor (PSMG) to fix the runtime of  each experiment in order to obtain more 

reliable parameter settings. The use of  PSMG can also derive parameter settings applicable to a group of  problems with 

similar mathematical formulations. This is helpful as designing parameter settings for a single problem is inefficient; the time 

used for the design of  parameters could be used to prolong the runtime of  the algorithm in order to obtain better solutions. 

In Section 3.1, an example is provided to illustrate the advantages of  PSMG in dealing with these types of  problems.  

This paper is organized as follows. Section 2 presents a brief  introduction to the processes of  genetic algorithms and 

the Taguchi method. We also outline the Taiwan High Speed Rail Timetabling Problem (THSRTP) and explain why this 

problem in particular was selected to evaluate the efficacy of  the proposed method. In Section 3, we use the THSRTP to 

illustrate some of  the issues encountered when searching for optimal solutions without the introduction of  the factor 

PSMG. We then introduce the proposed parameter setting method with an embedded feature for fixing the runtime in each 

experiment. In Section 4, the proposed method is demonstrated using the THSRTP as well as two problems commonly 

used for the evaluation of  genetic algorithms. We then compare our results with those obtained using the conventional 

Taguchi method and response surface method as well as the research that first introduced the THSRTP. The paper is 

concluded in Section 5.  

 

2. PRELIMINARY 

In the following, we provide a brief  introduction to genetic algorithms and the Taguchi method. We then introduce the 

THSRTP and our reasons for selecting it.  

 

2.1  Genetic algorithm 

 

Genetic algorithms (Whitley, 1994; Man et al., 1996; Melanie, 1998) mimic genetic processes by evolving a set of  

candidate solutions toward an optimal solution. A fitness function is defined to measure the fitness of  each solution to the 

problem, such that solutions with a better fitness value have a higher probability of  being selected for the next generation. 

The fitness of  candidate solutions is therefore improved with each new generation. Genetic algorithms operate according to 

the following five steps.  

Step1. Initializing the algorithm: Parameter values are provided for the PS, the selection rate (SR), the crossover 

rate (CR), the mutation rate (MR) and the MG. According to the value assigned to PS, the initial population is 

randomly and uniformly generated from the feasible solution space using an appropriate encoding method, such as 

binary encoding or value encoding.  

Step2. Parent Selection: Parent solutions are selected from the current generation to generate child solutions in the 

following crossover step. Several selection methods are commonly used, including the tournament method, the 

roulette wheel method, and the rank selection method.   

Step3. Crossover: Crossover is the process of  generating the next generation, using methods such as the one-point 

method, the two-point method, and the arithmetic method.  

Step4. Mutation: To avoid the convergence of  solutions to local optimums, mutations can be introduced using 

methods such as flip bit, uniform, and Gaussian.  

Step5. Termination: The algorithm is terminated if  the number of  generations reaches the given MR or if  the 

current highest fitness value is not improved over several consecutive generations.  

 

2.2  Taguchi method 

 

The aim of  the Taguchi method (Antony and Antony, 2001; Ross, 1988) is to design parameter settings such that the 

average outputs are improved and variance is minimized. The results obtained using the Taguchi method tend to be robust. 

The Taguchi method is used to arrange experiments in the most efficient manner through the use of  orthogonal arrays. 

Experiment data is evaluated according to its signal-to-noise (S/N) ratio in order to simplify the process of  analysis and 

obtain optimal parameter settings. Unfortunately, the Taguchi method selects optimal parameter settings from finite discrete 

levels, and therefore provides suboptimal parameter settings when parameters are continuous intervals.  

 

2.3  Taiwan High Speed Rail Timetabling Problem 

 

The goal of  the THSRTP is to produce a train schedule capable of  maximizing revenue. The rail system operates 

between Taipei and Kaohsiung from 6:00 to 24:00 every day. A northbound subsystem operates from Kaohsiung to Taipei 

and a southbound subsystem operates from Taipei to Kaohsiung. A total of  11 stations are included in the system and no 

more than 88 trains operate along either of  the subsystems. To deal with differences between stations, each subsystem has 
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the option to run five types of  trains with a maximum capacity of  870 people. Trains stop for 2 minutes in all stations 

except Taichung, in which the stop is 3 minutes. We refer readers to Yu and Li (2009) for further details of  the THSRTP.  

This study selected the THSRTP because it is a complex binary integer problem for which it is nearly impossible to 

obtain a satisfying solution in an acceptable period of  time, particularly when using algorithms without well-designed 

parameter settings. The rail system has two subsystems, which produce two similar scheduling subproblems. Parameter 

settings should be applicable to other problems with a similar mathematical formulation, rather than being limited to 

individual problems. The two subproblems are used to illustrate how the conventional Taguchi method obtains different 

parameter settings for each, while the Taguchi method with PSMG obtains the same settings. This makes it possible to apply 

one set of  parameters to multiple scenarios, such as different customer rates or different combinations of  stations.  

 

3. PROPOSED METHOD 

In the following, we use the THSRTP to illustrate the necessity of  PSMG and thereafter provide a detailed description 

of  the proposed method.  

 

3.1  Necessity of  combining factor PSMG 

 

In this section, numerical results related to the THSRTP are used to illustrate the necessity of  combining PS and MG 

into the combined factor PSMG. In order to designate runtimes, we required that the products of  PS and MG values be the 

same in all experiments. The Taguchi method was used to search for optimal settings for both the northbound and 

southbound problems. PS and MG were used directly as factors in the first run and then combined as PSMG in the second 

run. The first run included three factors (PS, SR, and MR), with MG fixed at 500 and CR at 100%. The experiment levels of  

the three factors in the first run are presented in Table 1.  

 

     Table 1.  Levels of  factors in the first run 

Factors Level -1 Level 0 Level 1 

PS 50 100 200 

MR 0.2 0.5 0.8 

SR 20％ 50％ 80％ 

 

We used an L9 orthogonal array (see Table A1 in the Appendix) to arrange the experiments, each of  which was 

repeated three times. This provided observations related to each treatment, in the form of  the values of  objective functions 

with solutions obtained using the genetic algorithm using the parameter settings in Tables A2 and A3 in the Appendix. As 

shown in Figure 1(a), the parameter values obtained for the northbound problem were 200 for PS, 0.2 for MR, and 80% for 

SR. As shown in Figure 1(b), the parameter values obtained for the southbound problem were 200 for PS, 0.2 for MR, and 

50% for SR. This shows that the parameter settings obtained using the conventional Taguchi method (without PSMG) 

produces distinctly different solutions for two similar subproblems.  

 

 

Figure 1. Graphs showing the effect of  each level of  the three factors in the first run: a) southbound problem; 

b) northbound problem. The Taguchi method produced different parameter settings for very similar 

problems. The values were obtained using Eq. (1) in Section 3.2.  

The levels for each factor in the second run are presented in Table 2. We fixed the runtime in each Taguchi experiment 

by fixing the products of  the values in all three levels of  PS and MG at 100,000.  
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We used an L9 orthogonal array and repeated each experiment three times. The resulting observations are shown in 

Tables A4 and A5 in the Appendix. As shown in Figure 2, the parameter settings obtained using PSMG are the same for the 

two subproblems. PSMG is 50*2000, MR is 0.2, and SR is 20%. These parameter settings could be reliably applied to other 

problems with similar mathematical formulations, which could help to save time. It should be noted that the runtimes were 

approximately 5 hours for the northbound problem and approximately 8 hours for the southbound problem. Therefore it is 

possible to fix the runtimes through fixing the products of  the values of  PS and MG.  

 

Table 2.  Levels of  factors in the second run 

Factors Level -1 Level 0 Level 1 

PSMG(=PS*MG) 50＊2000 100＊1000 200＊500 

MR 0.2 0.5 0.8 

SR 20％ 50％ 80％ 

 

3.2  Proposed method 

 

This section presents a detailed description of  the proposed method, which is based on the Taguchi method. 

Employing a simple optimal-point-search strategy, the Taguchi method is run iteratively in order to obtain optimal 

parameter settings. The proposed method includes the following six steps:  

 

 

Figure 2. Graphs showing the effect of  each level of  the three factors in the second run: a) southbound problem; b) 

northbound problem. The optimal parameter settings obtained using the Taguchi with PSMG factor are the same for the 

very similar problems in a) and b). The values were obtained using Eq. (1) in Section 3.2.  

 

Step1. Select factors for experiments;  

Step2. Establish initial experiment levels for each factor; 

Step3. Conduct experiments with orthogonal array; 

Step4. Analyze the observations obtained in the experiment; 

Step5. Establish new levels for each factor; 

Step6. Conduct confirmation experiment. 

 

Steps 1 and 2 involve the selection of  factors and the establishment of  initial levels for the factors selected in the 

Taguchi experiment. Steps 3 and 4 are the processes belonging to the original Taguchi method and a stop criterion. Step 5 

establishes the levels of  each factor for the following Taguchi experiment. Step 6 evaluates the reliability of  the parameter 

setting. Figure 3 presents a flow chart of  the proposed method.  

The steps are detailed in the following: 

Step 1. Select factors for experiments: With the exception of  PS and MG, which are combined as factor PSMG, 

each of  the other parameters can be considered as a factor in the Taguchi experiments.  
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Figure 3.  Flow chart of  proposed method 

 

Step 2. Establish initial levels for each factor: Three levels were selected for each factor, denoted as -1, 0, and 1 

(Figure 4). First, we selected appropriate values for factors at level 0. We then selected a suitable distance between 

two consecutive levels for each of  the factors, referred to as the permissible distance. Finally, the permissible distance is 

added to level 0 to obtain level 1, and subtracted from level 0 to obtain level -1. We denoted the point where all 

factors are level 0 as the initial point.  

 

 

Figure 4. Illustration of  the three levels of  each factor in the proposed method 

 

Step 3. Experiments using orthogonal array: Having established the number of  factors and number of  levels, we 

were then able to select an appropriate orthogonal array from the Taguchi orthogonal array selector matrix. We had 

four factors (SR, CR, MR, and PSMG), each of  which had 3 levels; therefore, we selected array L9 (see Table A1 in 

the Appendix) for our experiment.  

Step4. Analysis of  observations: Assume that each treatment in the experiment repeats n  times. Let 

1 2, , ,i i iny y y  denote n  observations with treatment i . The S/N ratio for treatment i  is 

10 2
1

1 1
10log ( )

n

i

j ij

SN
n y

   . 

Let ( , )s k h  denote the set of  treatments in which the level of  factor k  is h . We then calculate the effect of  the 

factor k  at level h  as follows:  
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In this experiment, the best level for factor k  is the one that maximizes its effect. Let *

kp  denote the best level in 

the Taguchi experiment. Thus, we have  

 * ,, { 1,0,1}
max

k
k hk p h

E E
 

  (2) 

Eqs. (1) and (2) are used to obtain the ideal parameter setting for the Taguchi experiment. Let 
optE  be the predicted 

S/N ratio of  the obtained parameter settings, calculated as follows:  

 *,
1

( )
k

m

opt k p
i

E E E E


    (3) 

where E  represents the average of  the S/N ratio of  all treatments and m  is the number of  factors. If  the ideal 

level for each factor is 0 and we are satisfied with the current permissible distance, then the algorithm is stopped. 

The current best level is referred to as the NT optimal parameter setting. Proceed to Step 6 to confirm the results with an 
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experiment using the NT optimal parameter settings. Otherwise, proceed to Step 5.  

Step5. Establish new levels for each factor: If  the best level for each factor is 0, but we are not satisfied with the 

current permissible distance, the current permissible distance is reduced by half. We then take the best level obtained 

for each factor in Step 4 as Level 0 and add/subtract the new permissible distance to/from Level 0 to obtain Levels 

1/-1. We then proceed to Step 3 for the next iteration. Figure 5 illustrates how the new levels of  each factor are 

arranged for next iteration of  the Taguchi process in the case where the best level for each factor is 0 and optimal 

parameter settings of  greater accuracy are still desired.  

 

 

Figure 5. Illustration of  arrangement of  new levels for the next iteration of  the Taguchi process when the best level for 

each factor is 0 but greater accuracy is desired (from 1’/(-1)’ to 1’’/(-1)’’)  

 

If  one of  the ideal levels is not 0, we take the best level obtained for each factor in Step 4 as the new Level 0 and 

add/subtract the permissible distance to obtain Level 1/-1. We then proceed to Step 3 to initiate the next iteration. 

Figure 6 illustrates how the new levels of  each factor are arranged for the next iteration of  the Taguchi experiment as 

well as the means by which the center point (the point where the level of  each factor is 0) evolves.  

 
Figure 6. Arrangement of  new levels for each factor in the next iteration of  the Taguchi process as well as the 

evolution of  the center point (O1→O2→O3 )  

 

In this step, we set up Levels 0 and 1/-1 in the case where Level -1/1 is beyond the range of  the factor in order to 

avoid the boundary problem of  the response surface method. Figure 7 illustrates how only two levels are used when 

Level -1/ 1 is beyond the lower/upper boundary. The figure also shows the evolution of  the center point, in which 

the trajectory is not trapped when it encounters a boundary.  

 

Figure 7. Illustration of  the setting of  factor levels when the trajectory of  center points meets a boundary 

 

Step6. Confirmation experiment: The predicted S/N ratio of  the NT optimal parameter settings is used to 

calculate a 95% confidence interval, c.f. (Tseng et al., 2013). We then conduct a confirmatory experiment to obtain 

the real S/N ratio for the NT optimal parameter settings. If  the real S/N ratio falls within the predicted confidence 

interval, then the NT optimal parameter setting can be regarded as reliable in improving search performance of  the 

genetic algorithm with a given fixed runtime.  

 

4. NUMERICAL RESULTS 

Numerical results were used to illustrate the advantages of  the proposed method in two well-known test cases and 
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THSRTP. Example 1 is the second test problem presented by De Jong (1975). Example 2 is a problem proposed by 

Michalewicz (1992). To solve these problems, we used the value encoding method for generation of  the initial population, 

the roulette wheel method for selection, the two-point method for crossover, and the uniform method for mutation. To 

solve the THSRTP, we used the binary method, the roulette wheel method, the two-point method, and the flip bit method. 

Sections 4.1 and 4.2 present the results for examples 1 and 2, respectively. Section 4.3 outlines the advantages of  the 

proposed method in solving THSRTP. We also provide a comparison of  results from the proposed method, the 

conventional Taguchi method, the response surface method, and the research that originally proposed the THSRTP.  

 

4.1  Example 1 

 

The mathematical formulation of  Example 1 is as follows:  

 
2 2 2

1 2 1 2 1max. ( , ) 100( ) (1 ) ;

subject to - 2.048 2.048, 1,2.i

f x x x x x

x i

   

  
 

To obtain the optimal solution of  example 1, we used a genetic algorithm with a flat unimodal objective function. Most 

algorithms take a long time to obtain optimal results; therefore, the parameter settings must be well selected to maximize 

search efficiency. The proposed method was implemented with the following initial points: PS (250), MG (200), SR (0.5), 

and MR (0.5). The permissible distances were as follows: PS (50), SR (0.1), and MR (0.1). CR was fixed at 100% and the 

products of  PS and MG were fixed at approximately 50,000. After 9 iterations, the proposed method reached the NT 

optimal parameter settings, as follows: PS (550), MG (91), SR (0.3), and MR (0.6). We then ran the algorithm fifteen times 

using the NT optimal parameter settings as well as other parameter settings. The data in Table 3 shows that the NT optimal 

parameter settings enhanced the efficiency and robustness of  the genetic algorithm. In addition, the results obtained using 

the NT optimal parameter settings are equal to or better than those using the larger products of  PS (500) and MG (500), 

which resulted in a longer runtime.  

 

Table 3. Statistics for each of  the fifteen observations after running the genetic algorithm with NT optimal parameter 

setting as well as other parameter settings 

Parameter settings Statistics of  15 observations  

PS MG SR MR Average 
Standard 

Deviation 
Max Min Note 

550 91 0.3 0.6 3895.179 4.831087411 3905.286 3889.111 The NT optimal 

200 250 0.9 0.1 3856.475533 34.32418192 3894.977 3803.319  

200 250 0.5 0.5 3887.2032 12.21736083 3904.498 3857.002  

200 250 0.1 0.9 3886.714733 16.46737656 3903.132 3850.682  

750 67 0.9 0.1 3876.5374 17.95609041 3900.914 3844.551  

750 67 0.5 0.5 3891.9514 7.617956211 3905.435 3877.7  

750 67 0.1 0.9 3896.353733 6.730309656 3904.092 3882.585  

500 100 0.9 0.1 3872.686267 20.75982521 3900.658 3830.021  

500 100 0.5 0.5 3885.017333 15.57543425 3897.938 3832.857  

500 100 0.1 0.9 3894.754067 8.44823424 3904.713 3873.308  

500 500 0.9 0.1 3883.968267 12.67353769 3897.134 3857.755  

500 500 0.5 0.5 3896.472467 6.775929149 3905.309 3876.291  

500 500 0.1 0.9 3900.676067 4.222486733 3905.305 3891.085  

 

4.2  Example 2 

The mathematical formulation of  Example 2 is as follows:  
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1 2 1 1 2 2

1

2

max. ( , ) 21.5 sin(4 ) sin(20 );

subject to i) -3 12.1;

ii) 4.1 5.8.

f x x x x x x

x

x
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 

 

 

A genetic algorithm was used to determine the optimal solution of  Example 2. We started with the following initial 

points: PS (75), MG (67), SR (0.5), and MR (0.5). The permissible distances were as follows: PS (25), SR (0.1), and MR (0.1). 

CR was fixed at 100% and the products of  PS and MG were fixed at approximately 5,000. The proposed method obtained 

the following NT optimal parameter settings after 9 iterations: PS (225), MG (22), SR (0.2), and MR (0.6). We then ran the 

algorithm fifteen times using the NT optimal parameter settings as well as other parameter settings. The data in Table 4 

show that the NT optimal parameters enhanced the efficiency and robustness of  the algorithm. In addition, the results 

obtained using the NT optimal parameter settings were superior to those obtained using the larger product of  the values of  

PS (100) and MG (100), which resulted in a longer runtime.  

 

Table 4. Statistics for each of  the fifteen observations after running the genetic algorithm with NT optimal parameter 

settings as well as other parameter settings 

Parameter settings Statistics of  15 observations  

PS MG SR MR Average 
Standard 

deviation 
Max Min Note 

225 22 0.2 0.6 38.74336933 0.111274339 38.84788 38.45883 The NT optimal 

100 50 0.1 0.9 38.66122133 0.171744523 38.84418 38.19388  

100 50 0.5 0.5 38.47978333 0.422183827 38.8338 37.28982  

100 50 0.9 0.1 37.73982333 0.805082343 38.7396 36.3143  

200 25 0.1 0.9 38.66834733 0.170036202 38.82777 35.93082311  

200 25 0.5 0.5 38.53962933 0.258780486 38.81623 35.81610927  

200 25 0.9 0.1 37.884068 0.462452011 38.62415 35.20625214  

300 17 0.1 0.9 38.728376 0.080760479 38.8467 35.98797618  

300 17 0.5 0.5 38.50215933 0.323958726 38.8309 35.85158415  

300 17 0.9 0.1 38.24645333 0.300650301 38.77262 35.55911312  

100 100 0.1 0.9 38.69361133 0.094649554 38.84861 38.54477  

100 100 0.5 0.5 38.58577867 0.223413075 38.84736 37.99703  

100 100 0.9 0.1 37.78635067 0.53904741 38.59559 36.45794  

 

4.3  Numerical results of  THSRTP 

In this section, the proposed method was applied to the THSRTP and the results were compared with those obtained 

using the conventional Taguchi method, the response surface method, and the exhaustive method proposed by Yu and Li 

(2009). We then conducted an experiment to confirm our results and check for consistency.  

PSMG, MR, and SR were the three factors in Step 1 of  the proposed method with CR fixed at 100%. The three initial 

levels are presented in Table 5.  

Table 5. Selected factors and their initial levels 

Factors Level -1 Level 0 Level 1 

PSMG(=PS*MG) 25＊4000 50＊2000 75＊1334 

MR 0.4 0.5 0.6 

SR 40% 50% 60% 
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The product of  the values of  PS and MG in all three levels was 100,000. The permissible distance was 25 for PSMG 

between two population sizes, 0.1 for MR, and 10% for SR. As shown in Figure 8, the northbound/southbound problem 

was halted after 9/10 iterations, resulting in the following settings: PS (20), MG (5000), MR (0.005), and SR (10%). This 

demonstrates that the proposed method with PSMG resulted in the same NT optimal parameter settings for each of  the 

two similar problems. Figure 9 shows the improvement in the S/N ratios with each iteration.  

 

 

Figure 8. Optimal levels identified by the proposed method for the three parameters PS (diamonds), MR (squares), and SR 

(triangles) to solve a) the northbound problem and b) the southbound problem  

 

 

Figure 9. S/N ratios in each iteration: a) northbound problem; b) southbound problem 

 

The effects of  the NT optimal parameter settings were compared with those obtained using the conventional Taguchi 

method with factor PSMG (using results in Section 3.1) and the response surface method (to design the parameter settings 

for the THRTP). Revenue values in Tables 6 and 7 were averaged from the results obtained after running the genetic 

algorithm ten times using the selected parameter settings. For both subproblems, the average revenue obtained using the NT 

optimal parameter settings is higher than that obtained using the other methods. As shown in Tables 6 and 7, the runtimes 

are the same as long as the products of  the PS and MG values are equal.  

 

Table 6. Effects of  parameter settings obtained from the three methods for northbound problem 

 

We then compared our results with those of  Yu and Li (2009), in which a variety of  parameter combinations was 

evaluated. The results are presented in Table 8, and show that the NT optimal parameter settings significantly improved 

upon the results obtained in the original study for the northbound problem. The results for the southbound problem are 

nearly equal.  

The 95% confidence interval for the NT optimal parameter settings is [155.23, 155.83] for the northbound and [154.14, 

154.36] for the southbound problem. Experiments were conducted three times to confirm the results obtained for both of 

Methods PS MG MR SR 
Average 

revenue 

Average 

Runtime 

Taguchi method 50 2000 0.2 20% 52,524,165 5hours 

Response surface 

method 
20 5000 0.04 10% 59,401,789 5hours 

Proposed method 20 5000 0.005 10% 59,813,924 5hours 
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Table 7. Effects of  parameter settings obtained from the three methods for southbound problem 

 

Table 8. Effects of  NT optimal parameter settings and parameter settings of  Yu and Li (2009) 

Methods 

Northbound problem Southbound problem 

Best 

revenue 

Average 

revenue 

Best 

revenue 

Average 

revenue 

Exhaustive method  

(Yu and Li, 2009) 
58,626,301 58,144,641 52,161,178 51,977,269 

Proposed method 60,927,919 59,813,924 52,268,905 51,547,170 

 

 

Figure 10. Convergence conditions of  the proposed method using different initial points 

 

the subproblems. The resulting average S/N ratio of  the observations in the three experiments was 155.58 for the 

northbound problem and 154.22 for the southbound problem, both of  which fall within their corresponding confidence 

interval, indicating the robustness and reliability of  the NT optimal parameter settings. 

We then tested the consistency of  the results obtained using the proposed method by starting iterations from different 

initial points. We randomly selected four different sets of  initial points for PS, MG, MR, SR: (200, 500, 0.9, 90%), (100, 1000, 

50%, 50%), (50, 2000, 50%, 50%) and (25, 4000, 20%, 20%). As shown in Figure 10, all four sets converged to the same 

values: (20, 5000, 0.005, 10%). 

 

5. CONCLUSION 

This paper presents a robust method for the design of  parameters used in genetic algorithms, in which the Taguchi 

method is augmented with a simple optimal-point-search strategy in either continuous or discrete areas. We also propose an 

Methods PS MG MR SR 
Average 

revenue 

Average 

Runtime 

Taguchi method 50 2000 0.2 20% 44,623,679 8hours 

Response surface 

method 
20 5000 0.1 10% 50,052,425 8hours 

Proposed method 20 5000 0.005 10% 51,547,170 8hours 
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innovative combination of  PS and MG into a single factor to enhance the search performance of  the Taguchi method. The 

numerical results from two well-known test examples demonstrate the effectiveness of  the proposed method. The complex 

THSRTP also showed that the NT optimal parameter settings obtained using the proposed method are more reliable and 

more effective than those obtained using the two popular methods, the Taguchi method and the response surface method. 

The NT optimal parameter settings enabled the genetic algorithm to optimize revenue with superior results to those 

featured in the paper that originally proposed the THSRTP.  

It is worth noting that the proposed method is applicable not only to genetic algorithms but also other evolutionary 

algorithms that deal with continuous and/or discrete parameters. This paper makes a significant contribution to the 

development of  evolutionary algorithms and the field of  parameter design. 
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APPENDIX 

Table A1. The L9 experimental array. There are four factors, A, B, C and D, in this experiment and each factor has 

three experimental levels, -1,0 and 1.  

No. of  

experiments 

Factors 

A B C D 

E1 -1 -1 -1 -1 

E2 -1 0 0 0 

E3 -1 1 1 1 

E4 0 -1 0 1 

E5 0 0 1 -1 

E6 0 1 -1 0 

E7 1 -1 1 0 

E8 1 0 -1 1 

E9 1 1 0 -1 

 

Table A2. The Taguchi experimental result for the southbound problem in the first run (without PSMG)  

The southbound problem 

No of  

Experiments 

Observations Average of  

observations 

Variance of  

observations 
S/N ratio 

ob1 ob2 ob3 

E1 39680499 37892701 39657721 39076974 1025673 151.83 

E2 37699541 36627222 35854895 36727219 926380 151.29 

E3 35840264 36182632 34520266 35514387 877788 151.00 

E4 36741612 39720469 36996292 37819458 1651242 151.54 

E5 39541124 39151902 36836122 38509716 1462382 151.70 

E6 35441799 34970256 38645215 36352423 1999565 151.19 

E7 42670416 40384531 41792925 41615957 1153172 152.38 

E8 39459469 41139219 37657107 39418598 1741416 151.90 

E9 38016366 40173939 39624427 39271577 1121230 151.87 
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Table A3.  The Taguchi experimental result for the northbound problem in the first run (without PSMG)  

The northbound problem 

No of  

Experiments 

Observations Average of  

observations 

Variance of  

observations 
S/N ratio 

ob1 ob2 ob3 

E1 45354974 44895572 44957682 45069409 249248 153.08 

E2 43144989 42477304 43352349 42991547 457257 152.67 

E3 43881788 40986334 42523764 42463962 1448653 152.55 

E4 49052047 49319883 49361342 49244424 167888 153.85 

E5 46222786 46610139 46096534 46309820 267635 153.31 

E6 46422554 43768872 44673542 44954989 1349043 153.05 

E7 47643498 48496125 48655641 48265088 544189 153.67 

E8 47071185 46879091 47417324 47122533 272766 153.46 

E9 45968447 47199862 46583693 46584001 615708 153.36 

 

Table A4.  The Taguchi experimental result for the southbound problem in the second run (with PSMG)  

The southbound problem 

No of  

Experiments 

Observations Average of  

observations 

Variance of  

observations 
S/N ratio 

ob1 ob2 ob3 

E1 44616251 43402308 44623679 44214079 703024.4 152.91 

E2 42695183 41230962 39939153 41288433 1378914 152.31 

E3 41161375 39385630 40640033 40395679 912742.6 152.12 

E4 43554659 43221043 42669807 43148503 446863.9 152.70 

E5 40209740 40910720 40719394 40613285 362336.4 152.17 

E6 40599841 40334194 40891915 40608650 278964.8 152.17 

E7 41436280 39419583 42702714 41186192 1655791 152.28 

E8 40085743 38222693 41542886 39950441 1664227 152.02 

E9 39450605 38960498 39585521 39332208 328902.5 151.89 

 

Table A5.  The Taguchi experimental result for the northbound problem in the second run (with PSMG)  

The northbound problem 

No of  

Experiments 

Observations Average of  

observations 

Variance of  

observations 
S/N ratio 

ob1 ob2 ob3 

E1 52519176 52524165 52127744 52390362 227447.3 154.38 

E2 46092171 48855954 50412142 48453422 2187935 153.69 

E3 46401261 45624929 46269989 46098726 415537 153.27 

E4 50065495 49055525 49341413 49487478 520587.2 153.89 

E5 48178480 45822550 45753996 46585009 1380412 153.36 

E6 47973345 46167851 47198357 47113184 905755.4 153.46 

E7 48339735 47037324 44802773 46726611 1788835 153.38 

E8 46233312 46102286 47518894 46618164 782801.3 153.37 

E9 46845563 47112543 47282428 47080178 220223.5 153.46 

 


