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Abstract  In this paper, the server breakdown with interrupted vacation in a ( )/ , /1MX G a b  queuing system is 

considered.   After completing a batch of  service, if  the server is breakdown with probability π , then the renovation of  

service station will be considered.  After completing the renovation of  service station or there is no breakdown of  the 

server with probability (1 )π− ,  if  the server finds at least ‘ a ’ customers waiting for service say ξ , then the server serves a 

batch of  min ( , )bξ  customers, where b a≥  . On the other hand, if  the queue length is less than ‘ a ’, the server leaves for 

a secondary job (vacation) of  random length.  During the secondary job period, the secondary job is interrupted abruptly 
and the server resumes for primary service, if  the queue size reaches ‘ a ’.  On completion of  the secondary job, the server 

remains in the system (dormant period) until the queue length reaches ‘ a ’.  For the proposed model, the probability 

generating function of  the steady state queue size distribution at an arbitrary time is obtained.  Various performance 

measures are obtained. Numerical illustration is also given to justify the proposed model.  The cost model is also developed.  
Keywords  Bulk arrival, single server, batch service, vacation, breakdown.  
2010 Mathematics Subject Classification: 60K25, 90B22, 68M20 

  
 

1. INTRODUCTION 

The roles of quality and service performance are the crucial aspects in customer perceptions, and firms must dedicate 

special attention to them when designing and implementing their operations. For this reason, the vacation interruption 

queue has received considerable attention in the recent literature. In the server vacation model, the server wishes to perform 

some useful internal processes during his idle time.  
The roles of quality and service performance are the crucial aspects in customer perceptions, and firms must dedicate 

special attention to them when designing and implementing their operations.  For this reason, the vacation interruption 

queue has received considerable attention in the recent literature.  In the server vacation model, the server wishes to 

perform some useful internal processes during his idle time.  
The motivation of this paper comes from a real life situation that exists in an industry involving the process of dyeing.  

The soft flow dyeing machine is used for dyeing the cloth using chemicals with 1080 kg capacity in dyeing industries.  In this 

machine, the cloth undergoes wetting process first, then dyeing, finally washing using suitable chemicals.  The dyeing 

machine is operated to the maximum capacity of 1080 kg which is its upper limit (b) and a minimum capacity of 800 kg 

which is its lower limit (a).  If the supply of cloth is less than 800 kg, dyeing process is not possible.  During the dyeing 

process (service), sometimes the transfer pump mechanical seal becomes worn out resulting is breakdown.  Due to this, a part 

of water containing the chemicals leaks.  It is not possible to renovate the mechanical seal within a limited time, and if the 

operation is stopped, heavy loss occurs. To avoid such a heavy loss, it should be operated continuously till a batch of cloth 

(bulk service) is processed fully.  This could be achieved only by sending in additional amount of water containing chemicals 

into the machine.  Thus, this additional water compensates the loss of water by leakage.  Here, the only loss is some amount 

of water and chemicals.  On completion of the dyeing process, the machine is stopped and the mechanical seal is replaced 

( renovation) for the next session.  
Apart from dyeing, wetting and washing are the other works which can be considered as secondary jobs (vacation).  

Upon completion of the dyeing process, if the supply of cloth is less than 800kg it stops the process and performs some 

other work (secondary job/vacation) like wetting process, washing using suitable chemicals, etc.  During this secondary job, 

if the required number of cloth reaches the threshold value 800 kg, then the operator returns from his secondary job 
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(vacation interruption) and starts the dyeing process. On the other hand, after completing his secondary job, if the required 

number of cloths is less than the threshold value 800 kg, then the operator waits in the system till the required number of 

cloth arrives.  This dyeing machine can be modelled as bulk arrival batch service queueing model with breakdown and vacation interruption.  
There is an extensive literature on the / /1M G  queue which has been studied in various forms by numerous 

researchers. Borthakur and Medhi (1974) have studied a queueing system with arrival and services in batches of variable size.  

They have derived the queue length distribution for the bulk arrival batch service queueing system without vacation 

concepts. General single server vacation models have been well studied and surveyed by Doshi (1986) Tian and Zhang 

(2006).  Detailed analysis of some bulk queueing models can be seen in the studies of Chaudhry and Templeton (1983) and 

Medhi (1984). Krishna Reddy et al (1998) have discussed a ( )/  ,  /1X
M G a b model with N -policy, multiple vacations, and 

setup times.  Jau-Chuan Ke and Kuo-Hsiung Wang (2006) studied a general input queue with N Policy and service rate 

depending on bulk size.  They used an embedded Markov chain to analyze a / /1G M  queuing system with N -policy.  A 

Multi-server markovian queueing system with discouraged arrivals and retention of reneged customers was studied by 

Rakesh Kumar and Sumeet Sharma (2012).  
Arumuganathan and Jeyakumar (2005) analyzed a bulk queue with multiple vacations, setup times with N -policy and 

closedown times.  Haridass and Arumuganathan (2011) discussed a batch arrival general bulk service queueing system with 

variant threshold policy for secondary jobs.  Jau-Chuan Ke et al. (2010) presented a short survey on recent developments in 

vacation queueing models.  In all the aforesaid models with vacations, the server cannot come back (vacation interruption) to the normal 

working level (regular busy period), until the vacation period ends.   
For vacation interruption models, Ji-Hong Li and Nai-Shuo Tian (2007) analyzed the / /1M M  queue with working 

vacations and vacation interruptions.  Zhang and Shi (2009) provided a study on the / /1M M  queue with Bernoulli-

Schedule-Controlled vacation and vacation interruption.  Mian Zhang and Zhenting Hou (2010) discussed performance 

analysis of / /1M G  queue with working vacations and vacation interruption.  Haridass and Arumuganathan (2012) 

analyzed a bulk arrival batch service queueing system with vacation interruption.  Haridass and Arumuganathan (2012) 

analyzed optimum cost of a Bulk Queueing system with Multiple Vacations and Restricted Admissibility of Arriving Batches.   

Suganya (2014) studied a single server bulk service queuing system with interrupted vacation, request for re-service and 

balking.  In all the aforesaid interrupted vacation models, the authors considered models without breakdown.  
Only few authors have analyzed about queue with server breakdowns. The reliability analysis of / /1M G  queueing 

system with server breakdowns and vacations were studied by Li et al (1997), Jain and Agrawal (2009) have analysed the 

optimal policy for bulk queue with multiple types of server breakdown.  Jeyakumar and Senthilnathan  (2012) have studied 

on the behaviour of the server breakdown without interruption in a ( )/  , /1X
M G a b queueing system with multiple 

vacations and close down time.  Madan et al (2003) studied steady state analysis of two ( )/  ,  /1X
M M a b  queue models 

with random breakdowns.  Zhe George et al. (2011) focused on analysis of queues with an imperfectly repairable server.  

They considered a queueing system where the server is subjected to failures and can be repaired within a random period of 

time.  Gautam Choudhury and Mitali Deka (2013) analyzed a batch arrival unreliable queue with two phases of service and 

vacation under Bernoulli vacation schedule, which consists of a breakdown period and a delay period.  Madhu Jain and 

Anamika Jain (2014) investigated a batch arrival priority queueing model with second optional service and server breakdown.  

Jain and Charu Bhargava (2008) presented a bulk arrival retrial queue with unreliable server and priority subscribers.  In all 

the aforesaid models with breakdown, the server cannot come back (vacation interruption) to the normal working level (regular busy period), until 

the vacation period ends. This stimulates the authors to develop a single server bulk arrival bulk service queueing system with breakdown and 

vacation interruption.   

Queueing systems with bulk arrival and bulk service are common as well as essential in many practical situations for an 

effective and efficient utilization of resources.  In the server vacation model, the server wishes to perform some useful 

internal processes during his idle time.  The identification of the breakdown status of the service station, repair of the 

service station (fault status) and proper maintenance of other resources are called as renovation works of the server.  Server 

is not interrupted for renovation before completing a batch of service, even if breakdown occurs.  After finishing a service, 

the system either requires repair with probability ( )π  or does not require repair with probability (1 )π− .  At the end of the 

repair time or at the end of a service time when no repair is required, if the server finds the queue length is less than ‘a’, 

server leaves for a vacation of random length.   

In the literature, all vacation models with the bulk service considered that the server can start the service only when he completes the secondary 

job. But in emergency, the server has to terminate the secondary job and must give priority for primary job. Once the required level is reached to 

start the primary service, there is no point in continuing the secondary job.  This model is proposed to overcome this difficulty and to make the 

system operate more efficiently.  
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2. MODEL DESCRIPTIONS 

In this section, the mathematical model for the server breakdown with interrupted vacation in a ( )/  ,  /1X
M G a b

queueing system is considered.  After completing a batch of service, if the server is breakdown with probability π, then the 

renovation of service station will be considered.  After completing the renovation of service station or there is no 

breakdown of the server with probability ( )1 π− ,  if the server finds at least ‘a’ customers waiting for service say ξ , then 

the server serves a batch of min ( ),  bξ customers, where b a≥ . On the other hand, if the queue length is less than ‘a’, the 

server leaves for a secondary job (vacation) of random length.  It is assumed that the secondary job is interrupted abruptly 

and the server resumes for primary service, if the queue size reaches ‘a’ during the secondary job period.  On completion of 

the secondary job, the server remains in the system (dormant period) until the queue length reaches ‘a’.  For the proposed 

model, the probability generating function of the steady state queue size distribution at an arbitrary time is obtained.  

Various performance measures are derived. The above system is modelled using the supplementary variable technique, by 

considering remaining service time of the batch in service, remaining vacation time of the server and remaining renovation 

time of the server as supplementary variables at an arbitrary time.  

 

Figure 1:  Schematic representation; Q  - Queue length, a - minimum capacity, π - breakdown probability  

 

2.1 Notations 

Let X be the group size random variable of the arrival, λ  be the Poisson arrival rate.  
k

g be the probability that ‘ k ’ 

customers arrive in a batch and ( )X z be its probability generating function (PGF).  Let { } 0( )( ( )) ( ) ( )S x s x S S xθ   
ɶ  be the 

cumulative distribution function (probability density function) { Laplace-Stieltjes transform} [ remaining service time] of 

service.  Let { } 0
( )( ( )) ( ) ( )V x v x V V xθ   

ɶ  be the cumulative distribution function (probability density function) { Laplace-

Stieltjes transform}[ remaining vacation time] of vacation.   Let { } 0( )( ( )) ( )( )R x r x R xR θ   
ɶ  be the cumulative distribution 

function (probability density function) { Laplace-Stieltjes transform}[ remaining renovation time] of renovation. ( )qN t

denotes the number of customers waiting for service at time t , ( )sN t denotes the number of customers under the service 

at time t .  
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The state probabilities are defined as follows:  

 { }0
( , ) Pr ( ) , ( ) , ( ) , ( ) 0 ,  ,  0ij s qP x t dt N t i N t j x S t x dt C t a i b j= = = ≤ ≤ + = ≤ ≤ ≥  

 { }0
( , ) Pr ( ) , ( ) , ( ) 1 ,  0 1n qQ x t dt N t n x V t x dt C t n a= = ≤ ≤ + = ≤ ≤ −  

 { }( ) Pr ( ) ,  ( ) 2 ,  0 1n qT t N t n C t n a= = = ≤ ≤ −  

 { }0
( , ) Pr ( ) , ( ) , ( ) 3 ,  0n qR x t dt N t n x R t x dt C t n= = ≤ ≤ + = ≥  

 

3.  STEADY- STATE ANALYSIS 

In this section, the probability generating function (PGF) of the queue size at an arbitrary time epoch is derived. The 

PGF will be useful to derive the important performance measures.  

 

3.1 Steady State Queue Size Distribution 

From the above set of equations, the steady state queue size equations for the queueing model are obtained as follows:  
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The Laplace –Stieltjes transforms of  ( )inP x , ( )jnQ x  and ( )nR x are defined as 

�
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Taking Laplace-Stieltjes transform on both sides of the equation (3) through (9), we have 
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4. PROBABILITY GENERATING FUNCTION 

To obtain the probability generating function (PGF) of the queue size at an arbitrary time, the following probability 

generating functions are defined  
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Theorem 1. The probability generating function P(z) of the number of customers in the queue at an arbitrary time epoch of the proposed model 

is given by  
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Proof: 

Using PGF and taking Z-transforms on equations (12) – (18), we get the following equations:  
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a b i
i i j

i i j

i j

z X z P z P z z S S R

P z P z

T z X z T z g z

S

X z Q z Q z g z

θ λ λ θ π θ π θ θ

π

λ

θ

λ θ θ

= ==

− − −

= =

− − −

= =

− + = − − −

 
− − 

 

  
+ −   

  −


+ − 


∑ ∑∑

∑ ∑

∑ ∑

ɶ ɶɶ

ɶ

ɶ ɶ
1

0

1

0

( ,0) (0) 

a

i

b
n

n

n

R z R z

−

=

−

=

 
 
 
 
 
 
 
  
     
 
 + − 
 

∑

∑

 (23)  

 � �( ( )) ( , ) ( ,0) ( ,0) ( )
b

m

m a

X z R z R z P z Rθ λ λ θ π θ
=

− + = − ∑  (24)  
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Substituting ( )zθ λ λξ= −  in equation (21), we get 

 
1

0

( ,0) ( ( )) (1 ) (0) (0)
a b

n n

mn n

n m a

Q z V z P z R zλ λξ π
−

= =

 
= − − + 

 
∑ ∑ɶ  (25) 

Substituting ( )–  X zθ λ λ=  in equations (22) – (24), we get 

 
-1 -1

- -

0 0

( ,0) ( ( )) ( ( )) , 1
a a

i i k i k m i m

k m

P z S X z d Q X z g T g a i bλ λ λ λ λ λ
= =

 
= − + − + ≤ ≤ − 

 
∑ ∑ɶ ɶ  (26) 

 
�( )

( )1
( ,0) ( ( )) ( )

(1 ) ( ( )) ( ( )) ( ( ))
b b

P z S X z f z
z S X z S X z R X z

λ λ
π λ λ π λ λ λ λ−

= −
− − − − −

ɶ

ɶ ɶ
 (27) 

where   

( )
1 1 1 1

0 0 1

1 1 1

0 0 1

( ) (1 ) ( ,0) ( ,0) (1 ) ( ) ( )

( ) ( ( )) ( ( ))

b b a b m
m j

m i i m j

m a i m j

a a b i
i i j

i i j

i i j

f z P z R z p R T z X z T z g z

X z Q X z z Q X z z g z

π π λ

λ λ λ λ λ

− − − − −

= = = =

− − − −

= = =

  
= − + − − + + −   

  

  
+ − − −   

  

∑ ∑ ∑ ∑

∑ ∑ ∑ɶ ɶ

 

 �( ,0) ( ,0) ( ( ))
b

m

m a

R z P z R X zπ λ λ
=

= −∑  (28) 

From equations (21) and (25), we have 

 ( )
1

0

1
( , ) ( ( )) ( ) (1 ) (0) (0)

( ( ))

a b
n n

mn n

n m a

Q z V z V P z R z
z

θ λ λξ θ π
θ λ λξ

−

= =

 
= − − − + 

− +  
∑ ∑ɶ ɶ ɶ  (29)  

From equations (22) and (26), we have 

 

1

-

0

1 1

- -

0 0

( ( )) ( )

( ( )) ( ( )) ( ) ( )

( , ) , 1
( ( ))

a

i m i m

m

a a

k i k k i k

k k

i

S X z S d T g

S X z Q X z g S Q g

P z a i b
X z

λ λ θ λ

λ λ λ λ λ θ θ λ

θ
θ λ λ

−

=

− −

= =

  
 − − +   

  
 

+ − − − 
 = ≤ ≤ −

− +

∑

∑ ∑

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ  (30)  

From equations (23) and (27), we have 

 

( )

( )

( )

1 1

0 1

1 1

0 1

( - ( )) ( ) ( )

( ( )) ( ( )) ( ) ( ) ( )

( - ( )) ( ) ( ) ( - ( )) ( )

( , )

a b i
i j

i i j

i j

a b i
i b j

i i j

i j

b

S X z S g z

z Q X z S X z Q S X z g z

z Q X z Q S S X z X z g z

P z

λ λ θ

λ λ λ λ λ θ θ

λ λ λ θ θ λ λ

θ

− − −

= =

− − −
−

= =

 


−


  
+ − − − −    

  
   − − −      =

∑ ∑

∑ ∑

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ

( )( - ( )) ( - ( ))bX z z S X zθ λ λ λ λ












+ − ɶ
 (31)  

where 

( )
-1 1 1 1

0 0 1

( ) (1 ) ( ,0) ( ,0) (1 ) ( ) ( )
b b a b m

m j

m n n m j

m a n m j

g z P z R z p R T z X z T z g zπ π λ
− − − −

= = = =

  
= − + − − + + −   

  
∑ ∑ ∑ ∑  

From equations (24) and (28), we have 
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 �

� �( )( ( )) ( ) ( ,0)

( , )
( ( ))

b

m

m a

R X z R P z

R z
X z

λ λ θ π

θ
θ λ λ

=

− −

=
− +

∑
 (32)  

Let (0), (0) , (0)
b

mi i i i i

m a

p P q Q R R
i

=

= = =∑  

Let  P(z) be the probability generating function of the queue size at an arbitrary time epoch.  

Then  �

1

( ) ( ,0) ( ,0) ( ,0) ( ,0) ( )

b

i b

i a

P z P z P z Q z R z T z

−

=

= + + + +∑ ɶɶ ɶ  

Using equations (29) - (32), we get  

( )

� ( ) ( ) �

( ) ( )

�( )

-1 -1

0

1 1

0 0

-1

0

( , , 1, 2, 3, ) ( ( )) 1 ( - ( )) 1 4 ( , , ( ), )

( ) , , , ,

( ( )) 1 ( ( )) 4 ( ( )) ( )

( )

b b
n

n

i a n

a a
i i b

i i

b
n i j

n i j

n

g S R E E E z S X z d z S X z E h S R X z z

z z f S Q z z S Q z

R X z S X z E d z Q X z z X z g z

P z

λ λ λ λ λ

λ λξ λ λ ψ

π λ λ λ λ λ λ λ λ

= =

− −
−

= =

=

− − − + − +

− + + −

+ − − − − + − −

=

∑ ∑

∑ ∑

∑

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

( ) �( )

( ) �( )

1 - -1

0 1

-1

0

( ( )) 1 (1 ) ( ( )) ( ( )) ( ( ))

( ) ( ( )) (1 ) ( ( )) ( ( )) ( ( ))

a b i

i j

a
n b

n

n

b

V z d z z S X z S X z R X z

z X z z S X z S X z R X z

λ λξ π λ λ π λ λ λ λ

λ λξ λ λ π λ λ π λ λ λ λ

−

= =

=

 
 
 
 
 
 
 
                 

 
+ − − − − − − − − 
 

− + − + − − − − − −

∑ ∑

∑ ɶ ɶɶ

ɶ ɶ
 

 

4.1.1  Steady State Condition 

The probability generating function ( )P z  has to satisfy (1) 1P = .  In order to satisfy this condition, applying 

Hospital’s rule and evaluating
1

lim ( )
z

P Z
→

  and equating the expression to 1 , it is derived that, 1Q <  is the condition to be 

satisfied for the existence of steady state for the model under consideration, where
( )( ) ( ) ( )E X E S E R

b

λ π
ρ

+
=  .   

 

4.1.2 Computational aspects of Unknown Probabilities 

Equation (20) gives the probability generating function of the number of customers in the queue, which involves the 

unknowns
i

T  and 
iQɶ . Using the following theorems, 

i
T  and ( )iQ θɶ are expressed in terms of 

i
d  and the known function

( )V λɶ respectively. To find the unknown constants, Rouche’s theorem of complex variables can be used. It follows that the 

expression �(1 ) ( ( )) ( ( )) ( ( ))b
z S X z S X z R X zπ λ λ π λ λ λ λ− − − − − −ɶ ɶ  has 1b − zeros inside and one on the unit circle

1z = .  Since ( )P z  is analytic within and on the unit circle, the numerator of (20) must vanish at these points, which gives 

‘b’ equations and ‘b’ unknowns. These equations can be solved by suitable numerical techniques. MATLAB is used for 

programming.  

 

4.2  

Theorem 2.  The unknown constants
n

q  involved in
n

T  are expressed in terms of 
n

d  as, 1

0

;  0,1,2, , 1,
n

n n i

i

q p n aβ−
=

= = −∑ ⋯ where

i
β  is the probability that ‘ i ’ customers arrive during the vacation.  
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Proof: 

 From equation (25), we have  

( )( )
1

0

( ,0) ( ( )) 1
a

n

n n

n

Q z V z p R zλ λξ π
−

=

= − − +∑ɶ  

 

11 1

0 00 0

n aa a
nn n

n n i i n i i
i in n n a

q z d z p zβ β
−− − ∞

− −
= == = =

   
= +       

∑ ∑∑ ∑ ∑   (33) 

Equating the coefficient of ;  0,1, 2,3, , 1,n
z n a= −⋯ on both sides of the equation (33), we get 

 
0

n

n n i i

i

q p β−
=

=∑ .  (34)  

Hence the theorem.  

The unknown constants 
n

T  involved in ( )P z are expressed in terms of
n

d in the following theorem.  

 

4.3  

Theorem 3. Let j
B  be the collection of set of positive integers (not necessarily distinct) A , such that, sum of elements in A  is j , then  

 

( )

0 1

,
1

 0,1,2, , 1
jn Bn

n n j l
j l Aj

T q g n a
λ −

= ∈=

 
= = − 

 
 
∑ ∏∑ ⋯ ,  (35) 

Proof: 

From the equations (1) and (2), we have  
0 0 0

(0)T Q qλ = =  

1

(0) ; 1 1
n

n n n k k

k

TT Q g n aλ λ −
=

= + ≤ ≤ −∑  

When 1n = ,
1 1 0 1

gT q qλ +==  

When 2n = , 2

2 2 1 1 0 1 2
( )q g g gT q qλ = ++ +  

When 3n = , 2 3

3 3 2 1 1 1 2 0 1 1 2 3
( ) ( 2 )q g g g g g g gT q q qλ + + += + + +  

( )3

3 3
0 1

1 jn B

j l
j l Aj

T q g
λ −

= ∈=

 
=  

 
 
∑ ∏∑  

where { }1 {1}B = ,  { }2 {1,1},{2}B =   and { }3 {3}, {1,1,1}, {1,2}, {2,1}B =  

By induction, we get  ( )( )11

0 00 1

1
( )

jn Ba na
nn

n n j l
n j l An j

T z T z q g z
λ

−−

−
= = ∈= =

 
 = =
 
 

∑ ∑ ∏∑ ∑  

Therefore, 

 

( )

0 1

1 jn Bn

n n j l
j l Aj

T q g
λ

−
= ∈=

 
=   

 
∑ ∏∑ . 

Hence the theorem. 
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An important theorem, which breaks the barrier in solving vacation interruption model, is proved. The following 

theorem gives a compact way of representing the unknown functions ( )iQ θɶ in terms of known values. 

 

4.4  

Theorem 4. The Laplace-Stieltjes transform of the unknown function ( );  0,1, 2,3, , 1iQ i aθ = −ɶ ⋯  are expressed in terms of ( )V λɶ and 

higher derivatives ( ) ( )n
V λɶ as,  

( )

( )

0

( ) ( 1) j

j

j j

i
n A

i i j n A

j A i A

Q g d k
i

φ

θ λ −
= ∈ ∈

  
 = −  

  
  

∑∑ ∏ɶ  where 
( )

1
;  

( )
1,2,3,

ln A

l
l

V k
k l i

λ

θ λ
−+

=
−

=
ɶ

⋯ , 0

( ) ( )V V
k

λ θ

θ λ

−
=

−

ɶ ɶ

 and φ is the 

collection of all possible distinct sets of positive integers 
j

A  such that , sum of elements in 
j

A  is j .  

 

Proof: 

Substituting θ λ= in equation (15), we get  

( )
0 0 0 0

( ) ( )
( )

V V
Q d k d

λ θ
θ

θ λ

−
= =

−

ɶ ɶ

ɶ  

 where 
( )

0

( ) ( )V V
k

λ θ

θ λ

−
=

−

ɶ ɶ

 

Substituting n=1 in equation (16), we get  

( ) ( )
1

1 1 0 0

1

0

0 1 1 0

1

0
0 1 1 1 0 1

( ) ( ) ( ) ( )
( ) + ( )

( )

( )

V V V Vg
Q d Q d

V k
k d g d

V k
k d g k d k

λ θ λ θλ
θ λ

θ λ θ λ θ λ

λ
λ

θ λ

λ
λ

θ λ

 − −
 = −
 − − −
 

 +
= −  

− 

+
= − =

−

ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ

ɶ

         

          where  

 

Substituting 2n =  in equation (16), we get   

( ) ( ) ( )( )

{ } { } { }

{ }

( )( )

{ }

( )( )

{ }

( )( )( )

3 0 3 1 1 2 2 1 1 1 1 2 1

0 1 2 2

3 1 0 2 1 2 0 1 2 2 0 1 1 1 3 0

3 3 3 3

( )

1 2 20

1 2 1,1

3 3 3 3

3 2,1 1, 2 1,1

Q k d g k d g k d g g k d

k k kk

A A A A

g k d g g k d g g k d g g g k d

k k k k

A A A A

θ λ λ λ λ

ϕ

λ λ λ λ λ λ λ λ

= − − +

= = ==       
       

= = = =       

− + + −

= = = =          
     

= = = =          

ɶ

{ },1

  
 
  

                                     

Where  
3

2
3

( )V k
k

λ

θ λ

+
=

−

ɶ

 

Using appropriate notations, 
3 ( )Q θɶ is expressed in a compact form as  

3
( )

3 3 ( )

0

( ) ( 1) j

j

jj

n A

i j n A
i Aj A

Q g d k
φ

θ λ −
∈= ∈

  
= −   

  
∏∑∑ɶ  

Generalizing by recursive approach, we get 
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( )

( )

0

( ) ( 1) j

j

jj

i
n A

i i i j n A
i Aj A

Q g d k
φ

θ λ −
∈= ∈

  
= −   

  
∏∑∑ɶ ; 0,1, 2, , 1i a= −⋯ (36)  

Where 
( )

1
( )ln A

l

l

V k
k

λ

θ λ
−+

=
−

ɶ

; 1, 2,3, ,l i= ⋯ and 
0

( ) ( )V V
k

λ θ

θ λ

−
=

−

ɶ ɶ

  

 

 

5. PERFORMANCE MEASURES 

In a waiting line, it is customary to access the mean number of waiting units and mean waiting time.  In this section, 

some useful performance measures of the proposed model like expected number of customers in the queue ( )E Q ,  

expected length of busy period ( )E B , expected length of idle period ( )E I  are derived, which are useful to find the total 

average cost of the system.  Also, expected waiting time in the queue ( )E W ,  probability that the server is on vacation

( )P V and the probability that the server is busy ( )P B , are derived.  

 

5.1 Expected Queue Length  

The mean queue length ( )E Q (i.e. mean number of customers waiting in the queue) at an arbitrary time epoch is 

obtained by differentiating ( )P z  at 1z = and is given by 

1
( ) lim '( )

z
E Q P z

→
=  
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 (37)  

where  

 ( ) ( )1S E X E Sλ=  
2 2 2

2 ''(1) ( ) ( ) ( )S X E S E X E Sλ λ= +  

 
3 3 3

3 ( ) ( )S X EE Sλ=  
2 2 2
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3
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2

15 ( ) 10S E X S=  
3

16 9 ( )S S E X=  
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5.2 Expected Waiting Time in the Queue 

The mean waiting time of the customers in the queue ( )E W can be easily obtained using Little’s formula 
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=   (38)  

5.3 Expected Length of Idle Period  

The time period from the vacation initiation epoch to the busy period initiation epoch is called the idle time period.  

Let I  be the random variable for ‘idle period’.  

,  0,1, 2, , 1
j

j aπ = −⋯ , is the probability that the system state (number of customers in the system) visits ‘ j  ’ during 

an idle period.  

Let  
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where 1( 1)jP I = is the probability that the system state becomes j during an idle period of / ( , ) /1XM G a b queueing system 

without vacation and 
j

α  is the probability that ‘ j ’ customers in the queue at a service completion epoch.  

1( 1)jP I =  is obtained as 1( 1)j jP I φ= = ; where 0 1φ =  , 
1

n

n i n i

i

gφ φ −
=

=∑ . 

Thus the expected length of the idle period is obtained as  

 
1

0

( )
1 a

j

j

E I π
λ

−

=

= ∑ .  (39) 

 where 
1

λ
is the expected staying time in the state ‘ j ’ during an idle period.  

 

 

5.4 Expected Length of Busy Period 

Let B  be the busy period random variable. Let T  be the residence time that the server is rendering service or under 

repair. Then  ( ) ( ) ( ) E T E S E R= + , where ( )E S  is the expected service time and ( )E R is the expected renovation time.  

A random variable J  is defined as, 0J = , if the server finds less than ‘ a ’ customers after the residence time and 

1J = , if the server finds ‘a’ or more customers after the residence time. Then 
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5.5 Probability that the Server is Busy  

Let ( )P B  be the probability that the server is in the busy period at time t .  
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5.6 Probability that the Server is on Vacation 

Let ( )P V  be the probability that the server is on vacation at time t .   
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6. PARTICULAR CASES 

In this section, some of the existing models as a particular case of the proposed model are derived.  

Case (i): 

 When there is no server breakdown (i.e., ( )( ) 1R X zλ λ− =ɶ  and 0π = ), then the equation (20) reduces to  
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Equation (43) is the PGF of queue size distribution of ( )/ , /1X
G a bM  queueing system with vacation interruption and it 

coincides with the result of analysis of a ( )/ , /1X
G a bM  queueing system with vacation interruption of Haridass and 

Arumuganathan (2012) 

Case (ii):   

 If the server doesn’t avail any vacation (i.e., ( ( )) 1V zλ λξ− =ɶ ),then the equation (20) reduces to  
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Equation (44) is the PGF of queue size distribution of ( )/ , /1X
G a bM queueing system without vacation and it coincides 

with the result of ( )/ , /1X
G a bM  queueing system without modified vacation and constant arrival rate of Balasubramanian 

and Arumuganathan (2011). 

 

7. COST MODEL  

Cost analysis is the most important phenomenon in any practical situation at every stage.  Cost involves startup cost, 

operating cost, holding cost, renovation cost and reward cost (if any).  It is quite natural that the management of the system 

desires to minimize the total average cost.  Addressing this, in this section, the cost model for the proposed queueing system 

is developed and the total average cost is obtained with the following assumptions:  

  
h

C : holding cost per customer ,  
O

C : operating cost per unit time  

  
S

C : startup cost per cycle , 
r

C : reward cost per cycle due vacation  

  
rp

C : renovation cost per unit time 

Since the length of the cycle is the sum of the idle period and busy period, from equations (39) and (40), the expected 

length of cycle, ( )
c

E T is obtained as  
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c
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 Now, the total average cost per unit time is obtained as 

 

Total average cost=Start-up cost per cycle + holding cost of number of customers in the queue per unit time + Operating 

cost per unit time ρ×  – reward due to vacation per cycle + Renovation cost per cycle 

 
1

( ) ( ) ( )
( )

s rp r h o

c

TAC C C E R C E I C E Q C
E T

π ρ = + − + +    (45)  
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 where 
( )( ) ( ) ( )E X E S E R

b

λ π
ρ

+
= . 

 

8. NUMERICAL ILLUSTRATION 

The theoretical results obtained in this paper are justified numerically with the following assumptions and notations: 

Service time distribution is 2 -Erlang with parameter      µ  

Batch size distribution of the arrival is geometric with mean     2  

Vacation time is exponential with parameter       ε  

Renovation time is exponential with parameter      η  

Minimum service capacity             a  

Maximum service capacity            b  

 

8.1 Effects of various parameters on the performance measures 

In this section, the effects of various parameters such as arrival rate, service rate on the performance measures like 

expected queue length, expected busy and idle period, probability that the server is on vacation, probability that the server is 

busy, and total average cost are analyzed numerically.  The results are presented in tables and figures.  The numerical results 

are obtained using MATLAB software.  

 

8.1.1 Effects of arrival rate and service rate on the performance measures 

The effects of the expected queue length, expected length of busy and idle period, the probability that the server is 

busy and on vacation, for various arrival rates, and service rates are presented in the table 8.1 and 8.2 and represented in 

figures 2,3 and 4.  From the table, it is clear that if the arrival rate increases, then 

• the mean queue size, the probability that the server is busy and expected busy period increases 

• the probability that the server is on vacation and expected idle period decreases. 

Also that, from the tables and figures 2,3 and 4,  it is clear that if the service rate (µ) increases, then 

• the mean queue size, the probability that the server is busy and expected busy period decreases 

• the probability that the server is on vacation and expected idle period increases. 

 

8.1.2 Effects of arrival rates on the total average cost 

The effects of different arrival rates on the total average cost for a fixed breakdown probability with respect to various 

service rates are discussed numerically and these values are reported in table 8.1.  A graphical representation is also shown in 

figures 5 and 6.   From the table and the figures, the following points are observed:  

As arrival rate increases, the total average cost increases 

• As service rate increases, the total average cost decreases 

• When the server is assigned for secondary job, the total average cost decreases 

Thus, the theoretical development of the model is justified with the numerical results which are consistent with the fact that when the server is 

allotted to secondary job, the idle time is properly utilized and hence the total average cost is minimized.  
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Table 8.1 Arrival Rate (Vs) Total Average Cost 

(For 2,  b 5,  10,  8,  0.2,  3.0,  0.50,  8.0,  1.0,  1.5
S h O r rp

a C C C C Cε η π= = = = = = = = = = ) 

µ  
Arrival 
rate  

λ  

E(Q) E(W) E(B)  E(I)  

TAC when server 
is assigned for 
secondary job 

(in rupees) 

TAC when server is 
not assigned for 
secondary job 

(in rupees) 

se
rv

ic
e 

ra
te

  

2
.5

 

2   0.695 0.173 2.405 0.587 6.4465 6.6426 

2.3   0.869 0.188 3.118 0.494 7.2107 7.3475 

2.6   1.198 0.230 4.955 0.423 7.9491 8.0278 

2.9   1.387 0.239 15.421 0.367 8.5187 8.5419 

 
se

rv
ic

e 
ra

te
 

3
.0

 

2 0.569 0.142 1.432 0.609 5.9010 6.1994 

2.3 0.819 0.178 1.605 0.515 6.6901 6.9331 

2.6 0.975 0.187 1.921 0.443 7.3395 7.5269 

2.9 1.271 0.219 2.545 0.387 7.9582 8.0902 

 

( )E Q – Expected orbit length; ( )E W  – Expected waiting time; ( )E B – Expected busy period;   

( )E I – Expected Idle period; TAC – Total average cost 

Table 8.2. Arrival rate (Vs) Servers state (For 2,  5,  10,  8,  0.2a b ε η π= = = = = ) 

 

P(B) – Probability that the server is busy;  P(V) – Probability that the server is on vacation 

 

Arrival ratd λ  

Service rate  2µ =  Service rate   2.5µ =  Service rate   3µ =  

P(B) P(V) P(B) P(V) P(B) P(V) 

1.0 0.044 0.033 0.032 0.040 0.025 0.049 

1.2 0.072 0.032 0.050 0.039 0.037 0.048 

1.4 0.112 0.029 0.072 0.039 0.053 0.047 

1.6 0.175 0.026 0.103 0.038 0.073 0.047 

1.8 0.279 0.021 0.145 0.035 0.098 0.046 

2.0 0.480 0.015 0.204 0.031 0.129 0.044 
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Figure 2: Arrival rate (Vs1) Expected Queue Length 

(For 2,  5,  10,  8,  0.2a b ε η π= = = = = ) 

 

Figure 3: Arrival rate (Vs) Probability that the server is on vacation 

(For 2,  5,  10,  8,  0.2a b ε η π= = = = = ) 

µ=2.5

µ=3.0

Arrival rate

E
(Q

)

µ=2.0

µ=2.5

µ=3.0

Arrival rate

P(V)
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Figure 4: Arrival rate (Vs) Probability that the server is busy 

(For a 2,  b 5,  10,  8,  0.2ε η π= = = = = ) 

 

Figure 5: Arrival rate (Vs) Total Average Cost 

(For 2,  5,  2.5,  10,  8,  0.2a b µ ε η π= = = = = = ) 

µ=3.0

µ=2.5

µ=2.0

Arrival rate

P(B)
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Figure 6: Arrival rate (Vs) Total Average Cost 

(For 2,  5,  10,  8,  0.2a b ε η π= = = = = ) 

 

9. CONCLUSION 

In this paper, the server breakdown with vacation interruption in a ( )/ , /1X
G a bM  queueing system is analysed.  In 

the literature, all vacation models with bulk service considered that the server can start the service only when he completes 

the secondary job. But in emergency, the server has to terminate the secondary job and must give priority for primary job. 

Once the required level is reached to start the primary service, there is no point in continuing the secondary job.  This 

model is proposed to overcome this difficulty and to make the system operate more efficiently.  The model so considered is 

unique in the sense that breakdown is introduced in a bulk service vacation interrupted queueing model, which is the significant contribution.  

Probability generating function of the steady state queue size distribution at an arbitrary time epoch is obtained. Expressions 

for various performances are obtained.   

A real time example from industry is discussed for the proposed model. The results so obtained in this paper can be used for 

managerial decision to minimize the overall cost and search for the best operating policy in a waiting line system.  The theoretical development of the 

model is justified with the numerical results which are consistent with the fact that when the server is allotted to secondary job, the idle time is 
properly utilized and hence the total average cost is minimized. The model considers general bulk service with minimum of ‘ a ’ 

customers and maximum of ‘ b ’ customers.  Hence, the probability generating function involves ‘ b ’ unknown constants.  

So we have the limitations of expressing the probability generating function in a closed form.  

In the direction of future research, the model can be extended with close down and set up time concepts.  An attempt 

may be made to derive the busy period distributions and idle period distributions.  A discrete time model can also be 

developed.  
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