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Abstract  1 2

1 2 1 2
1X XM M G G  priority model with second optional service and server breakdown is investigated to 

analyze the reliability characteristics. There are two types of customers; the first type customers are priority based customers 
and the other ones are non priority i.e. ordinary customers. The priority and nonpriority customers arrive in batch according 
to Poisson fashion with rate 

1
and 

2
respectively. In this model, we assume that the server provides a first essential service 

to all the arriving customers, whereas only some of them receive second optional service. The first essential service time 
follows a general distribution but the second optional service is assumed to be exponentially distributed. By using the 
supplementary variable technique, we obtain the expressions for the availability, failure frequency and reliability function of 
the server, etc. The sensitivity analysis is carried out to explore the effects of different parameters on the system reliabilities 
indices.  
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1. INTRODUCTION 

Priority mechanism is an invaluable scheduling method that allows customers of different classes to receive preferential 
service from a server in a queueing system. Some papers on queueing theory are devoted to analyze priority queues, where 
customers are labeled and served in accordance with a priority scheme; these papers can be classified in two categories; the 
preemptive priority and the non-preemptive priority scheduling disciplines. For a preemptive priority scheduling discipline, 
the service of a customer is interrupted when a customer with higher priority arrives in the system during the service; the 
interrupted customer only gets hold of the server again when there are no more higher-priority customers present in the 
system. On the other hand, for non-preemptive scheduling, a customer’s service is never interrupted. Upon departure of a 
customer or when the customers arrive in an empty system, the server selects a customer for service from the class with the 
highest priority among waiting customers.  

The discipline that handles situations where preemptions are disallowed is called the non-preemptive or “head of the 
line” priority discipline. Typical situations where one would not want to allow preemptions include those computing 
applications where a lengthy service rendered prior to the point of interruption would be permanent. Consider an airline 
check-in counter, for instance; when an idle business class agent processes an economy-class passenger and if no business 
class passenger is present, it would be both confusing and bad public relations to interrupt their check-in to handle a newly 
arriving business-class passenger.  

The priority queue has received considerable attention in the literature (cf. Miller, 1960; Takacs, 1964; Jaiswal, 1968). 
Takagi (1991) analyzed a vacation and priority queueing system. Takine (1996) studied a non-preemptive priority MAP/G/1 
queue with two classes of customers. The batch arrival queueing model was discussed by Chaudhry and Templeton (1983), 
Takahashi and Takagi (1990), Takagi and Takahashi (1991), Audsin et al. (1992), Soo and Chung (2003) and many others. 
Krishna Reddy et al. (1993) examined a nonpreemptive priority multiserver queueing system with general bulk service and 
heterogeneous arrivals. Lee (2001) and Young et al. (2003) analyzed discrete-time GeoX/G/1 queue with preemptive resume 
priority. Hassin and Haviv (2006) considered a single server queue with two classes of customers. Dimitriou and Langaris 
(2013) analyzed a mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations. For the 
machining systems with spare provisioning, the transient analysis of priority queueing model with unreliable server was 
developed by Jain [2013] . The concept of double orbit was considered by Jain and Bhagat (2013) to propose the threshold 
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recovery policy for the unreliable server retrial queue with priority. They have obtained the transient probabilities and other 
performance indices by using Runge-Kutta method. Vadivu et al. (2014) investigated the multi-server priority queue with 
retrial attempts.  

A problem of interest in the practical applications of the theory of queues is the effect of interruptions to the servicing 
of customers due to server breakdown. One such case is when breakdowns in the service mechanism add the usual delay. 
Alternatively the interruptions may be caused by a queue discipline which assigns priority to a certain group of customers. 
For example, in a communication system, a priority customer could be an urgent message to be transmitted immediately on 
arrival irrespective of the state of the queue of schedule (non-priority) messages. Under this discipline, the arrival of a 
priority customer and a breakdown in the service device are equivalent from the point of view of the customer whose 
service has been interrupted. A model combining both priority discipline and breakdowns can be postulated, in which case a 
breakdown is formally interpreted as a priority customer with preference over all others. White and Christie (1958) and 
Madan (1992) discussed queueing system with priorities and breakdowns. Wang and Cao (2001) gave reliability analysis of 
the retrial queue with server breakdown and repairs. Classical and constant retrial policies in M/G/1 queueing model with 
active breakdowns of the server were discussed by Atencia et al. (2006).  Fiems et al. (2008) considered queueing systems 
with different types of server interruptions. Wang, et al. (2010) provided a comparison of two randomized policy M/G/1 
queues with second optional service, server breakdown and startup. Kalidass, and Kasturi (2012) gave a queue with working 
breakdowns. For the non-Markovian loss queue with priority, Vinayak et al. (2014) developed queueing model and gave 
performance analysis to explore the queue size distribution. Jain and Bhagat investigated (2014) the unreliable server queue 
to study the modified vacation policy by incorporating more realistic features including the bulk input, retrial and delayed 
repairs.  

In some congestion situations, the queueing systems are characterized by common features such as bulk arrival and 
priority where the server provides a first essential service to all the arriving customers, however only some of them receive a 
second optional service. In the existing literature, a few papers appear on queueing system with second optional service. 
Madan (1994, 2000) and Choudhury (2003) studied an M/G/1 queueing system with optional service. Sapna (1996) 
considered an M/G/1-type queueing system with non-perfect servers and no waiting room where two types of services are 
offered. An arriving customer has to undergo the first service but the second service is optional. Krishnakumar et al. (2002) 
analyzed an M/G/1 retrial queueing system with two phase service and preemptive resume priority discipline. Artalejo and 
Choudhury (2004) gave steady state analysis of an M/G/1 queue with repeated attempts in which the server may provide an 
additional second phase of service. Wang (2004) proposed the M/G/1 queue with second optional service and server 
breakdowns. Wang and Zhao (2007) considered a discrete-time Geo/G/1 retrial queue with starting failures and second 
optional service where the two services are offered; an arrival essentially requires the first (i.e. regular) service but has the 
option whether to have the second service or not. Wang, and Xu (2009) analyzed the well-posedness of an M/G/1 queue 
with second optional service and server breakdown. Ke at al. (2013) gave analysis of an infinite multi-server queue with an 
optional service. Rajadurai, et al. (2014) gave the performance analysis of an M[X]/(G1, G2)/1 retrial queueing system with 
balking, optional re-service under modified vacation policy and service interruption.  

In this paper, we consider a batch arrival priority queueing system with second optional service and server breakdowns. 
Such type of queueing models can be noticed in the stochastic modeling of communication systems, local area network 
system, manufacturing system and many daily life congestion situations. Our model deals with more versatile congestion 
situations as it includes the concept of unreliable server while considering the optimal service criteria in bulk priority queue. 
The organization of the paper is as follows. The model is described along with requisite assumptions and notations in 
section 2. The queue size distribution is established in section 3.  In section 4 some special cases are deduced. Section 5 
provides the reliability indices of the server including the availability, failure frequency, etc. The computational results and 
sensitivity analysis are presented in section 6. At last conclusions have been drawn in section 7. 
 
2. MODEL DESCRIPTION 

Consider a single-server batch arrival priority based queuing system where server is subject to breakdown and also 
renders the second optional service. There are two types of customers, the priority (type 1) and the non-priority (type 2) 
customers who arrive in batches according to Poisson process. If a customer is being served at the instant of server failure, 
the service is interrupted. In case the server breaks down when serving the customer, he is sent for repair and the customer 
who has just being served should wait for the server back to complete his remaining service and restarted after repair. 
Immediately after returning from the repair, the server starts to serve priority/non-priority customers until the system 
becomes empty. A customer who arrives and finds the server busy or broken down must wait in the queue until the server is 
available. Although no service occurs during the repair period of a broken down server, the customers continue to arrive 
according to a Poisson process. The service discipline between two classes is non-preemptive priority; the priority customer 
is always taken for service before a non-priority one. However, if a priority customer arrives in batch and find a non-priority 
customer in service, he cannot preempt the non-priority customer who is undergoing service; thus the service of the priority 
customer begins only after the completion of service of the non-priority customer. The first essential service is needed to all 
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arriving customers; the essential service times are independent and identically distributed (i.i.d.) according to general 
distribution in each priority class. As soon as the first essential service of a customer is completed, he may opt for the 
second optional service; the optional service times are assumed to be exponentially distributed. To formulate the 
mathematical model we use the following notations:  

N1(t), N2(t) : The number of the priority and nonpriority customers in the    queue at time t. 

X(t), Y(t) : Elapsed service time and elapsed repair time at time t.  

1
, 

2
 : The arrival rate of priority and non-priority customers  

Xi : Random variable denoting the batch size for ith (i=1,2) type of customers.           

gi(k) : Pr(Xi=k), i =1,2;  k 1. 

Gi(zi) : Probability generating function of the batch size Xi, i=1,2. 

,i k
g  : kth moment of batch size for  ith (i=1,2) type of customers. 

( )l
i

 : 
Failure rate of the server during essential service (l=1) and optional service 

(l=2) while rendering service to ith (i=1,2) type of customers. 

C(t) : Random variable denoting the states of the server at time t. 

Bi
(l)(x), bi

(1)(x)  : 
The probability distribution and the density functions of the service time for ith 
(i=1,2) type of customers. 

Ri
(l)(y), ri

(l)(y) : 
The probability distribution and density functions of repair time when the server 
failed during lth (l=1, 2) phase service to ith (i=1,2) type of customers. 

bi
*(1)(.), ri

*(l)(.)        : Laplace-Stieltjes transform of bi
(1)(.) and ri

(l)(.), l=1, 2. 

(1)( )
i

x , (2)
i

      : 
The hazard rate of first essential service and second optional service, respectively 
for ith (i=1,2) type of customers. 

( )( )l
i

y  : 
The hazard rate of repair when server failed while rendering first essential (l=1) 
and second optional (l=2) service to ith (i=1,2) type of customers.                       

i
                      : 

The probability that ith (i=1,2) type of customer who has completed the first 

essential service, opts for the second optional service; (1 )
i i

. 

( ) ( )
, ,
,l l

i k i k
 : 

kth moment of service time and repair time about origin for ith (i=1,2)type of 

customer; *( )
, ,

( 1) (0),l k l
i k i k

b
,

( ) *( )
,

( 1) (0)
i k

l k l
i k

r  corresponding to lth 

(l=1, 2) phase service.  

( ) ( )
, ,1 , ,1

(.), (.)l l
m n m n

P Q  : 
The probability that there are m priority and n nonpriority customers is in the 
system while the server is rendering the lth (l=1, 2) phase service. 

( ) ( )
, ,2 , ,2

(.), (.)l l
m n m n

P Q  : 
The probability that there are m priority and n nonpriority customers is in the 
system when the server is under repair after failure during the lth (l=1, 2) phase 
service.    
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The server’s state C(t) at time t  is represented by                                          

0, if the server is in idle state

1, if the server is busy in rendering essential service

to priority cutomers.

2,      if the server is busy in rendering optional service

to priority cutomers.

3, if the server is busy in renderi

( )C t

ng essential service

to nonpriority cutomers.

4,      if the server is busy in rendering optional service

to nonpriority cutomers.

5, if the server is broken down while rendering essential 

         service to priority cutomers and the server is under repair.

6, if the server is broken down while rendering optional 

         service to priority cutomersand the server is under repair.

7, if the server is broken down while rendering essential 

         service to nonpriority cutomersand the server is under repair.

8, if the server is broken down while rendering optional 

         service to nonpriority cutomersand the server is under repair.
 

Also 
( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) , ( )

1 ( ) 1 ( )

l l
l li i

i il l
i i

b x r y
x y

B x R y
,  i= (1, 2), l= (1, 2). 

 
3. QUEUE SIZE DISTRIBUTION 

By introducing supplementary variables corresponding to elapsed service time and elapsed repair time, the stochastic 
process 

1 2
( ), ( ), ( ), ( ), ( ), 0N t N t X t Y t C t t  behaves like a Markov process. The joint probabilities for the number of 

customers in the queue and in the service are defined below:   
 

0 1 2
Pr ( ) 0, ( ) 0, ( ) 0,  no customer is in queue .P t N t N t C t  

(1)
, ,1 1 2

, Pr ( ) , ( ) , ( ) 1, ( ) , 1, 0.
m n

P x t N t m N t n C t x X t x dx m n

(2)
, ,1 1 2

Pr ( ) , ( ) , ( ) 2, ( ) , 1, 0.
m n

P t N t m N t n C t x X t x dx m n  

(1)
, ,1 1 2

, Pr ( ) , ( ) , ( ) 3, ( ) , 0, 1.
m n

Q x t N t m N t n C t x X t x dx m n  

(2)
, ,1 1 2

Pr ( ) , ( ) , ( ) 4, ( ) , 0, 1.
m n

Q t N t m N t n C t x X t x dx m n  

(1)
, ,2 1 2

, , Pr ( ) , ( ) , ( ) 5, ( ) , ( ) , 1, 0, 0, 0.
m n

P x y t N t m N t n C t X t x y Y t y dy m n x y  

(2)
, ,2 1 2

, Pr ( ) , ( ) , ( ) 6, ( ) , ( ) , 1, 0, 0, 0.
m n

P y t N t m N t n C t X t x y Y t y dy m n x y  

(1)
, ,2 1 2

, , Pr ( ) , ( ) , ( ) 7, ( ) , ( ) , 0, 1, 0, 0.
m n

Q x y t N t m N t n C t X t x y Y t y dy m n x y  

(2)
, ,2 1 2

, Pr ( ) , ( ) , ( ) 8, ( ) , ( ) , 0, 1, 0, 0.
m n

Q t y dy N t m N t n C t X t x y Y t y dy m n x y  

 
The differential equations governing the model are constructed using the appropriate transition rates as follows:  

 
0 (1) (1) (1) (1)

1 2 0 1 1,0,0 1 2 0,1,0 2

0 0
(2) (2) (2) (2)
1 1,0,0 2 0,1,0

1 , 1 ,

, 0, 0

P t
P t P x t x d x Q x t x d x

t
P t Q t for m n

  (1) 
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(1) (1)
, ,1 , ,1 (1) (1) (1)

1 2 1 1 , ,1

1 1
(1) (1) (1) (1)
1 , ,2 1 , ,1 1 2 , ,1 2

1 00

, ,
,

, , , , ,

 1, 0

m n m n

m n

m n

m n m k n m n k
k k

P x t P x t
x P x t

t x

y P x y t d y P x t g m k P x t g n k

for m n

  (2)  

 

(2) (2)
, ,1 , ,1 (2) (2) (2) (2) (2)

1 2 1 1 , ,1 1 , ,2

0
1 1

(1) (1) (2) (2)
1 , ,1 1 1 , ,1 1 2 , ,1 2

1 00

,

, ,

       for 1, 0 

m n m n

m n m n

m n

m n m k n m n k
k k

P t P t
P t y P y t d y

t x

P x t x d x P t g m k P t g n k

m n

  (3)  

 

(1) (1)
, ,2 , ,2 (1) (1)

1 2 1 , ,2

1 1
(1) (1)

1 , ,2 1 2 , ,2 2
1 0

, , , ,
, ,

, , , , ,

                        for 1, 0 

m n m n

m n

m n

m k n m n k
k k

P x y t P x y t
y P x y t

t y

P x y t g m k P x y t g n k

m n

 (4)  

 

(2) (2)
, ,2 , ,2 (2) (1)

1 2 1 , ,2

1 1
(2) (2)

1 , ,2 1 2 , ,2 2
1 0

, ,
,

, , ,

       for 1, 0 

m n m n

m n

m n

m k n m n k
k k

P y t P y t
y P y t

t y

P y t g m k P y t g n k

m n

  (5)  

 

(1) (1)
, ,1 , ,1 (1) (1) (1)

1 2 2 2 , ,1

1 1
(1) (1) (1) (1)
2 , ,2 1 , ,1 1 2 , ,1 2

1 00

, ,
,

, , , , ,

for 0, 1 

m n m n

m n

m n

m n m k n m n k
k k

Q x t Q x t
x Q x t

t x

y Q x y t d y Q x t g m k Q x t g n k

m n

  (6)  

 

(2) (2)
, ,1 , ,1 (2) (2) (2) (2) (2)

1 2 2 2 , ,1 2 , ,2

0
1 1

(1) (1) (2) (2)
2 , ,2 2 1 , ,1 1 2 , ,1 2

1 00

,

, ( ) ,

             for 0, 1 

m n m n

m n m n

m n

m n m k n m n k
k k

Q t Q t
Q t y Q y t d y

t x

Q x t x d x Q t g m k Q t g n k

m n

  (7)  

 

 

(1) (1)
, ,2 , ,2 (1) (1)

1 2 2 , ,2

1 1
(1) (1)

1 , ,2 1 2 , ,2 2
1 0

, , , ,
, ,

, , , , ,

                       for 0, 1 

m n m n

m n

m n

m k n m n k
k k

Q x y t Q x y t
y Q x y t

t y

Q x y t g m k Q x y t g n k

m n

 (8)  

 

(2) (2)
, ,2 , ,2 (2) (2)

1 2 2 , ,2

1 1
(2) (2)

1 , ,2 1 2 , ,2 2
1 0

, ,
,

, , ,

                       for 0, 1 

m n m n

m n

m n

m k n m n k
k k

Q y t Q y t
y Q y t

t y

Q y t g m k Q y t g n k

m n

    (9)  

Also (1)
, ,1

( , ) 0
m n

P x t , for 1m , 0n , and (1)
, ,1

( , ) 0
m n

Q x t , for 0m , 1n . Equations (1)–(9) are to be solved 

under the following boundary conditions:  
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(1) (1) (1) (1) (1)
, ,1 1 1, ,1 1 2 , 1,1 2

0 0
1

(2) (2) (2) (2)
1 1, ,1 2 , 1,1 0 1 0 1

0

0, 1 , 1 ,
m n m n m n

m

m n m n n
k

P t P x t x d x Q x t x d x

P t Q t P t g m k

 (10) 

 

(1) (1) (1) (1) (1)
0, ,1 1 1, ,1 1 2 0, 1,1 2

0 0
1

(2) (2) (2) (2)
1 1, ,1 2 0, 1,1 2 0 2

0

0, 1 , 1 ,

, ,

n n n

n

n n
k

Q t P x t x d x Q x t x d x

P x t Q x t P t g n k

 (11) 

 (1) (1) (1)
, ,2 1 , ,2

, 0, ,
m n m n

P x t P x t   (12) 

 (1) (1) (1)
, ,2 2 , ,2

, 0, ,
m n m n

Q x t Q x t   (13) 

 (2) (2) (2)
, ,2 1 , ,2

0,
m n m n

P t P t  (14)  

 (2) (2) (2)
, ,2 2 , ,2

0,
m n m n

Q t Q t   (15)  

The normalization condition is 

 

(1) (1) (2) (2)
0 , ,1 , ,2 , ,2 , ,1

1 0 0 0 0 0

(1) (1) (2) (2)
, ,1 , ,2 , ,2 , ,1

0 1 0 0 0 0

,

, 1

m n m n m n m n
m n

m n m n m n m n
m n

P P x dx P x y dx dy P y dy P

Q x Q x y dx dy Q y dy Q

. 

The initial condition is  
 

0
(0) 1P . 

Define the generating functions: 
(1) (1)

1 1 2 1 2 , ,1
1 0

, , , ,m n
m n

m n

P z z x t z z P x t ,   (1) (1)
1 1 2 1 2 , ,1

0 1

, , , ,m n
m n

m n

Q z z x t z z Q x t  

(2) (2)
1 1 2 1 2 , ,1

1 0

, , m n
m n

m n

P z z t z z P t ,          (2) (2)
1 1 2 1 2 , ,1

0 1

, , m n
m n

m n

Q z z t z z Q t  

(1) (1)
2 1 2 1 2 , ,2

1 0

, , , , , ,m n
m n

m n

P z z x y t z z P x y t , (1) (1)
2 1 2 1 2 , ,2

0 1

, , , , , ,m n
m n

m n

Q z z x y t z z Q x y t  

(2) (2)
2 1 2 1 2 , ,2

1 0

, , , ,m n
m n

m n

P z z y t z z P y t ,  (2) (2)
2 1 2 1 2 , ,2

0 1

, , , ,m n
m n

m n

Q z z y t z z Q y t  

1

( ) , 1,2k
i i i i

k

G z g k z i  

Now we define Laplace transform of f t , as follows: 

* *

0

exp , Re( ) 0f f s st f t dt s . 

Also  * *1f s f s . 

 
Theorem 1: The Laplace transform of joint generating functions are given by 

  
(1)

*(1) (1)
11 1 2 1 2 1 1 2

, , , , , 0, exp , ,
p

P z z x s P z z s z z s x B x   (16) 

 
(1)

*(1) (1)
21 1 2 1 2 2 1 2

, , , , , 0, exp , ,
q

Q z z x s Q z z s z z s x B x   (17) 

 
(1) (1)

1 1 1 1 2*(2)
1 1 2 1 2 (2) (2)

1 1 2 1

, ,
, , , , 0,

, ,p

b z z s
P z z s P z z s

z z s
  (18) 
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(1) (1)

2 2 2 1 2*(2)
1 1 2 1 2 (2) (2)

2 1 2 2

, ,
, , , , 0,

, ,q

b z z s
Q z z s Q z z s

z z s
  (19) 

 

(1)
*(1) (1)

12 1 2 1 1 2 1 1 1 2 2 2

(1)
(1)

11 1 2

, , , , , , 0, exp 1 1

exp , ,

p
P z z x y s P z z s G z G z s y R y

z z s B x
 (20) 

 

(1)
*(1) (1)

22 1 2 2 1 2 1 1 1 2 2 2

(1)
(1)

22 1 2

, , , , , , 0, exp 1 1

exp , ,

q
Q z z x y s Q z z s G z G z s y R y

z z s B x
 (21) 

 
(2)

*(2) (2)
12 1 2 1 1 2 1 1 1 2 2 2

*(2)
1 1 2

, , , , , 0, exp 1 1

, ,

p
P z z y s P z z s G z G z s y R y

P z z s
     (22) 

 
(2)

*(2) (2)
22 1 2 2 1 2 1 1 1 2 2 2

*(2)
1 1 2

, , , , , 0, exp 1 1

, ,

q
Q z z y s Q z z s G z G z s y R y

Q z z s
    (23) 

where 

1 2

*
0 1 1 2 2 2 2

(2) (2) (2) (2) (1) (1) (1) (2)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

, , 0,

1 1 ( , ) 1

1 1 ( , ), , ( , ), , 1 ( , ), , ( , ), ,

q
Q z z s

P s G h z s G z s

z h z s z s h z s z s b b h z s z s h z s z s

, 

*
0 1 1 1 2 2 2

1 2 (2) (2) (2) (2) (1) (1) (1) (1) (2)
1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 2

(2) (2
2 2 1 2 2

1 2

1 1 1
, , 0,

1 1 , , , , , , , , , ,

1 1 , ,
                   , , 0,

p

q

P s G z G z s
P z z s

z z z s z z s b z z s b z z s z z s

z z z s
Q z z s

) (2) (2) (1) (1) (1) (1) (2)
2 1 2 2 2 2 1 2 2 2 2 1 2 2 1 2

(2) (2) (2) (2) (1) (1) (1) (1) (2)
1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 2

, , , , , , , ,

1 1 , , , , , , , , , ,

z z s b z z s b z z s z z s

z z z s z z s b z z s b z z s z z s

, 

2 2( )
( ) ( ) ( )

1 2
1 1

, , 1 1 , ( 1,2; 1,2)
l

l l l
ii i i i i i i i i

i i

z z s s G z r G z i l , 

and 
1

*
0 1 1 2 2 2 2

1 ( , ), 1
s s

P s G h z s s G z s . 

Also 
2
,( )h z s  is the root of the equation 

 
(1) (1) (2)

1 1 1 2 2 1 2 2(1) (1)
1 1 1 2 2 (2) (2)

1 2 2 1

( , ), , ( , ), ,
( , ), ,

( , ), ,

b h z s z s h z s z s
z b h z s z s

h z s z s
  (24) 

1
1inside z  for Re (s) >0. Again 

2
,( )h z s is the root of the equation 

 
(1) (1) (2)

2 2 2 2 2 2 2 2(1) (1)
2 2 2 2 2 (2) (2)

2 2 2 2

( , ), , ( , ), ,
( , ), ,

( , ), ,

s s s s

s s s

s s

b h z s z s h z s z s
z b h z s z s

h z s z s
 (25) 

2
1inside z  for Re (s) >0.  

 
Proof: Taking Laplace transforms of equations (1)-(9) and boundary equations (10)-(15), and then after some algebraic 
manipulation, we obtain the results as given in equations (16) to (25).   
 
Corollary 1:  
(i) The marginal generating functions of the priority and non-priority customers when the server is busy in first essential service and second optimal 
service, are given by 

 
*(1) (1)
1 1 1 2*(1)

1 1 2 1 2 (1)
1 1 2

1 , ,
, , , , 0,

, ,p

b z z s
P z z s P z z s

z z s
, 

*(1) (1)
2 2 1 2*(1)

1 1 2 1 2 (1)
2 1 2

1 , ,
, , , , 0,

, ,q

b z z s
Q z z s Q z z s

z z s
  (26) 
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*(1) (1)

1 1 1 1 2*(2)
1 1 2 1 2 (2) (2)

1 1 2 1

, ,
, , , , 0,

, ,p

b z z s
P z z s P z z s

z z s
, 

*(1) (1)
2 2 2 1 2*(2)

1 1 2 1 2 (2) (2)
2 1 2 2

, ,
, , , , 0,

, ,q

b z z s
Q z z s Q z z s

z z s
  (27) 

(ii) The marginal generating functions of the priority and non-priority customers when the server is down during the first essential service and 
second optimal service are given by 

 
*(1)*(1) (1)

1 1 1 1 2 2 21 1 1 2*(1) (1)
2 1 2 1 1 2 (1)

1 1 2 1 1 1 2 2 2

1 1 11 , ,
, , , , 0,

, , 1 1
p

r G z G z sb z z s
P z z s P z z s

z z s G z G z s
  (28) 

 
*(1)*(1) (1)
2 1 1 1 2 2 22 2 1 2*(1) (1)

2 1 2 2 1 2 (1)
2 1 2 1 1 1 2 2 2

1 1 11 , ,
, , , , 0,

, , 1 1
q

r G z G z sb z z s
Q z z s Q z z s

z z s G z G z s
  (29) 

 
*(2)*(1) (1)

1 1 1 1 2 2 21 1 1 1 2*(2) (2)
2 1 2 1 1 2 (2) (2)

1 1 2 1 1 1 1 2 2 2

1 1 1, ,
, , , , 0,

, , 1 1
p

r G z G z sb z z s
P z z s P z z s

z z s G z G z s
  (30) 

 
*(2)*(1) (1)
2 1 1 1 2 2 22 2 2 1 2*(2) (2)

2 1 2 2 1 2 (2) (2)
2 1 2 2 1 1 1 2 2 2

1 1 1, ,
, , , , 0,

, , 1 1
q

r G z G z sb z z s
Q z z s Q z z s

z z s G z G z s
  (31) 

Proof: Solving (16) to (23), we obtain the results given in equations (26) to (28).                                                                                            
  
 
Theorem 2: The joint probability generating function for the number of customers in the system is 

*(1) (1) (2) (2) *(1) (1) (2)
1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 2*

1 2 1 2 (2) (2)
1 1 1 2 2 2 1 1 2 1

*(1) (1)
2 2 1 2 2

1 2

1 , , , , , , , ,
, , , , 0,

1 1 , ,

1 , ,
       , , 0,

p

q

b z z s z z s b z z s z z s
P z z s P z z s

G z G z s z z s

b z z s
Q z z s

(2) (2) *(1) (1) (2)
1 2 2 2 2 2 1 2 2 1 2

(2) (2)
1 1 1 2 2 2 2 1 2 2

, , , , , ,

1 1 , ,

z z s b z z s z z s

G z G z s z z s

 

Proof: For the proof of theorem, we use                       

                         
2 2

* *( ) *( )
1 2 1 2 1 2

1 1

, , , , , ,l l
i i

i l

P z z s P z z s Q z z s   (32) 

                                                                                                                                                                                                                   
Theorem 3: If the system is in steady state, then 
(i) The long run probability of server being in idle state is 

                    
2

(1) (1) (1) (2) (2) (2)
0 ,1 ,1

1

1 1 1
i i i i i i i

i

P  (33) 

(ii) The long run probability of the server being busy 

                              
2

(1) (2)

1
i i i

i

P B   (34) 

(iii) The long run probability that the server under repair state is   

                          
2

(1) (1) (1) (2) (2) (2)
,1 ,1

1
i i i i i i i

i

P R   (35) 

where ( ) ( )
,1 ,1

, 1,2; 1,2.l l
i i i i

g i l  

Proof: Applying Abel’s theorem,  
1 2 1 20
, lim , ,

s
P z z s P z z s , we obtain the results given equations (33) to (35).                                    

  
 
Theorem 4: The average number of the priority customers (Lp) and non priority customers (Lq) in the system are  
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1 2

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2
1

1 1 11

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

,

2 2

                     

p

z z

d P z z B A AB E G D F D F D F E G E G
L

dz B E G

B E G AC F AC F AC F AC F B E G B E G
1 1 1

2

1 1 1
2

B E G

B E G

 

 1 2

1 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2

2 2
2

2 2 21

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

,

2 2

                      

q

z z

d P z z E G D F D F D F E G E GB A A B
L

dz B E G

B E G AC F AC F AC F AC F B E G B E G
2 2 2

2

2 2 2
2

B E G

B E G

 (36) 

where  
*(1) (1) (2) (2) *(1) (1) (2)

1 2 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 2

(2) (2) *(1) (1) *(1) (1) (2)
1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 2

( , ) 1 , , 0 , , 0 , , 0 , , 0

( , ) , , 0 , , 0 , , 0 , , 0

i i

i i

A A z z b z z z z b z z z z

B B z z z z b z z z b z z z z

*(1) (1) (2) (2) *(1) (1) (2)
1 2 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2

*(1) (1) (2) (2) *(1) (1) (2)
1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2

( , ) , , 0 , , 0 , , 0 , , 0

( , ) 1 , , 0 , , 0 , , 0 , , 0

(

i i

i i

i i

C C z z z b z z z z b z z z z

D D z z b z z z z b z z z z

E E z (2) (2)
1 2 2 1 2 2 1 1 1 2 2 2
, ) , , 0 1 1z z z G z G z

 

(2) (2)
1 2 2 2 2 2 1 1 2 2 2 2

(2) (2) *(1) (1)
1 2 2 2 2 2 2 2 2 2 2

*(1) (1) (2)
2 2 2 2 2 2 2 2

( , ) ( ), , 0 1 ( ) 1

( , ) ( ), , 0 ( ), , 0

( ), , 0 ( ), , 0

i i

i i

F F z z h z z G h z G z

G G z z h z z b h z z z

b h z z h z z

 

Proof: Differentiating A(z1, z2) to G(z1, z2) with respect to z1 for priority customers and z2 for nonpriority customers and 
applying L’ Hospital rule, then putting  z1 = z2 =1, we get the desired results. 

                                                                                                                                                    
 
Corollary 2: Using Little’s formula, we obtain the expected waiting time for the priority and non- priority customers, respectively as given below 

 
1 1,1

p

p

L
W

g
 and  

2 2,1

q

q

L
W

g
  (37) 

                                                                                                                                                     
 
4. SPECIAL CASES 

In this section, we examine whether by setting appropriate parameters, our results are consistent with known results for 
some specific cases. 
 
Case 1: If batch size X1 = 1, and X2 =0, z1 =G1(z1)=z, z2 =G2(z2)=0, (1) (2)

2 2
 0 ,

1 2
,  0 , 2(1) 2(2) = 

0, 2 = 0, Qq(z1, z2, 0, s) = 0 then our results reduce to the model studied by Wang(2004). Now the joint probability 
generating function for the number of customers in the system is expressed as 

 
*(1) (1) (2) (2) *(1) (1) (2)
1 1 1 1 1 1 1 1 0

(2) (2) *(1) (1) *(1) (1) (2)
1 1 1 1 1 1 1 1

1 , , , , 1 1
,

, , , ,

b z s z s b z s z s P s z s
P z s

z s b z s z b z s z s
  (38) 

where 
( )

( ) ( ) ( ), 1 1 , ( 1; 1,2)
l

l l l
ii i i

z s s z r s z i l  . 

 
Case 2: If batch size X1 =1, and X2=0, z1=G1(z1)=z, z2=G2(z2)=0, i(

l) 0, (i=1, 2; l=1, 2),
1 = , 2 = 0, 2(1) 2(2) = 0, 2 = 0, Qq(z1, z2, 0, s) = 0 then our model coincides to the model analyzed by Madan(2000). 

Now the joint probability generating function for the number of customers in the system is expressed as 
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(1) (2) *(1)
1 1 1 1 0

(1) (2) (2)
1 1 1 1

1 1 1 1 1

1 1 1 1

b z z z b z P
P z

b z z z z
  (39) 

Case 3: If i(
l) 0, (i=1, 2; l=1, 2), 1(2) 2(2) = 0, 1 = 2 = 0, 1(2)(z1, z2, s) = 2(2)(z1, z2, s) = 1, then our results tally with 

those obtained by  Chaudhry & Templeton (1983) for 1 2

1 2 1 2
1X XM M G G  queueing system. The joint probability 

generating function for the number of customers in the system is expressed as 
 
 

 

*
1 2

*(1) (1) *(1) (1)
1 1 1 2 2 2 1 2

1 2 1 2

1 1 1 2 2 2 1 1 1 2 2 2

, ,

1 , , 1 , ,
, , 0, , , 0,

1 1 1 1
p q

P z z s

b z z s b z z s
P z z s Q z z s

G z G z s G z G z s

 (40)  

where   
2

( )
1 2

1

, , 1 , ( 1,2; 1)l
i i i i

i

z z s s G z i l  

*
0 1 1 2 2 2 2

1 2 (1) (1)
2 2 2 2 2

1 1 ( , ) 1
, , 0,

1 1 ( , ), ,
q

P s G h z s G z s
Q z z s

z b h z s z s
, 

* (1) (1)
0 1 1 1 2 2 2 2 2 2 1 2

1 2 1 2(1) (1) (1) (1)
1 1 1 1 2 1 1 1 1 2

1 1 1 1 1 , ,
, , 0, , , 0,

1 1 , , 1 1 , ,
p q

P s G z G z s z b z z s
P z z s Q z z s

z b z z s z b z z s
 

 
                                                                                                                                                                                                                     
5. RELIABILITY ANALYSIS 

Since the breakdown and repair processes are independent of the servicing processes, then the server reliability and 
availability metrics are defined in the usual way. In this section we derive the reliability indices of the server namely, 
availability, failure frequency, mean time to failure, etc. Let A(t) be the availability of the server at time t. The steady state 
availability of the server defined as lim ( )

t
A A t .   

Theorem 5: The Laplace-Stieltjes transform of A(t) is given by 

 

1 1 2 2 2 2

*(1) (1) (2) (2) *(1) (1) (1)
1 1 1 1 1 1 1 1 1 1 2 2 2 2

(1) (2) (2) *(1) (1) *(1) (1)
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1

1 ( , ) 1

1 1,1, 1,1, 1,1, 1,1, 1 1 ( , ) 1

1,1, 1,1, 1,1, 1

s s
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A s
G h z s G z s

b s s b s s s G h z s G z s

s s b s b (2)
1

(2) (2)
2 2 1 1 2 2 2 2

(2) (2) *(1) (1) *(1) (1) (2)
2 2 2 2 2 2 2 2

*(1) (1) (2) (2)
1 1 1 1

1,1, 1,1,

(1),1, 1 1 ( , ) 1

(1),1, (1),1, 1 (1),1, (1),1,

1 1,1, 1,1,

s s

s s

h s s G h z s G z s

h s b h s b h s h s

b s s *(1) (1) (1)
1 1 1 1

(2) (2) *(1) (1) *(1) (1) (2)
1 1 1 1 1 1 1 1 2 1

*(1) (1) (2) (2) *(1) (1) (1)
2 2 2 2 2 2 2 2

(
2

1,1, 1,1,

1,1, 1,1, 1 , , 1,1,

1 1,1, 1,1, 1,1, 1,1,

b s s

s b s b z z s s

b s s b s s

2) (2) (1)
2 1

*(1) (1) (2) (2) *(1) (1) (1)
2 2 2 2 2 2 2 2

(2) (2) (2)
2 2 2

1,1, 1,1,

1 1,1, 1,1, 1,1, 1,1,

1,1, 1,1,

s s

b s s b s s

s s

  (41) 

where 
2

( )h z  is the root of the equation (24), inside the  1,  0.z Re s   

Proof:  Laplace transform of the system availability is obtained using 
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*(1) *(2) *(1) *(2)
0 1 1 2 1 1 2 1 1 2 1 1 2

( ) ( ) , , , , , , , ,A s P s P z z s P z z s Q z z s Q z z s  

Thus, we obtain the results given in equation (41). 
                                                                                                            
 
Corollary 3: The steady state availability of the system is given by  

 
2

(1) (1) (1) (2) (2) (2)
,1 1 ,1

1

1
i i i i i i

i

A   (42) 

Proof:  The steady state availability is obtained using  

 
1 2

*(1) *(1) *(2) *(2)
0 1 1 2 1 1 2 1 1 2 1 1 2, 1 0

0 0

lim lim ( ) , , , , , , , , , ,
z z s

A s P s P z z x s d x Q z z x s d x P z z s Q z z s   

 
Theorem 6: The steady state failure frequency of the system is given by   

                                  
2

(1) (1) (2) (2)

1
f i i i i i

i

F                                                                  (43) 

Proof: The steady state failure frequency of the system is obtained by using  

1 2

(1) (1) (1) (1) (2) (2) (2) (2)
1 , ,1 2 , ,1 1 , ,1 2 , ,1

1 0 0 1 1 0 0 10 0

(1) (1) (1) (1)
1 1 1 2 2 1 1 2, 1

0 0

, ,

l  im , , , , , ,
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z z

F P x s dx Q x s dx P s Q s

P z z x s dx Q z z x s dx (2) (2) (2) (2)
1 1 1 2 2 1 1 2

, , , ,P z z s Q z z s

 

                                                                                                                                                    
Let  be the time to the first failure of the server, then the reliability function of the server is ( )R t P t  .                                          

 

Theorem 7: The Laplace transform of reliability function R(t) is given by  

 

1 1 2 2 2

*(1) (1) (2) (2) *(1) (1) (1)
1 1 1 1 1 1 1 1

(1) (2) (2) *(1) (1) *(1) (1) (2)
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1
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1
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s G s G z s
  (44)  

where ( )s  is the root of the equation 
(2)

2 1 1 2 2 2 2 1(1) (1)
2 2 1 1 2 2 2 2 1 (2)

1 1 2 2 2 2 2

1 ( ) 1
1 ( ) 1 1

1 ( ) 1
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inside the |z2|, Re(s) > 0. 
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Proof: Using  

1 2

*(1) *(1) *(2) *(2)
0 1 1 2 1 1 2 1 1 2 1 1 2, 1

0 0

( ) ( ) lim , , , , , , , , , , ,
z z

R s P s P z z x s d x Q z z x s d x P z z s Q z z s  

we obtain the result given in equation (44).                                                                                                            
 
Corollary 4: The mean time to the first failure (MTTFF) of the server is given by 

*(1) (1) (2) (2) (1) *(1) (1)
1 1 1 1 1 1 1 1(1) (2) (1) (2)

1 1 1 2 2 2 (1) (2) (2) *(1) (1) (2) *(1) (1)
1 1 1 1 1 1 1 1 1
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1
(0)

1

1

b b
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 (45)  

 
Proof: The MTTFF is obtained by  

                             
0

0

( ) ( ) |
s

MTTFF R t dt R s  and  
0 00

lim ( )
s

s P s P                                     

 
6. SENSITIVITY ANALYSIS 

In this section, to demonstrate the computational tractability of analytical results we provide some numerical results 
which are displayed in tables 1-8 and graphs 1-6. By taking numerical example, we illustrate the influence of system 
parameters on the probabilities for different states namely idle state P0, busy state P(B) and repair state P(R), the expected 
waiting time for priority customers (Wp) and nonpriority customers (Wq), failure frequency (Ff), average queue length of 
priority customers (Lp) and nonpriority customers (Lq), availability (A) of the system. We set the default parameters as 

1=0.2, 2=0.05, =10, =5,  1(1)=5, 1(2)=3, 2(1)=2, 2(2)=1.5,  1(1)=0.5, 
1(2)=0.3, 2(1)=0.2, 2(2)=0.1. 

The batch size is taken to follow the geometric distribution with parameter p=1/5, so that the mean batch size and the 
second moment of the batch size for ith type of customers are given as gi,1=q/p, gi,2 = q(2q+p)/p2, where q=1-p. The 
service time and repair time distributions follow Erlangian distributions with mean (1) (1)

,1
1

i i  and ( ) ( )
,1

1l l
i i , 

respectively. Second moment corresponding to service time and repair time are given as 
2

(1) (1)
,2

( 1)
i i

k k , 
2

( ) ( )
,2

1l l
i i

k k , where k=5,  i = 1, 2, l = 1, 2. 

Tables 1-2 demonstrate the effect of arrival rates and on the probabilities of the server being idle P0, busy P(B) 
and under repair P(R), for different sets of  for priority customers and different sets of for non priority customers. We 
observe that as and increase, P0 decreases but P(B) and P(R) increase; also on increasing and  P0 decreases but 
P(B) and P(R) show the increasing trends. In tables 3-4, we have shown the effect of batch size g1 for priority customers and 
g2 for nonpriority customers on P0, P(B) and  P(R) by varying arrival rates and  With respect to and similar 
pattern has been found as obtained in tables 1-2. As we increase g1 and g2, P0 decreases while P(B) and  P(R) increase. 

Tables 5-6 demonstrate the effect of service rates and on the waiting time of priority customers (Wp), non 
priority customers (Wq) and failure frequency (Ff) for different sets of ( ). When we increase the essential service rate 
( ) and second optional service rate ( ) for the priority customers then the waiting time of priority customers (Wp) and 
failure frequency (Ff) decrease while waiting time of nonpriority customers (Wq) increases. The similar pattern has been 
noticed in tables 7-8 with regard to service rates and on the waiting time of priority customers (Wp), non priority 
(Wq) customers and failure frequency (Ff) for different sets of ( ).  

Figures 1(a) and 1(b) depict the results for the expected number of the priority (Lp) and nonpriority (Lq) customers for 
different sets of g1 and g2 by varying arrival rates and respectively. In these figures we see that as we increase arrival 
rates and , the expected number of the priority (Lp) and non priority (Lq) customers increase. Also as we increase g1 
and g2, initially Lp and Lq increase gradually and then after increase sharply.  

Figures 2(a) and 2(b) exhibit the expected number of priority (Lp) and nonpriority (Lq) customers for different values 
of and  by varying arrival rates and respectively. On increasing the value of and initially Lp and Lq 
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increase gradually and then after increase sharply. Same pattern has been observed with respect to and as in figs. 1(a) 
and 1(b).   

The effects of failure rates  and repair rates  on Lp and Lq by varying the 
traffic intensity 1(1) and 1(2) have been shown in figures 3(a-b) and 4(a-b), respectively. In these figures, we observe that Lp 
and Lq increase with the increase in traffic intensity 1(1) and 1(2). A sharp increasing (decreasing) trend in Lp and Lq can be 
easily seen by increasing (decreasing) failure rate (repair rate) during the essential service time compared to second optional 
service time. 

The results for availability (A) are plotted against the failure rate  and repair rate 
  separately for different sets of ( ) in figures 5(a-d) and 6(a-d). Figures 5(a)-5(d) show a linearly 

sharp decreasing trend in A with the increase in arrival rate of nonpriority customers ( ) compared to arrival rate of priority 
customers . Figures 6(a)–6(d) show an increasing trend in A on increasing and .  
Finally, we conclude that 

On increasing traffic intensity, the average queue length of priority and nonpriority customers increases. The 
increasing (decreasing) trends of Lp and Lq with failure (repair) rate match with physical situations.  
The waiting time of the priority (nonpriority) customers decreases (increases) with the increase in essential and 
second optional service rates of priority customers but increases (decreases) with the essential and second optional 
service rates of nonpriority customers.  
The failure frequency decreases with the increase in the service rate. As expected, the availability decreases 
(increases) with the increase in failure (repair) rate of the server. 
 
 

7. CONCLUSION 

In this paper we have provided the queue size distribution and other performance indices by employing the generating 
functions and the supplementary variables for the priority queueing model. We have established some reliability indices such 
as the availability of the server, failure frequency, etc. In the model developed, we have incorporated many novel features 
namely bulk input, non-preemptive priority, unreliable server, optional service etc simultaneously which make our results 
applicable to more versatile congestion situations encountered in computer and communication systems, distribution and 
service sectors, production and manufacturing systems, and many more real world queueing problems. In order to justify 
computational tractability, we have performed extensive numerical experiments. In future, the work done in the present 
investigation can be extended by incorporating the multiple server, batch service, etc..  
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  P0   P(B)   P(R)  

0.5 0.771 0.776 0.732 0.208 0.204 0.244 0.021 0.020 0.024 
0.7 0.695 0.699 0.638 0.277 0.273 0.329 0.027 0.027 0.033 
0.9 0.619 0.623 0.544 0.347 0.343 0.415 0.034 0.034 0.041 
1.1 0.543 0.547 0.450 0.416 0.412 0.500 0.041 0.041 0.050 
1.3 0.466 0.471 0.356 0.485 0.481 0.585 0.048 0.048 0.058 
1.5 0.390 0.394 0.262 0.555 0.551 0.671 0.055 0.055 0.067 

Table 1: Effect of on long run probabilities of server’s state by varying  
 
 

  P0   P(B)   P(R)  

0.05 0.715 0.725 0.681 0.260 0.250 0.290 0.025 0.025 0.029 
0.07 0.677 0.692 0.648 0.295 0.281 0.321 0.029 0.028 0.032 
0.09 0.639 0.658 0.614 0.329 0.311 0.351 0.032 0.031 0.035 
0.11 0.601 0.625 0.581 0.364 0.342 0.382 0.035 0.033 0.037 
0.13 0.563 0.591 0.547 0.399 0.373 0.413 0.038 0.036 0.040 
0.15 0.525 0.557 0.513 0.433 0.403 0.443 0.041 0.039 0.043 

Table 2: Effect of  on long run probabilities of server’s state by varying  
 

  P0   P(B)   P(R)  
g1 = 3 g1 = 6 g1 = 6 g1 = 3 g1 = 6 g1 = 6 g1 = 3 g1 = 6 g1 = 6 
g2 = 6 g2 = 3 g2 = 6 g2 = 6 g2 = 3 g2 = 6 g2 = 6 g2 = 3 g2 = 6 

0.5 0.807 0.689 0.664 0.176 0.283 0.306 0.017 0.028 0.030 
0.7 0.749 0.574 0.549 0.228 0.387 0.410 0.023 0.039 0.041 
0.9 0.692 0.460 0.435 0.280 0.491 0.514 0.028 0.049 0.051 
1.1 0.635 0.346 0.320 0.332 0.595 0.618 0.033 0.059 0.062 
1.3 0.578 0.231 0.206 0.384 0.699 0.722 0.038 0.070 0.072 
1.5 0.521 0.117 0.092 0.436 0.803 0.826 0.043 0.080 0.082 

Table 3: Effect of (g1, g2) on long run probabilities of server’s state by varying  
 
 

  P0   P(B)   P(R)  
g1 = 3 g1 = 6 g1 = 6 g1 = 3 g1 = 6 g1 = 6 g1 = 3 g1 = 6 g1 = 6 
g2 = 6 g2 = 3 g2 = 6 g2 = 6 g2 = 3 g2 = 6 g2 = 6 g2 = 3 g2 = 6 

0.05 0.731 0.651 0.588 0.245 0.318 0.375 0.024 0.032 0.037 
0.07 0.681 0.626 0.538 0.291 0.341 0.421 0.028 0.034 0.041 
0.09 0.630 0.601 0.487 0.337 0.364 0.467 0.033 0.036 0.046 
0.11 0.580 0.575 0.437 0.383 0.387 0.513 0.037 0.038 0.050 
0.13 0.529 0.550 0.386 0.429 0.410 0.559 0.042 0.040 0.055 
0.15 0.479 0.525 0.336 0.475 0.433 0.605 0.046 0.043 0.059 

Table 4: Effect of (g1, g2) on long run probabilities of server’s state by varying 
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  Wp   Wq   Ff

3 2.335 2.367 2.799 0.403 0.283 0.135 0.079 0.079 0.083 
3.5 1.955 1.987 2.397 0.522 0.399 0.271 0.070 0.070 0.074 
4 1.683 1.714 2.110 0.601 0.475 0.360 0.063 0.062 0.066 

4.5 1.478 1.510 1.893 0.655 0.527 0.422 0.057 0.057 0.061 
5 1.319 1.350 1.725 0.696 0.566 0.468 0.053 0.052 0.056 

5.5 1.192 1.223 1.591 0.727 0.596 0.504 0.049 0.049 0.053 
Table 5: Effect of on waiting time of priority customers (Wp), nonpriority customers (Wq)  

and failure frequency (Ff) by varying  
 

  Wp   Wq   Ff

3 0.328 0.359 0.570 0.903 0.763 0.727 0.025 0.024 0.027 
3.5 0.298 0.329 0.508 0.908 0.768 0.738 0.024 0.024 0.026 
4 0.275 0.306 0.462 0.912 0.772 0.747 0.024 0.024 0.026 

4.5 0.258 0.289 0.426 0.915 0.775 0.753 0.024 0.024 0.025 
5 0.244 0.275 0.398 0.918 0.777 0.758 0.024 0.023 0.025 

5.5 0.233 0.264 0.375 0.920 0.779 0.762 0.024 0.023 0.025 
Table 6: Effect of on waiting time of priority customers (Wp), nonpriority customers(Wq)  

and failure frequency (Ff) by varying  
 

  Wp   Wq   Ff

3 0.437 0.468 0.795 0.881 0.743 0.681 0.026 0.026 0.030 
3.5 0.466 0.497 0.825 0.744 0.607 0.548 0.025 0.025 0.029 
4 0.488 0.519 0.847 0.642 0.505 0.449 0.024 0.024 0.028 

4.5 0.505 0.535 0.863 0.563 0.427 0.373 0.023 0.023 0.027 
5 0.519 0.549 0.877 0.500 0.365 0.312 0.023 0.023 0.027 

5.5 0.530 0.560 0.888 0.449 0.315 0.263 0.022 0.022 0.026 
Table 7: Effect of on waiting time of priority customers (Wp), nonpriority customers (Wq)  

and failure frequency (Ff) by varying  
 

  Wp   Wq   Ff

3 0.528 0.542 0.866 0.584 0.523 0.484 0.026 0.026 0.030 
3.5 0.552 0.563 0.886 0.499 0.455 0.422 0.026 0.026 0.030 
4 0.569 0.577 0.900 0.437 0.403 0.374 0.026 0.026 0.030 

4.5 0.582 0.588 0.910 0.388 0.361 0.336 0.026 0.026 0.030 
5 0.592 0.597 0.919 0.349 0.327 0.305 0.026 0.025 0.029 

5.5 0.600 0.604 0.925 0.317 0.299 0.279 0.026 0.025 0.029 
Table 8: Effect of on waiting time of priority customers (Wp), nonpriority customers 

(Wq) and failure frequency (Ff) by varying  
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                              (a)                                                                              (b) 

Figure 1: Effect of different batch size on (a) Lp vs  and (b) Lq vs . 
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Figure 2: Effect of on (a) Lp vs  and (b) Lq vs  
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                                        (a)                                                                       (b) 

Figure 3: Expected number of priority customers by varying 1(1) for different values of  
(a) failure rate ( 1(1), 1(2)) and (b) repair rate ( 1(1), 1(2)) 

 

                  
                                            (a)                                                                     (b) 

Figure 4: Expected number of priority customers by varying 2(1) for different values of  
(a) failure rate ( 1(1), 1(2)) and (b) repair rate ( 1(1), 1(2)) 
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Figure 5: Effect of 
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Figure 6: Effect of 
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( , )  on availability by varying repair rate (a) 1
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