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Abstract: Large projects such as the construction of  a building, development of  a management information 
system planning and designing of  a new product, and implementation of  a manufacturing system can be regarded as 
project networks whose activity durations are independent, finite, and multi-valued random variables. Such a project 
network is a multistate system with multistate components and its reliability for level 1,d -  i.e., the probability that 
the duration to complete all activities of  the project is less than or equal to 1,d -  can be computed in terms of  
minimal path vectors to level d (named d-MPs here). The main objective of  this paper is to present a simple 
algorithm to generate all d-MPs of  such a stochastic project network for each level d in terms of  minimal path sets. 
Two examples are given to illustrate how all d-MPs are generated by our algorithm and then the reliability of  one 
example is computed. 
Keywords  Stochastic project network, reliability analysis, management information system 
 
 
 
1. INTRODUCTION 
 
Reliability analysis often assumes that the system under study is represented by a probabilistic graph in a binary state 
model, and the system operates successfully if there exists at least one path from the source node to the sink node. 
In such a case, reliability is considered as a matter of connectivity only and so it does not seem to be reasonable as a 
model for some real-world phenomena. Large projects such as the construction of a building or a factory, 
development of a management information system, planning and designing of a new product, and implementation of 
a manufacturing system can be regarded as AOA project networks whose activity durations are independent, finite 
and multi-valued random variables. For such a project network, it is very practical and desirable to compute its 
reliability for level 1,d -  i.e., the probability that the duration to complete all activities of the project is less than or 
equal to 1.d -  

Generally, reliability evaluation can be carried out in terms of either minimal path sets (MPs) or minimal cut 
sets (MCs) in the binary state model case, and either d-MPs (i.e., minimal path vectors to level d (Aven, 1985), lower 
boundary points of level d (Hudson and Kapur. 1983), or upper critical connection vector to level d (El-Neweihi et 
al., 1978) or d-MCs (i.e., minimal cut vectors to level d (Aven, 1985)), upper boundary points of level d (Hudson and 
Kapur. 1983), or lower critical connection vector to level d (El-Neweihi et al., 1978) for each level d in the multistate 
model case. The AOA project network with random activity durations here can be treated as a multistate system of 
multistate components and so the need of an efficient algorithm to search for all of its d-MPs arises. The main 
purpose of this article is to present an algorithm to find all d-MPs of a stochastic project network in terms of 
minimal path sets. Two examples are given to illustrate how all d-MPs are generated and the reliability of one 
example is calculated in terms of d-MPs by further applying the state-space decomposition method (Aven, 1985). 
Finally, the computational complexity and storage requirement of the proposed algorithm are also discussed. 

 
 

2. BASIC ASSUMPTIONS 
 
A project may be represented by an AOA network in which each activity is represented by an arc and each event is 
represented by a node. Let G N A LU= ( , , , )be such an AOA project network with the unique source node s (i.e., 

start event) and unique sink node t (i.e., finish event), where N is the set of nodes, 
i

A a i n= £ £{ | 1 }  is the set 

of arcs, 
n

L l l l=
1 2
( , ,..., )  and 

n
U u u u=

1 2
( , ,..., ) , where 

i
l  and 

i
u  denote the minimum and maximum 
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duration of each arc 
i
a  respectively. Such an AOA project network is assumed to further satisfy the following 

assumptions: 

1. The duration of  activity 
i
a is an integer-valued random variable which takes integer values from 

i
l  to 

i
u  

according to a given distribution. 
2. The activity duration of  a dummy activity is zero. 
3. The durations for different activities are statistically independent. 

Assumption 3 is made just for convenience. If it fails in practice, the proposed algorithm to search for all 
d-MPs is still valid except that the reliability computation in terms of such d-MPs should take the joint probability 
distributions of all activity durations into account. 

Let 
n

X x x x=
1 2
( , ,..., )  be a system-state vector (i.e., the current duration of activity 

i
a  under X  is 

i
x , 

where 
i
x  takes integer values from 

i
l  to 

i
u ), and V X( ) , the duration to complete all activities of the project 

under X . Such a function V ⋅()  plays the role of the so-called structure function of a multistate system with 

V L h=( ) and V U k=( ) . Under the system-state vector 
n

X x x x=
1 2
( , ,..., ) , the arc set A has the following three  

important subsets: 
X i i i
N a A x l= Î >{ | } , 

X i i i
Z a A x l= Î ={ | } , and  

X i X i
S a N V X e V X= Î - <{ | ( ) ( )} , where 

i i i in
e d d d=

1 2
( , ,..., ),  with 

ij
d = 1  if j i=  and 

ij
d = 0  if 

j i¹ . In fact, 
X X X X

A S N S Z= È È( \ )  is a disjoint union set of A. 

 
 
3. MODEL CONSTRUCTION 
 

Suppose that mP P P1 2, ,...,  are the collection of all MPs of the AOA project network. For each jP , the duration 
to complete all activities along this path is defined as the sum of the durations of all activities in it. This means that 
the duration to complete all activities of the project is equal to traverse the longest path from the source node s to 
the sink node t in the AOA network. Hence, the duration to complete all activities of the project under the 
system-state vector X  is defined as 

j

j m i ii
V X x a P£ £= Îå1
( ) max { { | }}  

Since V X( )  is non-decreasing in each argument (activity duration) under X , the project network with 

random activity durations can be treated as a multistate monotone system with the structure function V ⋅()  (Aven, 
1985). 

A necessary condition for a system-state vector X  to be a d-MP is stated in the following lemmas. Our 
algorithm relies mainly on such a result. 
 

Theorem 1. If  X  is a d-MP, then j j

X j i ii
S P x a P dÍ Ç Î =å{ | { | } }  

Proof: Suppose, on the contrary, that there exists an MP rP  with r

i ii
x a P dÎ =å { | }  such that 

r
X i i X
S P a a S= Î\ { |

 
and r

i
a P jÏ ¹} . Choose an r

i X
a S PÎ - , and let 

i i i i n i i i n
Y X e x x x x x x y y y y y y- + - += - = - =

1 2 1 1 1 2 1 1
( , ,..., , 1, ,..., ) ( , ,..., , , ,..., ) . Then 
r r

i i i ii i
y a P x a P dÎ = Î =å å{ | } { | }  due to the fact that r

i
a PÏ  and so V Y d=( ) , which contradicts 

to the fact that 
i X
a SÎ . Hence, j

X
S PÍ  for each jP with j

i ii
x a P dÎ =å { | } , i.e., 

j j

X j i ii
S P x a P dÍ Ç Î =å{ | { | } }.  Q.E.D. 

 

Theorem 2. If  X  is a d-MP, then there exists at least one MP 
r

r

r r rn
P a a a=

1 2
{ , ,..., } , such that the following 

conditions are satisfied: 

rr r rn
x x x d+ + + =
1 2

...
 

(1) 

ri ri ri
l x u£ £  for all (2) 

i i
x l=  for all r

i
a PÏ . (3) 
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Proof: Let I be the non-empty index set of  MPs such that: 
j

i ii
x a P dÎ =å { | }  for i IÎ  and  j

i ii
x a P dÎ <å { | }  for i IÏ .  

Choose a rP with r IÎ , say 
r

r

r r rn
P a a a=

1 2
{ , ,..., },  then 

j

i ii
x a P dÎ =å { | } ,  i.e., 

rr r rn
x x x d+ + + =
1 2

...  

ri ri ri
l x u£ £  for all r

i
a PÎ  

By Theorem I, r j j

j I i i X Xi
A P A P x a P d A S ZÎÍ Ç Î = Í =å\ \ { | { | } \ , 

i.e., 
i i
x l= for all r

i
a PÏ . Q.E.D. 

 

Any system-state vector 
n

X x x x=
1 2
( , ,..., )  that satisfies constraints (1) - (3) simultaneously will be taken as a 

d-MP candidate. A d-MP is obviously a d-MP candidate by Lemma 2. By definition, a d-MP candidate X  is a d-MP 

if (1) V X d=( ) , and (2) 
X X
N S= . To check whether a d-MP candidate is a d-MP or not, the following lemma is 

needed. 
 
Theorem 3. If  the project network is parallel-series, then each d-MP candidate is a d-MP (where a network is called 

parallel-series if  it can be represented as the parallel of  its MPs mP P P1 2, ,...,  and i jP P jÇ = ). 

Proof: Such a network can be considered as the parallel of  its MPs mP P P1 2, ,..., . Let X  be a d-MP candidate 

which is generated with respect to rP  according to Theorem 2. Since the network is parallel-series, 
j rP P jÇ =  for each j r¹ . Then 

r

i ii
x a P dÎ =å { | }  and j i

i i i ii i
x a P l a P V L h dÎ = Î £ = <å å{ | } { | } ( )  

In particular, j r

j m i i i ii i
V X x a P x a P£ £= Î = Îå å1
( ) max { { | }} { | }  

and j j r

X j i ii
N P x a P d PÍ Ç Î = =å{ | { | } } . Hence, X  is a d-MP. Q.E.D. 

 
 
4. ALGORITHM 
 

Suppose that all MPs, mP P P1 2, ,..., , have been stipulated in advance (which can be obtained by assuming that 
each arc has two states only (Hura, 1983), the family of all d-MPs can be derived by the following steps: 

Step 1. For each 
r

r

r r rn
P a a a=

1 2
{ , ,..., } , find all integer-valued solutions of  the following constraints by applying 

an implicit enumeration method: 

rr r rn
x x x d+ + + =
1 2

...  

rj rj rj
l x u£ £  for 

r
j n= 1,2,...,  

Step 2. Set 
i i
x l= for all r

i
a PÏ . 

Step 3. Obtain the family of  d-MP candidates 
n

X x x x=
1 2
( , ,..., )  by steps 1 and 2. 

Step 4. Check each candidate X  one at a time to determine whether it is a d-MP: 
(a) If  the network is parallel-series, then each candidate is a d-MP. 
(b) If  the network is non parallel-series, then test each candidate whether V X d=( )  and 

j j

X j i ii
N P x a P dÍ Ç Î =å{ | { | } } , i.e., 

(4.1) If  there exists an i r¹  such that 
r

i ii
x a P dÎ >å { | } , then X  is not a d-MP and go to step (4.4). 

(4.2) Let index set j
i ii

I j x a P d= Î =å{ | { | } }  

(4.3) If  there exists an j j

i j i ii
a A P x a P dÎ Ç Î =å\ { | { | } }  

such that 
i i
x l¹ , then X  is not a d-MP, else X  is a d-MP.  

(4.4) Next candidate. 
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5. EXAMPLES 
 
The following two examples are used to illustrate the proposed algorithm: 
 
Example 1. 

 
Figure 1: A parallel-series project network 

 

It is known in this example thatL l l l l l= =
1 2 3 4 5
( , , , , ) (1, 3, 3,3,2)  with V L =( ) 5 , 

U u u u u u= =
1 2 3 4 5
( , , , , ) (2,5,5, 4,3)  with V U =( ) 7 , and there exists 3 MPs; P a a=1

1 2
{ , } , P a=2

3
{ } , 

P a a=3
4 5
{ , } . 

Hence, 
(1) n m= =5, 3,  and  
(2) The system has 3 levels: 5, 6, 7. 

Given d = 6 , the family of 6-Mps is derived as follows: 

Step 1. For P a a=1
1 2
{ , } , find all integer-valued solutions of  the following constraints by applying the implicit 

enumeration ,method: 

x x+ =
1 2

6  

x£ £
1

1 2  

x£ £
2

3 5  

Step 2. Set x x= =
3 4
3, 3,  and x =

5
2.  

Step 3. Two 6-MP candidates X =1 (1,5, 3, 3,2)  and X =2 (2, 4, 3, 3,2)  are obtained. 

Step 4. Since the network is parallel-series, (1,5, 3, 3,2)  and (2, 4, 3, 3,2)  are 6-MPs. 
 
We repeat our algorithm to find candidates. 

Step 1. For P a=2
3
{ } , find all integer-valued solutions of the following constraints by applying the implicit 

enumeration ,method: 

x =
3
6  

x£ £
3

3 5  

Step 2. Set x x= =
1 2
1, 3, x =

4
3,  and x =

5
2.  

Step 3. No 6-MP candidate is obtained. 
 
We repeat our algorithm to find candidates. 

Step 1. For P a a=3
4 5
{ , } , find all integer-valued solutions of the following constraints by applying the implicit 

enumeration ,method: 

x x+ =
4 5

6
 

x£ £
4

3 4
 

x£ £
5

2 3
 

Step 2. Set x x= =
1 2
1, 3,  and x =

3
3.  

Step 3. Two 6-MP candidates X =3 (1, 3, 3, 3,3)  and X =4 (1, 3, 3, 4,2)  are obtained. 

Step 4. Since the network is parallel-series, (1,3,3, 3, 3)  and (1,3,3, 4,2)  are 6-MPs. 
 

s t

a1

a4

a3

a2

a5
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Example 2. 

 
Figure 2: A small project network 

 

It is known in this example that L l l l l l l l= =
1 2 3 4 5 6 7
( , , , , , , ) (5,6,2, 3, 4, 4,1)  with V L =( ) 9 , 

U u u u u u u u= =
1 2 3 4 5 6 7
( , , , , , , ) (6, 8, 4,5,5,6,2)  with V U =( ) 12 , and there exists 4 MPs; P a a=1

1 6
{ , } , 

P a a a=2
1 4 7
{ , , } , P a a a=3

3 5 7
{ , , } , and P a a=4

2 7
{ , } . 

Hence, 
(1) n m= =7, 4,  and  
(2) The system has 4 levels: 9, 10, 11, 12. 

Given d = 10 , the family of 10-Mps is derived as follows: 

Step 1. For P a a=1
1 6
{ , } , find all integer-valued solutions of  the following constraints by applying the implicit 

enumeration ,method: 

x x+ =
1 6

10  

x£ £
1

5 6  

x£ £
6

4 6  

Step 2. Set x x x x= = = =
2 3 4 5
6, 2, 3, 4  and x =

7
1.  

Step 3. Two 10-MP candidates X =1 (5,6,2, 3, 4,5,1)  and X =2 (6,6,2, 3, 4, 4,1)  are obtained. 

Step 4. Check X =1 (5,6,2, 3, 4,5,1)  whether it is a 10-MP. 

(4.1) i
i ii
x a PÎ £å { | } 10  for each iP . 

(4.2) j

i ii
I j x a P= Î = =å{ | { | } 10} {1}  

(4.3) X =1 (5,6,2, 3, 4,5,1)  is a 10-MP. 

(4.4) Next candidate (i.e., check X =2 (6,6,2, 3, 4, 4,1)  whether it is a 10-MP) 

(4.1) i

i ii
x a PÎ £å { | } 10  for each iP . 

(4.2) j
i ii

I j x a P= Î = =å{ | { | } 10} {1,2}  

(4.3) X =2 (6,6,2, 3, 4, 4,1)  is a 10-MP. 
 

Table 1. Probability distributions of  activity durations in Example 2 
Activity Duration Probability Activity Duration Probability 

a
2
 

6 0.30
a
1
 

5 0.40 
7 0.50 6 0.60 
8 0.20

a
5
 

4 0.80 

a
3

 
2 0.35 5 0.20 
3 0.60

a
6
 

4 0.20 
4 0.05 5 0.70 

a
4

 
3 0.10 6 0.10 
4 0.60

a
7

 
1 0.70 

5 0.30 2 0.30 
 

We repeat our algorithm to find candidates. 

Step 1. For P a a a=2
1 4 7
{ , , } , find all integer-valued solutions of  the following constraints by applying the implicit 

enumeration ,method: 

s t

a1 a4

a3

a2

a5

a7

a6
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x x x+ + =
1 4 7

10  

x£ £
1

5 6  

x£ £
4

3 5  

x£ £
7

1 2  

Step 2. Set x x x= = =
2 3 5
6, 2, 4,  and x =

6
4.  

Step 3. Three 10-MP candidates X =3 (5,6,2,3,4, 4,2) , X =4 (5,6,2, 4, 4, 4,1) , and X =5 (6,6,2,3, 4, 4,1) are 
obtained. 

Step 4. Check X =3 (5,6,2,3,4, 4,2)  whether it is a 10-MP. 

 (4.1) i
i ii
x a PÎ £å { | } 10  for each iP . 

 (4.2) j

i ii
I j x a P= Î = =å{ | { | } 10} {2}  

 (4.3) X =3 (5,6,2, 3,4, 4,2)  is a 10-MP. 
 

The result is listed in Table 2. 
 

Table 2. List of  all 5-MPs in Example 2 
10-MP candidates 10-MP?

X =1 (5,6,2, 3, 4,5,1)  Yes

X =2 (6,6,2, 3, 4, 4,1)  Yes

X =3 (5,6,2,3,4, 4,2)  Yes

X =4 (5,6,2, 4, 4, 4,1)  Yes

X =5 (6,6,2,3, 4, 4,1)  Yes

X =6 (5,6,3, 3,5, 4,2)  No

X =7 (5,6,4, 3, 4, 4,2)  No

X =8 (5,6, 4, 3,5, 4,1)  Yes

X =9 (5, 8,2, 3, 4,4,2)  No

 
 
6. RELIABILITY EVALUATION 
 

If dmY Y Y1 2, ,..., are the collection of all d-MPs of the project network, then the system reliability for level d -1  
is defined as  

d
R X V X d- = £ -

1
Pr{ | ( ) 1} dm i

i
X V X d X X Y== - ³ = - È ³

1
1 Pr{ | ( ) } 1 Pr{ { | }} . 

To compute dm i
i
X X Y=È ³

1
Pr{ { | }} in terms of d-MPs, several methods such as inclusion-exclusion (El-Neweihi et 

al., 1978; Hudson and Kapur, 1983), disjoint subset (Hudson and Kapur, 1985), and state-space decomposition 
(Aven, 1985) are available. Here we apply the state-space decomposition method to Example 2 and obtain that 

dm i
i
X X Y=È ³ =

1
Pr{ { | }} 0.9955.  Hence, R P X V X= £ = - =

9
{ | ( ) 9} 1 0.9955 0.0055 . Similarly, we have 

R =
10

0.1955,  R =
11
0.6448,  and R =

12
1.000 . If level d of Example 2 is a random variable and its probability 

distribution is known as p p= =
9 10
0.2, 0.3, p =

11
0.4, , and p =

8
0.1 , then the system reliability is 

d dd
R R p

=
= =å12

9
0.4177.  
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7. DISCUSSION 
 

The numbers of non-negative integer solutions that satisfies (1)
jj j jn

x x x d+ + + =
1 2

...  and (2)
ji ji ji
l x u£ £  

for 
j

i n= 1,2,...,  are bounded by j
n d

d

æ ö+ - ÷ç ÷ç ÷ç ÷ç ÷çè ø

1
and 

jn

ji ji
i

u l
=

- +
1

( 1) , respectively. Hence, the total number of 

d-MP candidates of the proposed algorithm is bounded by 
jn

m j

ji jij
i

n d
u l

d=
=

æ ö+ - ÷ç ÷ç - +÷ç ÷ç ÷çè ø
å 1

1

1
min{ , ( 1)} . 

As each d-MP candidate is an n-tuple, it thus requires at most 
jn

m j

ji jij
i

n d
O n u l

d=
=

æ ö+ - ÷ç ÷ç⋅ - +÷ç ÷ç ÷çè ø
å 1

1

1
( min{ , ( 1)})  units of storage space to save all d-MP candidates. 

 
 
8. CONCLUSION 
 
Given all MPs that are stipulated in advance, the proposed method can generate all d-MPs of a stochastic project 
network for each level d. The system reliability for level d -1 , i.e., the probability that the duration to complete all 
activities of the project is less than or equal to d -1 , can then be computed in terms of these d-MPs. 
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