
International Journal of  Operations Research Vol. 12, No. 4, 103-109 (2015) 

 

Improvement for correct procedure of  solution procedure on inventory 
models with trapezoidal type demand rate 

 
Kevin Lim Dagatan* 

 
Sage Pharmaceuticals Incorporated, Shreveport, Louisiana 

5408 Interstate Dr, Shreveport, LA 71109, U.S. 
 

Received September 2015; Revised November 2015; Accepted December 2015 
 
 
 

Abstract: Recently, a paper provided an improvement for a previous article to offer a new solution procedure 
for inventory model with trapezoidal type demand. The purpose of  this paper is twofold. First, we will point out that 
the improvement did not provide any new results for the solution procedure. Second, we present a previous 
published finding to dramatically simplify the solution method. Our results will help practitioners understand the 
results of  two previous papers. 
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1. INTRODUCTION 
 
Hill (1995) is the first paper to develop inventory model with ramp type demand. Following his trend, there are 55 
papers that have developed inventory models. We may classify them as follows. Zhou (2003), Agrawal and Banerjee 
(2011), and Skouri and Konstantaras (2013) studied for two-warehouse inventory model. Wu, (2001), Giri et al. 
(2003), Chen et al. (2006), Skouri et al. (2009), Skouri et al. (2011a), and Ahmed et al. (2013) developed for general 
deterioration rate. Cheng and Wang (2009), Cheng et al. (2011), Chung (2012), Chuang et al. (2013), Dem et al. 
(2014), Debata et al. (2015), Lin, K. P. (2013), Mehrotr (2013), and Zhao (2014) consider inventory models with 
trapezoidal type demand rate. Darzanou and Skouri (2011), Saha et al. (2013), Singh and Sharma (2013), and Sah and 
Sarmah (2015), examined model with two echelon supply chain. Hariga (1996), Wu et al. (1999), Deng et al. (2007), 
Hung (2011), Khedlekar et al. (2013), Konstantaras and Skouri (2009), Mandal, B. (2010), Mingbao and Bixi (2010), 
and Chauhan and Singh (2015), considered for general deteriorating items. Jaggi et al. (2015), Kumar et al. (2012), 
and Mahata and Goswami (2009) constructed models under fuzzy environment. Zhou et al. (2004), Lin, S. W. (2011), 
and Roy and Chaudhuri (2011), investigated inventory system with a finite time horizon. The other papers can be 
describes as Abdul and Murata (2011a) with set-up adjustment, and Chauhan and Singh (2014) for discounted cash 
flow, Andriolo et al. (2013) with sustainability, Diponegoro and Sarker (2002), and Diponegoro and Sarker (2007) 
with batch sizes, Banerjee and Sharma (2010) with option to change the market, Abdul and Murata (2011a) under 
unknown time horizon, Goyal et al. (2013) for ameliorating items, Lin et al. (2013) for a demand independent 
inventory model, Abdul and Murata (2011c) under inflation, Sharma (2009), and Lin, Y. (2013) with pricing strategy, 
Lin et al. (2012) under stock-dependent consumption rate, Wou, (2010) with a stochastic demand, Skouri et al. 
(2011b), and Tung et al. (2014) under permissible delay in payments, Tung (2013) for negative exponentially 
distributed changing point. At last, Andriolo et al. (2014) is a review for Harris's inventory model. 

In this article, we pay attention to Cheng and Wang (2009) that extended the ramps type demand rate of  Hill 
(1995) to trapezoidal type demand rate. The trapezoidal type demand rate increases with time up to certain time and 
then ultimately stabilizes and becomes constant, and finally the demand rate approximately decreases to constant or 
zero, and then begins the next replenishment cycle. In practice, Cheng and Wang (2009) indicate that such type of  
demand rate is quite realistic and useful. Although the inventory model of  Cheng and Wang (2009) is interesting, 
they derive the solution procedure consisting of  three properties and one theorem to locate the optimal solution of  
their model such that their solution procedure seems rather complicated. So, the main purpose of  this paper not only 
incorporates but also simplifies the solution procedure of  Cheng and Wang (2009). Chung (2012) published a paper 
to provide a correct procedure of  the solution procedure on inventory models with trapezoidal type demand rate 
proposed by Cheng and Wang (2009). The purpose of  this paper is first to point out that Chung did not provide any 
new discovery such that his correct procedure already published in Cheng and Wang (2009). Second, we will recall 
the finding of  Lin (2011) that already provided a new and simplified approach to improve the solution procedure of  
Cheng and Wang (2009). 
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2. REVIEW OF CHENG AND WANG (2009) AND CHUNG (2012) 
 
We will briefly review the findings of  Cheng and Wang (2009) and Chung (2012).  The detailed derivation, please 
refer to their original papers. 
The trapezoidal type demand rate is defined as 

 ( )
1 1 1

0 1 2

2 2 2 2 2
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where 
1
µ  is the time point changing from linearly increasing demand to constant demand and 

2
µ  is the time 

point changing from constant demand to linearly decreasing demand, with 
1 1 1 0 2 2 2
a b D a bµ µ+ = = − . 

The inventory model discussed in this paper is the same as that of  Cheng and Wang (2009). Using the notation and 
assumptions adopted by Cheng and Wang (2009), we have three cases to be explored as follows: 
 

Case 1: 
1 1
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Equation (2) yields the first-order derivatives of  )( 11 tC  with respect to 1t as follows: 
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Case 2: 
1 1 2
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Case 3: 2

1 1

2

a
t T
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µ ≤ ≤ ≤ . Cheng and Wang (2009) revealed that the average total cost per unit time 
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Cheng and Wang (2009) derived the annual total cost per unit time ( )1C t  on 0,T 
    as follows 
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Cheng and Wang derived that 
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Cheng and Wang (2009) and Chung (2012) both agreed that 
 

 ( )1 0f t =   (21) 

has a unique solution for 
1

0 t T< < . In Cheng and Wang (2009) the solution is denoted by *

1
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(2012), the solution is denoted by *

f
t . 
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3. DISCUSSION OF PROOF PROCEDURE OF CHENG AND WANG (2009) AND CHUNG (2012) 
 

We can simply the derivation of  Cheng and Wang (2009) as follows: 

 optimal solution of  ( ) { }*

1 1 1
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f
C t t µ= . (22) 

Chung (2012) asserted that the validity of  Property 1 of  Cheng and Wang (2009) is questionable. We quoted his 
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Hence, the challenge proposed by Chung (2012) to the Property 1 of  Cheng and Wang (2009) is invalid. 
In Property 2 of  Cheng and Wang (2009), they derived that 
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In Property 3 of  Cheng and Wang (2009), they derived that 
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Chung (2012) used *

11
t , *

12
t  and *

13
t  to denote the optimal solution of  ( )1 1

C t , ( )2 1
C t  and ( )3 1

C t , 

respectively. 
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We quoted from Chung (2012), “The above arguments (i), (ii) and (iii) complement the key shortcoming of  that 
Chung and Wang (2009) do not explore Eq. (16) (Remark. The Eq (16) of  Chung (2012) is the equation (25) of  this 
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We recalled the Theorem 1 of  Chung (2012) then he derived that the optimal replenishment time of  ( )1C t  is *

f
t .  
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If  we compared the Theorem 1 of  Cheng and Wang (2009) and the Theorem 1 of  Chung (2012), then Cheng 
and Wang (2009) derived an explicit result.  From the above discussion, we can claim that Chung (2012) did not 
provide any improvement for Cheng and Wang (2009). 
 
 
4. THE PRESENT DEVELOPMENT FOR INVENTORY MODEL WITH A TRAPEZOIDAL TYPE 

DEMAND RATE 
 

Chung (2012) did not pay attention to the open question proposed by Cheng and Wang (2009) why Deng et al. (2007) 
with ramp type demand rate and Cheng and Wang (2009) with trapezoidal type demand rate could have the same 
optimal solution? 
In Lin (2011), motivated by equations (18-20), he rewrote them as a simplified expression as 

 ( )
( )

( )1

1 1

1

j

D td
C t f t

d t T
=   (30) 

and then he developed an inventory model for any positive demand such that the optimal solution is independent of 
the demand type.  

Cheng and Wang (2009) must divide their inventory model into three different sub-domains of 
1

0,µ 
   , 

1 2
,µ µ 

    and 
2
,Tµ 

    because the differential equations have different expressions in three different sub-domains. 

Lin (2011) considered abstract demand in his development to obtain the total cost, ( )1C t , for the replenishment 

cycle 0,T 
    and then he obtained  

 ( )
( )

( )1

1 1

1

D td
C t f t

d t T
=   (31) 

Based on the findings of ( )1C t , it is the synthesized results for ( )1j
C t  of 1,2, 3j =  with different 

corresponding sub-domains. Therefore, there is only one objective function so there should have only one 
expression for the first derivative. Consequently, equations (18-20) has a unified expression of equation (30) is 
answered. Moreover, the open question raised in Cheng and Wang (2009), why two different inventory models, 
Deng et al. (2007) and Cheng and Wang (2009), could have the same optimal solution also has a logical explanation 
that this kind of inventory models should be developed without relating to the demand type. 

Finally, Chung (2012) mentioned “in supply chain management” in his title. However, there is only one item 
and one replenishment cycle in his paper such that his title contained questionable descriptions. 
 
 
5. CONCLUSION 

 
We pointed out that Chung (2012) did not realize the results of  Cheng and Wang (2009) and then he derived 

the same findings as them. Lin (2011) already provided a generalization of  Cheng and Wang (2009) that explained (a) 
three objective functions with different sub-domains could have the same expression of  the first derivation and (b) 
why different inventory models of  ramp demand type and trapezoidal type demand rate could have the same optimal 
solution. 
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