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Abstract  Optimal allocation of  sample size among various strata is an important step to get the precise estimates for 
population parameters and to reduce the cost of  the survey.  A reasonable criterion for optimal allocation is the 
minimization of  the variances of  the estimates for a specified cost or to minimize the cost of  survey for desired precision 
of  the estimates. The total cost of  survey is a function of  sample sizes allocated to various strata and the unitary cost of  
collecting information/measurement associated to particular stratum. The measurement cost 

h
c which vary from stratum to 

stratum and affected by some factors such as nature of  climate, weather conditions which occurs randomly is considered as 
fuzzy random variable (FRV). The survey is taken as multivariate in which we want to study more than one characteristic. 
Thus, in this paper the problem of  optimum allocation in multivariate stratified sampling is formulated as a multiobjective 
fuzzy chance constrained programming (MOFCCP) problem with measurement cost 

h
c  as a normally distributed FRV. 

Compromise solution of  its deterministic equivalent is obtained by goal programming technique. In addition, an illustrative 
example is also given to demonstrate the correctness of  the proposed approach. 
 
Keywords  Multivariate stratified surveys, Optimum allocation, Compromise allocation, Stochastic programming, 
Multiobjective fuzzy chance constraint programming, Goal programming technique   
 
1. INTRODUCTION  

Variability or heterogeneity is inherent in the population units. The problem of  obtaining a good estimator for 
population mean or total one should attempt either to increase the sample size or to devise certain method of  sampling by 
which variability or heterogeneity can be reduced. One such method is stratified sampling. It consists in dividing the 
population into subpopulations called strata and each subpopulation as stratum. The problem of  allocating the appropriate 
sample size to the respective stratum is known as the problem of  optimum allocation.   

Yates (1960) suggested two useful approaches for optimal allocation. One approach is to “Minimize the variances of  
the estimates subject to a cost function or to a given sample size” and another approach is to “minimize the total cost for 
the desired precision of  the estimates”.  

In large scale sample surveys one is generally concerned with estimation of  more than one population characteristic. If  
these characteristics are highly correlated then optimal allocation may differ little among themselves, Swain (2003). But if  
not so, then optimal allocation for one character may not be optimal for others. In such situations we obtain a compromise 
allocation, optimal for all characters in some sense.  

The problem of  optimum allocation of  sample sizes to various strata is treated as mathematical programming problem 
by Kokan (1663) and a solution is proposed using nonlinear programming technique. Kokan and Khan (1967) have given an 
analytical solution for the optimum allocation in multivariate surveys. Many authors such as Chatterjee (1967, 1968), Ahsan 
and Khan (1977), Khan et al. (1997), Khan and Ahsan (2003) either suggested new approaches or explored exiting 
approaches further. 

As we know that in real life situations we face uncertainty. Uncertainty arises due to lack of  knowledge or due to 
inherent vagueness. To make decisions in such type of  situations, we use probability theory and fuzzy set theory respectively. 
Many problems in statistics such as regression analysis, sample surveys, cluster analysis, estimation and so on can be viewed 
as a mathematical programming problem, Arthanari and Dodge (1981). The mathematical programming problems in which 
some or all of  the parameters are described by stochastic (or random or probabilistic) variables are called stochastic 
programming or probabilistic programming problems, (see Dantzig (1955), Rao (1978), Prekopa (1995), Uryasev and 
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Pardalos (2001)). There are two important techniques for solving stochastic programming namely two stage programming 
and chance constraint programming, Charnce and Cooper (1959). Chance constraint programming is a particular case of  
stochastic programming in which each constraint has a specified probability of  being satisfied. 

In stratified sampling, a lot of  work has been done by applying stochastic programming. Díaz-García and Garay-Tapia 
(2007) worked out on optimum allocation in stratified sampling by treating the problem as a stochastic programming 
problem in which sample variances are considered as random variables with asymptotic normal distribution when 
population variances were unknown. 

During the course of  survey, per unit measurement cost may, however vary and affected by random causes so it can be 
considered as random variable. In this regard, Bakhshi et al. (2010) considered the measurement cost 

h
c as normally 

distributed random variable and formulate the problem of  optimum allocation as to minimize the variances of  the estimates 
for a probabilistic cost constraint. Some authors also used stochastic programming for optimal allocation such as Javaid et al. 
(2011), Ali et al. (2011), and Díaz-García and Ramos-Quiroga (2012). Khan and Khalid (2013) used multi choice for 
precision in multivariate stratified sampling and obtained compromise allocation. 

The measurement cost includes labour cost, travel expenses (including meals and lodging, if  out of  station) and will 
increase with the complexity of  the survey and amount of  data to be carried out. In multivariate survey, the cost of  
measurement of  an individual may vary highly form one character to another (such as biological investigations), Ahsan and 
Khan (1982). There are some other factors which rarely affect the cost very much such as weather condition, nature of  
climate, flood etc., which occur randomly. In such situations the cost of  approaching a unit in any stratum will be completely 
uncertain and estimated form the sampled data. In the presence of  such factors and due to the complexity of  the survey, the 
probability (cost is high) will be high. Then the random variable representing “high” is a fuzzy random variable.  Thus the 
cost for each stratum which is estimated form the sampled data is a random variable as well as a fuzzy number i.e. the cost is 
a fuzzy random variable (FRV). The concept of  fuzzy set theory was initially introduced by Zadeh (1965). After Zadeh, the 
concept of  fuzzy random variable discussed by Kwakernaak (1978, 1979), Puri and Ralesku (1986), Liu and Liu (2003) 
according to different requirement of  measurability.  

Many authors have been used fuzzy random variables according to their requirements. Studies on linear programming 
problems with fuzzy random variable coefficients, called fuzzy random linear programming problems, were initiated by 
Wang and Qiao (1993) and Qiao et al. (1994). Optimization models of  fuzzy stochastic programming were found in the 
paper by Luhandjula (2006). In this work, we are considering the cost as an independent normally distributed random 
variable with fuzzy mean and variance and the probability of  satisfying the cost constraint is also fuzzy probability.  

Garcia et al. (2001) considered the problem of  estimating the expected value of  fuzzy random variables in the stratified 
random sampling form finite populations but the use of  fuzzy random variable to obtain the optimum allocation in 
stratified sampling is not being seen yet in literature. 

Thus in this paper, we are working on the problem of  optimal allocation of  sample size to various strata  in 
multivariate stratified surveys to minimize the variances of  the estimates of  population parameters for each characteristic to 
a given cost constraint. Our objective is to optimize all the objectives simultaneously, so this problem can be considered as a 
multiobjective programming problem. The cost constraint will be a fuzzy chance constraint as the cost is a fuzzy random 
variable (FRV) and the satisfying probability of  constraint is also a fuzzy number. All the objectives are nonlinear (as 
variance function is nonlinear in sample size

h
n ) and we required integer solutions (sample size in fraction have no sense), so 

the problem of  optimal allocation is formulated as an all integers nonlinear Multiobjective Fuzzy Chance Constraint 
Programming problem (MOFCCPP). A MOFCCPP can be defined as a mathematical programming problem in which we 
want to optimize more than one objective simultaneously with a fuzzy chance constraint. For solving this problem, first we 
transformed it into its deterministic equivalent and then obtained the compromise solutions by applying goal programming 
technique. A numerical illustration is also given to demonstrate the proposed approach. Remainder of  this paper is 
organized in the following sections. Section 2 contains some preliminaries concepts on fuzzy random variable (FRV). Some 
notations related to multivariate stratified sampling are given in section 3. In section 4, mathematical formulation of  the 
problem of  optimal allocation in fuzzy environment is presented and its deterministic equivalent is obtained in section 5. 
Section 6 contains a solution procedure by goal programming technique and a numerical example is also presented in 
section 7 to justify the correctness of  the given approach. In section 8, sensitivity analysis of  the numerical example is 
conducted with discussion about the obtained results. In the last section, some concluding remarks with future research 
direction related to this work are presented. 
 
2. PRELIMINARIES 

From the various definitions of  the concept of  fuzzy number we choose following definitions:  
 
Definition 1. (Zadeh, 1965) Let X  be the classical crisp set of  objects called the universe whose generic elements are denoted byx . A 
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fuzzy set A  in X  is a function : [0,1]A X . The set [0,1]  is called a valuation set. The fuzzy set A  is characterized by the set of  

all pairs of  points denoted by  

, ( ) ,
A

A x x  x X , 

where ( )
A
x  is called the membership function of  x  in A . The close the value of  ( )

A
x  is to1 , the more x  belongs toA . 

Definition 2. (Bector and Chandra, 2005) Let A  is a fuzzy set inX . Then the support of  ,A  denoted by ( ),S A  is the crisp 

set given by  

( ) : ( ) 0 .
A

S A x X x  

Definition 3. (Normal Fuzzy Set) Let A  be a fuzzy set in ,X  the height ( )h A of  A  is defined as 

 ( ) ( ).
A

x X
h A Sup x  

If ( ) 1h A , then the fuzzy set A  is called a normal fuzzy set, otherwise it is called subnormal. 
 
Definition 4. (Bector and Chandra, 2005) Let A  be a fuzzy set in X  and (0,1].  The -cut of  the fuzzy set A  is the 

crisp set { : ( ) }.
A

A x X x  
 
Definition 5. (Bector and Chandra, 2005) A fuzzy set A  in R is called a fuzzy number if  it satisfies the following conditions 
 (i)A  is normal 
 (ii)A  is closed interval for every (0,1] , 

 (iii) the support of  A  is bounded. 
 
Definition 6. (Equipossible fuzzy number) A fuzzy number A  is called an equipossible fuzzy number and denoted by

( , )
l u

A a a if  its membership function is given by 

1
( )

0
l u

A

if a x a
x

otherwise
 

 
Definition 7. (Triangular fuzzy number) A fuzzy number A  is called a triangular fuzzy number and denoted by ( , , )

l u
A a a a  

if  its membership function is given by 

( )

0

l
l

l

u
A u

u

x a
if a x a

a a
x a

x if a x a
a a

otherwise

 

 
Definition 8. (Fuzzy Probability) Let 

1 2 3
( , , ,...., )

n
S x x x x be a discrete finite set and P  be the probability function defined on 

 which is the set of  all subsets of  S  with 

{( )} ,
i i

P x p  0 1,
i
p  

1

, 1.
n

i
i

i p  

Then  together with P  is said to be a fuzzy probability space if  at least one of  these 
i
p is a fuzzy number. 

 
Definition 9. (Fuzzy Random Variable)  After Zadeh (1965), Kwakernaak (1978, 1979) suggested the approach of  fuzzy random 
variables. Let ( , , )A P be the probability space, and X be a random variable on ( , , )A P  with probability density function ( )f x . Fuzzy 
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random variable X  is a mapping from to a family of  fuzzy numbers.  They can be viewed as an extension of  any random variable where 
the set of  its values is viewed not as real number but as fuzzy numbers. 
 
Definition 10. (Fuzzy Normal Distribution) (Buckley and Eslami, 2004). The normal density 2( , )N has density function 

2( : , ),f x x R  with mean  and variance 2 . So consider the fuzzy normal 2( , )N for fuzzy numbers  and 2 0 .  We 

wish to compute the fuzzy probability of  obtaining a value in the interval [ , ]c d . We write this fuzzy probability as [ , ]P c d . For [0,1],

[ ]  and 2 2[ ].  

Let  
1

( )c u
z  and

2

( )d u
z , then  

2

1

2 2[ , ][ ] ( ;0,1) | [ ], [ ]
z

z

P c d f x dx , for 0 1.  

The above equation gets the -cuts of [ , ]P c d . Also, in the above equation ( ;0,1)f x  stands for the standard normal 

density with zero mean and unit variance. Let
1 2

[ , ][ ] [ [ ], [ ]]P c d p p ; then the minimum (maximum) of  the expression 

on the right side of  the above equation is
1 2
[ ] , [ ]p p . 

Let the fuzzy mean isM , then its -cuts are  

2 2 2[ ] ( : , ) | [ ], [ ]M x f x dx *
*
[ ], [ ] .m m  

Let the fuzzy variance isV , then its -cuts are  

2 2 2 2[ ] ( ) ( : , ) | [ ], [ ]V x f x dx *
*
[ ], [ ] .V V  

We have two important results on fuzzy means and variances from Nanda et al. (2006). Let X  and Y  be two fuzzy 
random variables with means ( ), ( )

x y
m m  and variances 2 2( ), ( )

x y
 respectively then Z aX bY , a linear 

combination of  the FRVs X  and Y  will also be a fuzzy random variable (FRV), whose mean and variance are fuzzy 
numbers denoted by ( )

z
m  and 2( ),

z
 respectively. ( )   a ( ) ( )

z x y
m m bm  with -cuts, 

( )[ ]  [ ( )[ ], ( )[ ] ]
zz z

m m m , 

and 2 2 2 2 2( ) ( ) ( )
z x y

a b  with -cuts, 
2 2 2( ) [ ( )[ ], ( )[ ]].
z z z

 

 
Definition 11. (Partial Order Relation ) We are using the partial order relation by Nanda et al. (2006). Let A and B be 

two fuzzy numbers with -cuts *
*

[ ] [ [ ], [ ]]A a a  and *
*

[ ] [ [ ], [ ]]B b b  respectively, then A B  iff  
*

*
[ ] [ ]a b for each .  

 
3. NOTATIONS 

In stratified sampling the population havingN units is divided into L subpopulations having 
1 2 3
, , ,...,

L
N N N N units 

respectively (symbols have their usual meaning from the standard book Cochran (1977), otherwise stated). Let the suffixh
denotes the stratum and i the unit within the stratum. Also let,  
 

h
N     total number of  units in thh stratum 

 
h
n     number of  units in sample from thh  stratum 

 
hi
y     value obtained for the thi  unit in the thh  stratum 
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 h
h

N
W

N
   stratum weight 

 h
h

h

n
f
N

   sampling fraction in the thh stratum 

 1

hN

hii
h

h

y
Y

N
  true mean 

 1

hn

hii
h

h

y
y

n
  sample mean 

 
2

12
( )

1

hN

hi hi
h

h

y Y
S

N
 true variance. 

 
4. MATHEMATICAL FORMULATION OF THE PROBLEM OF OPTIMAL ALLOCATION IN 

UNCERTAIN ENVIRONMENT 

In stratified sampling the values of  the sample sizes
h
n  (sample size from thh  stratum) in the respective strata are 

chosen by the sampler. They may be selected to minimize ( )
st

V y  for a specified cost of  taking the sample or to minimize 

the cost for a specified value of ( )
st

V y .  

st
y  is the estimate used in stratified sampling for population mean per unit and its variance is given as 

2 2 2 2

1

( )
L

h h h h

st
h h h

W S W S
V y

n N
2 2

1

1 1L

h h
h h h

W S
n N

 

Arthanari and Dodge (1981) have given the mathematical formulation of  the above problem for minimizing the sum of  
variances subject to budget restriction (with overhead cost) as follows 

 

2 2

1

0
1

min ( )

. .

1 , : integers for 1,2,3,..., ;

L
h h

st
h h

L

h h
h

h h h

W S
V y

n

s t c n c C

n N n h L

 (1) 

where 2 ( 1,2,3,..., )
h
S h L are the true population variances, and term independent of  

h
n  has been ignored here. 

In multivariate surveys, we have more than one character under study say p  characters( 2)p , then for a fixed 
budgetC , the problem of  optimal allocation as a multiobjective programming (MOP) problem can be represented as 
follows 

 

2 2

1

0
1

min ( ) for each character 1,2,3,...,

. .

2 , : integers for 1,2,3,..., ;

L
h jh

jst
h h

L

h h
h

h h h

W S
V y j p

n

s t c n c C

n N n h L

 (2) 

where 2
jh
S  are the true population variances for thj  characteristic and 

1

p

h jh
j

c c denotes the cost of  measuring all the 

p  characters on a sampled unit from the thh stratum and jh
c is the per unit cost of  measuring the thj characteristic in thh

stratum. The restrictions 2
h h
n N  for 1,2, 3,...,h L  are introduced here to avoid the problem of  oversampling. 

Bakhshi et al. (2010) have formulated the problem (2) as a stochastic programming problem by considering the 
measurement cost 

h
c as normally distributed random variable and used the chance constraint programming technique to 

transformed it into deterministic equivalence. Mathematically this problem can be stated as  
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2 2

1

0 0
1

min ( ) ( 1,2, 3,..., )

. .

2 , : integers for 1,2, 3,..., ;

L
h jh

jst
h h

L

h h
h

h h h

W S
V y j p

n

s t P c n c C P

n N n h L

 (3) 

where the cost is a normally distributed random variable and 
0
P is constraint satisfying probability. 

As we considered that, the cost 
h
c  is a fuzzy random variable (FRV) i.e. normally distributed random variable with 

approximated mean and variance (defined in section 2) and the probability 
0
P is also a fuzzy number, so the above problem 

(3), with these assumptions will be   

 

2 2

1

0 0
1

min ( ) ( 1,2, 3,..., )

. . ,

2 , : integers for 1,2, 3,..., ;

L
h jh

jst
h h

L

h h
h

h h h

W S
V y j p

n

s t P c n c C P

n N n h L

 (4) 

where ‘~’ indicates the fuzziness of  the measurement cost and satisfying probability also. 
Let 1,2,3,...

j
V j p ; denotes the variance function then, problem (4) can be represented as a multiobjective fuzzy 

chance constrained programming problem (MOFCCPP) as follows 

 

1 2 3

0 0
1

min , , ,...,

. . ,

2 , : integers for 1,2, 3,..., ;

p

L

h h
h

h h h

V V V V

s t P c n C P

n N n h L

 (5) 

where 
0 0
C C c  is the budget not included overhead cost. 

 

5.  DETERMINISTIC EQUIVALENT 
Since, uncertain optimization problems can’t be optimized directly rather than their deterministic equivalent are 

obtained. Uncertainty may be in the form of  fuzziness or randomness. We are considering both type of  uncertainty under 
one roof  in the form of  FRV. A great deal of  study has been done by obtaining the deterministic equivalent of  the 
problems containing FRVs. Some authors have been worked out with FRVs in inventory control such as Dutta et al. (2005, 
2007), Bag et al. (2009) and obtained the deterministic equivalent by graded mean integration representation of  fuzzy 
numbers proposed by Chen and Hsieh (1999). Chakraborty (2002) has been defined the chance constraint programming in 
fuzzy environment where the parameters are random variables, but the probability of  the constraint is imprecise. In our 
problem, we have fuzzy chance constraint in which parameters are FRVs and the probability is a fuzzy number. Nanda et al. 
(2006) used Buckley (2003) approach of  fuzzy probability to convert the fuzzy chance constraint programming to its 
deterministic equivalent. The aim of  this work is to solve the problem of  optimal allocation in the presence of  FRVs, not to 
develop any procedure/method to obtain deterministic equivalent of  fuzzy chance constraint so we are adopting Nanda 
approach for the deterministic equivalent of  the constraint of  problem (5) in the following manner.  

We have considered here that ( 1,2,3,..., )
h
c h L to be normally distributed FRVs whose mean and variance are 

fuzzy numbers denoted by
h
m , 2

h
 (both are triangular fuzzy numbers) i.e. ( , , )

h lh uh
m a a a  and 2 ( , , )

h lh uh
b b b , cost 

constraint satisfying probability is also a fuzzy number i.e. 
0

( , , )
l u

P p p p .  

Let 
1

L

i h h
h

u c n  is a linear combination of  L  number of  fuzzy random variables then 
i
u  will also be a fuzzy 

random variable with mean and variance are fuzzy numbers denoted by 
iu

m  and 2

iu
 respectively.  

Let  

*

*

1

[ ] [ [ ], [ ]]
i i i

L

u h h u u
h

m n m m m   

are the -cuts of  mean, 

hc
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2 2 2 2 *2
*

1

[ ] [ [ ], [ ]]
i i i

L

u h h u u
h

n   

are the -cuts of  variance and  
*

0 0* 0
[ ] [ [ ], [ ]]p p p   

are the -cuts of  probability, where 

* 1 1 2 2 1 1 2 2 1 1 2 2
[ ] [( ... ) ( ... )] ( ... )

iu L L l l L lL l l L lL
m n a n a n a n a n a n a n a n a n a , 

 *
1 1 2 2 1 1 2 2 1 1 2 2

[ ] [( ... ) ( ... )] ( ... )
iu u u L uL L L u u L uL

m n a n a n a n a n a n a n a n a n a  (6) 

 2 2 2 2 2 2 2 2 2 2
* 1 1 2 2 1 1 2 2 1 1 2 2
[ ] [( ... ) ( ... )] ( ... )

iu L L l l L lL l l L lL
n b n b n b n b n b n b n b n b n b , 

*2 2 2 2 2 2 2 2 2 2
1 1 2 2 1 1 2 2 1 1 2 2

[ ] [( ... ) ( ... )] ( ... )
iu u u L uL L L u u L uL

n b n b n b n b n b n b n b n b n b  (7) 

and 

 0*
*

0

[ ] ( )

[ ] ( )
l l

u u

p p p p

p p p p
. (8) 

Now, the deterministic equivalent of  the fuzzy chance constraint will be  
*

0 *
0*2

[ ]
[ ]

[ ]
i

i

u

u

C m
F p  

for each [0,1] , where F is the cumulative distribution function of  (0,1)N distribution. 

Thus the problem of  optimal allocation to be worked out will be  

 

1 2 3

*
0 *

0*2

min [ , , ,..., ]

[ ]
. . [ ]  for each [0,1]

[ ]

2 , : integers for 1,2,3,..., ;

i

i

p

u

u

h h h

V V V V

C m
s t F p

n N n h L

 (9) 

where *[ ]
iu

m , 2[ ]
iu

, *
0
[ ]p  are given by (6), (7) and (8) respectively. 

 
6. SOLUTION BY GOAL PROGRAMMING TECHNIQUE 

The problem (9) is a multiobjective programming problem and we want to optimize all the objectives simultaneously. A 
single solution may not be optimal for all the objectives due to the conflict nature of  objectives, so goal programming 
technique is taken into account to obtain compromise solution. There are various methods for solving multiobjective 
programming problem to obtain the compromise solutions such as global criterion method, weighted sum method, 
lexicographic ordering and goal programming etc., Miettinen (1998). The global criterion method is suitable for the 
situations where the decision maker does not have any specific expectations of  the solution. In weighted sum method, 
decision maker specifies a weighting vector representing his/her preference information. In lexicographic, decision maker 
makes arrangement of  objective functions according to their absolute importance. The problems arise when we have no 
idea about the preference and importance of  objectives. In goal programming, our expectations about the objectives are 
taken into account and treated as goal. The purpose of  sampling theory is to spring up the methods of  sample selection and 
of  estimation, that provide, at the lowest possible cost, estimates that are precise enough for our purpose. It is the guiding 
principle for optimal allocation. In order to apply this principle, we must be able to predict, for any sampling procedure that 
is under consideration, the precision and the cost to be expected (see Cochran (1977), page 9). In our case, we sustain a 
fixed total cost/budget, so the expected precision is set for each characteristic and treated as goal. This is the reason for 
adopting goal programming. Goal programming technique is one of  the most popular techniques developed by Charnes et 
al. (1955), but the term goal programming was fixed in Charnes and Cooper (1961). In goal programming technique the 
decision maker fixed his (her) aspiration levels for each of  the objectives and the deviations from these aspiration levels are 
minimized. Some authors have been used goal programming technique to solve the problem of  optimum allocation such as 
Khan et al. (2010), Ansari et al. (2011). We are also proceeding in the similar manner.  

Let *
jh
n  be the optimal sample size in the thh  stratum for thj  characteristic and *

jh
V is the variance corresponding 

to *
jh
n . These variances are our expected/required precision for each characteristic. Also let 

h
n  be the size of  the sample 
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obtained by using the compromise allocation and 0
jh
V is the value of  variance corresponding to

h
n . 

Obviously,  
0 *
jh jh
V V  or 0 * 0

jh jh
V V . 

A reasonable compromise criterion may be to find 
h
n  that minimize, 

0 * 0 *

1 1

p p

jh jh j j
j j

V V V V ; 

where 
jh j
V V  and * *

jh j
V V  are used. 

Our goal will be “Minimize the sum of  the increases in the variances due to use of  compromise allocation, i.e. for thj  

character the increase in the variance should not exceed j
x  ”.  

To achieve this goal  must satisfy 
0 *
j j j
V V x ; 

or     
0 *
j j j
V x V ; 

or 
2 2

*

1

L
h h

j j
h h

W S
x V

n
; 1,2, 3,...j p . 

So we can be express the problem (9) as a goal programming problem as follows  

 

1
2 2

*

1

*
0 *

0*2

min

. . ,  1,2, 3,...,

[ ]
[ ]  for each [0,1]

[ ]

2 , : integers for 1,2,3,..., ;

i

i

p

j
j

L
h jh

j j
h h

u

u

h h h

Z x

W S
s t x V j p

n

C m
F p

n N n h L

 (10) 

This problem can be solved by LINGO (13.0), which is a friendly user software package without any deeply study of  
mathematical programming. For more details about the software Lingo user’s guide (2011) is available.  
 
7.  NUMERICAL ILLUSTRATION 

For the purpose of  numerical illustration we considered the data collected from a stratified random sample survey 
conducted in Varanasi district of  Uttar Pradesh (UP), India, to study the distribution of  manurial resources among different 
crops and cultural practices Sukhatme et al. (1984). Relevant data with respect to the two characteristics ‘area under rice’ and 
‘total cultivated area’ are given in Table1. The total number of  villages in the district was 4190.  

To demonstrate our approach, we assume that total budget available for conducting the survey is 1800C units with 

overhead cost 
0

300c units i.e. 
0 0

1500C c C . 

We also assume that 
h
c  as a normally distributed fuzzy random variable with mean and variances as fuzzy numbers 

(both are triangular) i.e. 2~ ( , )
h h h
c N m . 

Let 
1

(2,3, 4)m , 
2

(1,2,3)m , 
3

(2,3, 4)m , 
4

(1,2,3)m  and 2
1

(0.25,0.30,0.35) , 
2
2

(0.20,0.25,0.30) , 2
3

(0.25,0.30,0.35) , 2
4

(0.20,0.25,0.30)  are the mean and variances of  the cost 

associated with respective stratum, and the satisfying probability of  cost constraint is also a fuzzy number i.e. 

0
(0.85,0.90,0.95)P . 

 
 
 

hn
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Table 1: Data of  the Survey 
Stratum 
h  i

N  
i
W  2

1i
S  2

2i
S  

1  1419 0.3387 4817.72 130121.15

2  619 0.1477 6251.26 7613.52  

3  1253 0.2990 3066.16 1456.40  

4  899 0.2146 56207.25 66977.72

 
The -cuts for mean, variance and probability will be 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
[(2 2 ) ( ),(4 3 4 3 ) ( )],n n n n n n n n n n n n n n n n

 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

[(0.25 0.20 0.25 0.20 ) (0.5 0.5 0.5 0.5 ),n n n n n n n n  
2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

(0.35 0.30 0.35 0.30 ) (0.5 0.5 0.5 0.5 )]n n n n n n n n , 

and 
[0.5 0.85,0.95 0.5 ]  

respectively. Let *
1
V and *

2
V are the expected variances for the estimates of  character ‘area under rice’ and ‘total cultivated area’ 

respectively. We calculate these variances by taken into account only one objective at a time, for the given cost constraint.  
At 0.4 , we solve the following problems 

 
1 2 3 4

2 2 2 2
1 2 3 4 1 2 3 4

1 2 3 4

552.640 136.277 274.114 2588.343
min

. . 3.6 2.6 3.6 2.6 1.48 (0.33 0.28 0.33 0.28 ) 1500

2 1419,2 619,2 1253,2 899

n n n n

s t n n n n n n n n

n n n n

 

and  

1 2 3 4

2 2 2 2
1 2 3 4 1 2 3 4

1 2 3 4

14926.197 165.39747 130.202 3048.324
min

. . 3.6 2.6 3.6 2.6 1.48 (0.33 0.28 0.33 0.28 ) 1500

2 1419, 2 619, 2 1253, 2 899

n n n n

s t n n n n n n n n

n n n n

 

for and respectively. After solving by LINGO (13.0), we get *
1

24.17V and *
2

103.07V . These are our 

required goals for the variances of  estimates.      
The problem of  optimal allocation to be solved as a goal programming problem will be  

1 2

1
1 2 3 4

2
1 2 3 4

2 2 2
1 2 3 4 1 2 3

min

552.640 136.277 274.114 2588.343
. . 24.17

14926.197 165.39747 130.202 3048.324
103.07

3.6 2.6 3.6 2.6 1.48 (0.33 0.28 0.33 0.28

Z x x

s t x
n n n n

x
n n n n

n n n n n n n 2
4

1 2 3 4

) 1500

2 1419, 2 619, 2 1253, 2 899

n

n n n n

 

By solving the above problem by LINGO (13.0) package, we obtained the following compromise allocation  

1
197n ;

2
35n ; 

3
34n  and 

4
143n  

with a total of  409 . The value of  Z is 11.5127 with 
1

8.6913x and
2

2.8213x . Corresponding to this allocation 

the values of  variances for two characters are 
1

32.86V and
2

105.89V . Also, the total expanse for conducting the 

survey is 1499.78 units. 

*
1V *

2V
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Table 2. Results by increment in the value of
0
C  

0
C  Z  

1
x  

2
x  

1
V  

2
V  

Total Sample 

Size  

1500  11.5127  8.6913 2.8213 32.86 105.89 409  

1575 5.4575  5.3676 0.0899 29.54 103.16 433  
1650 2.0409 2.0252 0.0157 26.19 103.09 459
1725 0.0000 0.0000 0.0000 24.15 102.85 482

 

Table 3. Results by increment in the value of   

 Z  
1
x  

2
x  

1
V  

2
V  

Total Sample 

Size  

0.4  11.5127  8.6913 2.8213 32.86 105.89 409  

0.5 7.105  7.03  0.0738 31.201 103.14 424  
0.6 3.97 3.97 0.0000 28.14 103.07 443
0.7 1.66 1.66 0.0000 25.83 103.06 463
0.8 0.00 0.00 0.0000 24.156 102.81 484

       
8. SENSITIVITY ANALYSIS AND DISCUSSION 

The impact of  total cost
0
C and on the value of  objective function and variances of  the estimates is discussed here. The 

values of
0
C and are increased and obtained results are summarized in the Table 2 and 3. On the basis of  results 

summarized in table 2 and 3, we observe that
0
C and have a reasonable impact on the objective function. The impact of  

0
C  is evident from the fact that a5% increment in 

0
C is resulting approximately50% decrement in the value of  objective 

function and at
0

1725C , we attain our goals. Similarly, we can observe the impact of  on the value of  objective 
function. A gradually increment in  minimizes the value of  objective function and at 0.8 , we attain our required 
goals. On the other hand, we can state that an increment in 

0
C and is increasing the total size of  sample allocated to 

various strata and reducing the variances. This statement can be couple with the principle of  sampling viz. the sampling 
error usually decreases with the increment in sample size and we obtained more precise results. 
 
9.  CONCLUSION  

The main feature of  this paper is the consideration of  randomness and fuzziness under one roof  in the cost function. 
The problem of  optimal allocation in multivariate stratified sampling is considered as multiobjective fuzzy chance constraint 
programming (MOFCCP) problem. By solving the deterministic equivalent by goal programming technique with a 
numerical illustration, it can be realized that the proposed approach gives an appropriate compromise solution. A sensitivity 
analysis is conducted to understand the relationship between cost of  survey and variances of  the estimates. In this work, we 
considered a linear cost function and worked out with multivariate stratified sampling. This work can be extended with 
nonlinear cost function for other sampling designs and may be considered as the future work direction of  the present work.  
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