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Abstract  Most of  the items in the universe deteriorate over time. Many items such as pharmaceuticals, high tech 

products and readymade food products also have their expiration dates. This paper  developes an economic order quantity 

model for retailer in which demand rate is linearly time dependent and non increasing function of  time, deterioration rate is 

time dependent having expiration dates under trade credits..We then show that the total average cost is sensitive with respect 

to the key parameters. Furthermore, we discuss several sub- special cases. Finally, numerical examples and sensitivity analysis 

is provided to illustrate the results. Mathematica 5.2 software is used to find numerical results. 
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1. INTRODUCTION 

At present, it is common that, the vendor often provides to his/ her customer a trade credit period to reduce inventory 

and stimulate sales. Thus trade credit is beneficial for both vendor and buyer point of view. Goyal [1] is the first author who 

has established the retailer’s optimal economic order quantity under permissible delay in payments. Aggarwal and Jaggi [2] 

extended model [1] for deteriorating items. Stochastic EOQ model for deteriorating items under permissible delay in 

payments was developed by Shah [3]. Shinn et al. [4] extended model [1] considering quantity discount for freight cost. Chu 

et al. [5] also extended model [1] for deteriorating items. Khanra et al. [6] established an EOQ (Economic Order Quantity) 

model for a deteriorating item with time-dependent demand under trade credits. Teng [7] modified Goyal’s [1] model for 

the fact that unit selling price is necessarily higher than purchase cost. Lou and Wang [8] established an EPQ (Economic 

Production Quantity model for a manufacturer (or wholesaler) with defective item when its supplier offers an up- stream 

trade credits M while it turn provides its buyers a down-stream trade credit N. Huang [9] established an EOQ model for a 

supply chain in which supplier offers the wholesaler the permissible delay period M and the wholesaler in turn provides the 

trade credit period N to its retailers. Soni and Shah [10] developed an EOQ model with an inventory- dependent demand 

under increasing payment scheme. Teng and Chang [11] presented optimal manufacturer’s replenishment policies under two 

levels of trade credit financing. Tripathi [12] presented an inventory model for seller with exponential demand under 

permitted credit period by the vendor. Many related research papers can be found in Chung [13], Devis and Gaither [14], 

Chung and Liao [15], Huang and Hsu [16], Ouyang et al. [17], Skouri et al. [18], Yang et al. [19] and their citations. 

Many products like medicines, green vegetables, volatile liquids, milk, bread and others deteriorate continuously but 

also have their expiration dates. However, few researchers have considered the expiration date of deteriorating items. Kreng 

and Tan [20] established the optimal replenishment decision in an economic production quantity model with defective item 

under permissible delay in payment. Wu et al. [21] proposed an economic order quantity model for retailer where (i) the 

supplier provides an up-stream trade credit and the retailer also offers a down-stream trade credit, (ii) the retailer’s down-

stream trade credit to the buyer not only increases sales and revenue but also opportunity cost and default risk and (iii) 

deteriorating items having their expiration dates. Ghare and Schrader [22] established an inventory model by considering an 

exponentially decaying inventory. Dave and Patel [23] developed an economic order quantity (EOQ) model for deteriorating 

items with linearly non decreasing demand with no shortages. The model [22] is extended by Sachan [24] to allow for 

shortages. Hariga [25] established inventory models for deteriorating items with time- dependent demand. Goyal and Giri 

[26] studied a survey on the recent trends in modelling of deteriorating items. Teng et al. [27] developed inventory model to 

allow for partial backlogging. Skouri et al. [28] presented inventory models with ramp type demand rate and Weibull 
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deterioration rate. Mahata [29] considered an economic production quantity (EPQ) model for deteriorating items under 

trade credits. Dye [30] developed an inventory model for the effect of technology investment on deteriorating item. Recently, 

Wang et al. [31] proposed an EOQ models for a seller by incorporating the facts (i) deteriorating products not only 

deteriorate continuously but also have their maximum life and (ii) permissible delay period increases with demand and 

default risk. 

The remaining part of the paper is framed as follows. Section 2 presents assumptions and notations followed by 

mathematical formulation for different situations. Optimal solution is determined in section 4. Numerical examples and 

sensitivity analysis is discussed in section 5. At last conclusion and future research is provided in section 6. 

 

2. ASSUMPTION AND NOTATIONS 

The following assumptions are used throughout the manuscript.  

1. The demand Rate is time dependent and non increasing function of time  

2. The deterioration rate is time dependent and  ( ) , .t T mθ ≤ ≤ ≤
1

 =   0 t
1+ m-t

  

In case of time approaches to expiration date m, deterioration rate close to 1. 

Deterioration becomes zero for very large expiring date, i.e. m → ∞  and ( ) 0tθ → . 

3. If cycle time T is longer than retailer’s trade credit period M then retailer pays for the interest charges on item in 

stock with interest charge Ic during time [M, T]. If cycle time T is shorter than retailer’s trade credit period then 

interest charges is zero in whole cycle. But if seller’s permissible delay period (M) is greater than N, the retailer can 

accumulate revenue and earn interest in [N, M] with rate Ie.  

4. Renewal rate is instantaneous. 

5. Time horizon is infinite. 

6. Selling price is necessarily greater than purchase cost.  

 In addition the following notations are adopted throughout the manuscript: 

h : Unit stock holding cost / year in dollars excluding interest charges. 

A : Ordering cost / order. 

c : Unit purchase cost . 

s : Selling price per unit time ,  s > c 

M : Retailer’s permissible delay period offered by the supplier. 

N : Customer’s permissible delay period offered by the retailer. 

D≡D(t) = a-bt : Demand rate , where a > 0 and 0 1b≤ ≤ , a is the initial demand. 

e
I  : Interest earned /dollar.  

c
I  : Interest charged / $  in stocks per year.  

 t : The time in years. 

 I(t) : Inventory level at time t. 

1
( )

1 -
t

m t
θ =

+
  

 
 : The deterioration rate at time t, 0 ( ) 1tθ≤ ≤  

 m : The expiration date of item. 

 T : Renewal time (in years). 

 Q : Order quantity. 

 TC(T) : Total cost/ year. 

 T* : Optimal replenishment time (in years). 

Q* : Optimal order quantity. 

TC* : Optimal total cost/year (in dollars). 
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3. MATHEMATICAL FORMULATIONS  

The inventory level I(t) decreases to meet time dependent demand and time dependent deterioration. The differential 

equation of states at I(t) during the replenishment cycle [0,T] is given by 

 
( )

( ) ( ) ( ), 0
dI t

t I t a bt t T
dt

θ+ =− − ≤ ≤ .  (1) 

With the condition ( ) 0I T = . The solution of  (1) is    

 
1 -

( ) (1 - )( - ) {( 1) - }(1 - )log
1 -

m T
I t b m t T t m b a m t

m t

 +  = + + + +    + 

 
           

 
  (2) 

The Retailer’ order quantity is     

 (0) (1 ) {Q I m bT
  = = + +    

1+ m-T
(m+1)b-a}(1+ m)log

1+ m
  (3) 

The total annual cost contains the following elements: 

1. Ordering cost is = 
A

T
 

2. Purchase cost per cycle is equal to  

                                 
{( 1) - }(1 ) 1 -

(1 ) log
1

c m b a m m T
m bc

T m

 + + +  + +    + 

   

 
  (4)  

3. Stock holding cost is
0

( )
T

h
I t dt

T
= ∫  

 
2 3 3 2 2(1 ) (1 ) (1 ) (1 ) 1 (1 )

{( 1) } lo g
2 6 6 2 1 2 4

h bT m b m T m m m T T m T
m b a

T m

    − + − + + + − +   = + − + + − + −     +     
 (5)  

The two cases may arise to calculate the annual capital opportunity cost i.e. (i)  N M< and (ii) N ≥ M.                                                                                            

Case 1: N M<  

We discuss two possible sub- cases based on the values of M and T + N. If T + N ≥ M, then the retailer takes the full 

revenue at the time T + N and pay off total purchase cost at retailer’s credit period M. The two sub cases are depicted in 

the following Figures 1 and 2. 

Sub-case 1. (i):  M T N≤ +  

In this situation, the  last payment of  retailer in time  T + N  is longer than retailer’s credit period, therefore the retailer 

financed all item sold after M –N at an interest charge Ic 

Interest charged per year 
0

( )
T N M

c
cI

t a bt dt
T

+ −

= −∫  

                                           2( ) ( )
2 3

c
cI a b

T N M T N M
T

   = + − − + −    
   (6)  
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Cumulative revenue 

 

                                                                                                                D                                                                                                                            

                                                                          

 

       

                          I(t)                                                         B                       C        

                                                                                     

                               O            N                                        M        T     T + N                                    Time 

Fig 1:  N < M and    M ≤ T + N. 

The retailer sells deteriorating goods at the beginning but receives money at time N. During N to M, the retailer accumulate 

revenue in an account that earns Ie /$/year. Hence, the interest earned/ year is  

              
0

( )
M N

e
sI

t a bt dt
T

−

= −∫ 2( ) ( )
2 3

e
sI a b

M N M N
T

   = − − −    
  (7)  

Therefore, the annual capital opportunity cost is 

 2 2( ) ( ) ( ) ( )
2 3 2 3

c e
cI sIa b a b

T N M T N M M N M N
T T

         = + − − + − − − − −            
  (8)  

Total annual cost for the retailer can be expressed as follows: 

 

( )
2 3

1

3 2 2

(1 ) (1 )
(1 )

2 6

(1 ) (1 ) 1 (1 )
{( 1) } lo g

6 2 1 2 4

(c

A h bT m b m T
TC T m cb

T T

m m m T T m T
m b a

m

cI

T

  − + − = + + + + +     
   + + + − +  − + + − + −    +    

+

c{(m +1)b-a}(1+ m) 1+ m-T
log

T 1+ m

             

             2 2) ( ) ( ) ( )
2 3 2 3

e
sIa b a b

T N M T N M M N M N
T

         + − − + − − − − −            

  (9)  

 

2 2 2 3

3 2 2 2

2

{( 1) }( 2 1) (1 ) (1 )
(1 )

2(1 ) 2 6

(1 ) {( 1) }( 2 1) {( 1) } (1 ) {( 1) }

6 4 2 4

( )
( ) ( )

2 3
c e

c m b a m T m A h bT m b m T
m bT

T m T T

b m m b a m T m m b a T m m b a T

cI T N M sIa b
T N M M N

T T

  + − − + + − + −  = + + + + + −  +    
+ + − − + + + − + + − + − 

 + −   − + − − −    

+  

+ 2 ( )
2 3

a b
M N

   − −    

 (10)  

 

Sub-case1.2: M T N≥ +  

In this situation retailer credit period is longer than time at which the retailer receives the payout from the customer, retailer 

receives the whole revenue and there is no interest charge,  

and Interest earned / year 
0

( ) ( )
T M

e

T N

sI
t a bt dt t a bt dt

T
+

    = − + −     
∫ ∫                        

                                 ( ) ( ) ( )2 2 3 3

2 3
e

sI a b
M N M N TN a bT bN

T

   = − − − + + +    
                     (11)  
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                          Cumulative revenue 

                                                                                                                          D                                                                                                                            

                                                                          

 

       

                                     I(t)                                                   

                                                                                     

                                         O            N                            T         T + N        M                    Time 

Fig 2:  N < M and    M > T + N. 

Therefore, the total annual cost of retailer  

 

( )
2

1.2

3 3 2 2

(1 )
(1 )

2

(1 ) (1 ) (1 ) 1 (1 )
{( 1) } lo g

6 6 2 1 2 4

A h bT m
TC T m cb

T T

b m T m m m T T m T
m b a

m

  − = + + + +     
   + − + + + − +  + − + + − + −    +    

c{(m +1)b-a}(1+ m) 1+ m-T
log

T 1+ m

               

               ( )2 2 3 3( ) { ( )}
2

e
sI a

M N N M TN a b T N
T


− − − + + +   

b
+

3

 (12)  

 

( ) { }

2 2 2 3

3 2 2 2

2 2 3 3

{( 1) }( 2 1) (1 ) (1 )
(1 )

2(1 ) 2 6

(1 ) {( 1) }( 2 1) {( 1) } (1 ) {( 1) }

6 4 2 4

( ) ( )
2

e

c m b a m T m A h bT m b m T
m bT

T m T T

b m m b a m T m m b a T m m b a T

sI a
M N N M TN a b T N

T

  + − − + + − + −  = + + + + +  +    
+ + − − + + + − + + − − + − 

 
 − − − + + + 
 

+

b
+

3

         (13) 

 

Case 2: N M≥  

In this case, customer’s credit period is longer than retailer’s credit period, the retailer doesn’t earned interest, but charged 

interest during N to T + N.  

Therefore, the interest charged per year  

1
( )( ) { ( 2 )}

2c

b
cI N M a bT T a T N

T

   = − − + − −    

1
( )( ) ( )

T N

c

N

cI N M a bT a bt dt
T

+    = − − + −     
∫    (14)      
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Fig 3: N M≥  

 

( )
2

2

3 3 2 2

(1 )
(1 )

2

(1 ) (1 ) (1 ) 1 (1 )
{( 1) } lo g

6 6 2 1 2 4

(
c

A h bT m
TC T m cb

T T

b m T m m m T T m T
m b a

m

cI N

  − = + + + +     
   + − + + + − +  + − + + − + −    +    

+

c{(m +1)b-a}(1+ m) 1+ m-T
log

T 1+ m

             

             { )( )
2

b
M a bT T a T bN

  − − + + −    
 

 (15)  

or    

 

( )

{

2 2 2 3

2

3 2 2 2

{( 1) }( 2 1) (1 ) (1 )
(1 )

2(1 ) 2 6

(1 ) {( 1) }( 2 1) {( 1) } (1 ) {( 1) }

6 4 2 4

( ) ( )
c

c m b a m T m A h bT m b m T
TC T m bT

T m T T

b m m b a m T m m b a T m m b a T

cI N M a bT

  + − − + + − + −  = + + + + +  +    
+ + − − + + + − + + − − + − 

− − +

              +  

              +  ( )
2

b
T a T bN

  + −    
  Approximately

 (16)  

 

4. DETERMINATION OF THE OPTIMAL SOLUTION  

 

For case 1:  N M<  Sub-case1.1: M T N≤ + , Sub-case1.2: M T N≥ + and Case 2: N M≥  

Differentiating Equations (10), (13) and (16) with respect to T, two times, we get 

 
2 2 2 3

2 2 2 2

( ) {( 1) }( 2 1) (1 ) (1 2 ) (1 )

2(1 ) 6 6

T c m b a m T m A hbT m T m T b m

dT m T T T T

− + − + + + + − + + +
= − − +

+
1

dTC
     

 
2 2

2 2

( )( ){( 1) }( 2 1) {( 1) }

44 2
c

cI a T N M N M Th m b a m T m h m b a

T T

+ − − −+ − + + + + −
− − −  (17) 

 
2

2

2

( ) ( 2 ) 1
( ) ( )

2 33
c

e

cI b T N M N M T a b
sI M N M N

T T

 + − − −   + − − −    
2

 +                                                                  

 

2 2 2 3

2 2 2 2

2 2 3 32 2

2 2 2

( ) {( 1) }( 2 1) (1 ) (1 2 ) (1 )

2(1 ) 6 6

( ) ( ){( 1) }( 2 1) {( 1) }

44 2 3
e e

e

T c m b a m T m A hbT m T m T b m

dT m T T T T

sI a M N sI b N Mh m b a m T m h m b a
SI bN

T T T

− + − + + + + − + + +
= − − +

+
− −+ − + + + + −

− − − − −

1.2
dTC

 (18)  

Cumulative revenue

( )I t

O M N T T N+ Time

D
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2 2 2 3

2 2 2 2

2 2

2

( ) {( 1) }( 2 1) (1 ) (1 2 ) (1 )

2(1 ) 6 6

{( 1) }( 2 1) {( 1) }
( ) ( )

44
c c

T c m b a m T m A hbT m T m T b m

dT m T T T T

h m b a m T m h m b a
cI b N M cI a bT bN

T

− + − + + + + − + + +
= − − +

+
+ − + + + + −

− − − − + + +

2
dTC

 (19)  

 { } ( ) ( )2 3
2

1

2 3

1 1( ) 1
( 1) ( 1) 2

2 3 3

hbT m T b md TC T h
m b a m c A

dT T

   + − + = + − + + + + − +    
 

 ( ) ( )22 ( )( 2 )
( ) ( ) 2

3 2 3c e

b T N M N M T a b
cI a N M T T N M sT M N M N

      + − − −   − − − + − − − − −            
 (20)  

 { }
2

2

(1 ) (1 ) (1 )
8 2 ( )

6
c

cIhb m T m m
a b T N M

T TT

  + − + + + − − + − + −    
.                                     

 

{ } ( ) ( )

( )

2 3
2

12

2 3

2 2
2

2

1 1( ) 1
( 1) ( 1) 2

2 3 3

2 (1 ) (1 ) (1 )
( ) ( ) 8

3 6e

hbT m T b md TC T h
m b a m c A

dT T

b N MN M hb m T m m
sI M N a M N

T T

   + − + = + − + + + + − +    
    + +    + − + +   + − − + + − −            

 (21)  

and  

 { } ( ) ( )2 3
2

2

2 3

1 1( ) 1
( 1) ( 1) 2

2 3 3 c

hbT m T b md TC T h
m b a m c A bcI

dT T

   + − + = + − + + + + − +    
 .    (22)  

The necessary condition for  ( )T
1

TC , ( )T
1.2

TC and ( )T
2

TC to be minimum is 1
( )

0
dTC T

dT
= , 1.2

( )
0

dTC T

dT
= , 

2
( )

0
dTC T

dT
= , provided  

2

1

2

( )
0

d TC T

dT
> ,

2

( )
0

T

dT
>

2

1.2
d TC

and 
2

2

2

( )
0

d TC T

dT
> , which is clear from (20) , (21) and (22) 

that all second derivatives are positive. Putting, 1
( )

0
dTC T

dT
= , 1.2

( )
0

dTC T

dT
= , and 2

( )
0

dTC T

dT
= , we get 

 
2 2 2 3{( 1) }( 2 1) (1 ) (1 2 ) (1 )

2(1 ) 6 6

c m b a m T m hbT m T m T b m
A

m

+ − + + + + − + + +
+ + −

+
+  

 
2 2 2 ( )( ){( 1) }( 2 1) {( 1) }

4 4 2
c

cI a T N M N M Th m b a m T m hT m b a + − − −+ − + + + + −
+ +  (23) 

 
2

2( ) ( 2 )
( ) ( ) 0

3 2 3
c

e

cI b T N M N M T a b
sI M N M N

 + − − −   − − − − − =    
,                             

 
2 2 2 3{( 1) }( 2 1) (1 ) (1 2 ) (1 )

2(1 ) 6 6

c m b a m T m hbT m T m T b m
A

m

+ − + + + + − + + +
+ + −

+
      

 

2 22 2 2 ( ){( 1) }( 2 1) {( 1) }

4 4 2
e

sI a M Nh m b a m T m hT m b a −+ − + + + + −
+ ++  (24) 

 

3 3

2( )
0

3
e

e

sI b N M
sI bNT

−
+ + = ,                                                                                              

and 

  
2 2 2 3{( 1) }( 2 1) (1 ) (1 2 ) (1 )

2(1 ) 6 6

c m b a m T m hbT m T m T b m
A

m

+ − + + + + − + + +
+ + −

+
+    

 
2 2 2{( 1) }( 2 1) {( 1) }

4 4

h m b a m T m hT m b a+ − + + + + −
+ +  (25) 
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 2 2( ) ( ) 0
c c

cI bT N M cI T a bT bN− − + + = .                                                                             

 

5. NUMERICAL EXAMPLES AND SENSITIVITY ANALYSIS  

 

Example: 1  

Let us consider the parameter values a = 5 units/year, b = 0.5,   s = $15 per unit, c = $10 per unit, A=  $50/order, h 

= $2/unit/year, M = 100/365 year, N = 50/365year, m = 1 year, $0.17 / $
c
I = / year, $0.10 / $

e
I = year. 

Substituting these values in the equation (20), we get, the optimum solutions for T = T* = 0.322129 year and corresponding 

optimum total annual cost TC  =  TC* = $11.3159.  

Case 1: N M<  

Sub-case1.1:  M T N≤ +  

Table 1.The sensitivity analysis will be helpful in decision making to analyze the effect of change of these variations. Using 

the same above data (Example 1) the sensitivity analysis of different parameters has been done. We study the effect of the 

variations in a single parameter keeping other system parameters same on the optimal solutions. 

    Changing parameters         change                   T*                TC* 

a 

 

 

 

 

s 

 

 

 

 

 

c 

 

 

 

A 

 

 

 

 

 

h 

 

 

 

 

M 

 

 

 

 

m 

           4.9 

           4.8 

           4.7 

           4.6             

             

            17 

            19 

            21 

            23 

 

           9.5 

            9 

            8 

            7 

 

           53 

           56 

           59 

           62 

 

           2.1 

           2.2 

           2.3 

           2.4 

 

        125/365 

        150/365 

        175/365 

        200/365 

 

          0.9 

          0.8 

          0.7 

          0.6 

           0.494728 

           0.632397 

           0.757551 

           0.877638 

            

           0.324222 

           0.323462 

           0.322701 

           0.321938 

 

           0.469112 

           0.587279 

           0.794300 

           0.988557 

 

          0.515288 

          0.653646 

          0.768402 

          0.868848 

 

          0.288785 

          0.248577 

          0.201936 

          0.142658 

 

          0.325699 

          0.327035 

          0.329057 

          0.331827 

 

          0.464599 

          0.565615 

          0.645577 

          0.710943 

         17.2577 

         21.4523 

         24.7180 

         27.3512 

          

         11.2856 

         11.2579 

         11.2292 

         11.2004 

 

         15.6140 

         18.5632 

         22.4641 

         24.7753 

 

         18.4356 

          23.5398 

          27.7268 

          31.3571 

 

         9.59314 

        7.67585 

        5.46005 

        2.68382 

          

         10.7822 

         9.75954 

         9.27845 

         9.27795 

 

        17.1607 

        21.8798 

        26.1225 

        30.1416 
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Example: 2 

Let a = 5 units/year, b = 0.5, s = $15 per unit, c = $10 per unit, A= $50 per order, h = $2/unit/year, M = 375/365 

years, N = 50/365 years, m = 1 year, $0.17 / $
c
I = year, $0.10 / $

e
I =  year. Substituting these values in (21), we get, 

the optimum solutions for T* = 0.619185 year and corresponding optimum total annual cost TC* = $ 5.55998.  

 

Sub-case1.2:  M T N≥ +  

 

Table 2. The sensitivity analysis will be helpful in decision making to analyze the effect of change of theses variations. Using 

the same above data (Example 2) the sensitivity analysis of different parameters has been done. We study the effect of the 

variations in a single parameter keeping other system parameters same on the optimal solutions. 

    Changing  parameters         change                   T*                TC* 

s 

 

 

 

 

 

A 

 

 

 

 

h 

 

 

 

 

M 

 

 

 

 

m 

            17 

            19 

            21 

            23 

 

           51 

           52 

           53 

           54 

 

           2.1 

           2.2 

           2.3 

           2.4 

 

        400/365 

        425/365 

        450/365 

        475/365 

 

          0.95 

          0.90 

          0.85 

          0.80 

           0.645715 

           0.671267 

           0.695946 

           0.719844 

 

          0.672408 

          0.721797 

          0.768087 

          0.811806 

 

          0.591773 

          0.563970 

          0.535674 

          0.506757 

 

          0.645695 

          0.672592 

          0.699809 

          0.727290 

 

          0.670320 

          0.715880 

          0.756805 

          0.793748 

         5.16105 

         4.79179 

         4.44699 

         4.12275 

 

          8.03404 

          10.2053 

          12.1523 

          13.9258 

 

         4.00894 

         2.35804 

        0.590233 

         --------- 

          

         5.30010 

         5.05806 

         4.83274 

         4.62303 

 

        8.36814 

        10.8927 

        13.2231 

        15.4163 

 

Note: Dotted data shows the non feasible value. 

 

Example: 3 

Let us consider the parameter values a = 5units per year, b = 0.5, s = $15 per unit, c = $10 per unit, A = $50 per order, 

h = $2/unit/year, M = 50/365 years, N =100/365 years, m = 1 year, $0.17 / $
c
I =  year, $0.10 / $

e
I = year. 

Substituting these values in (22) the optimum solution for T* = 0.290311 year and the corresponding optimum total 

annual cost TC* = $14.8652.  

Case 2: N M>  
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Table 3. The sensitivity analysis will be very helpful in decision making to analyze the effect of change of theses variations. 

Using the same above data (Example 3) the sensitivity analysis of different parameters has been done. We study the effect of 

the variations in a single parameter keeping other system parameters same on the optimal solutions. 

 

    Changing parameter         change                   T*                TC* 

a 

 

 

 

 

c 

 

 

 

 

 

A 

 

 

 

 

 

h 

 

 

 

M 

 

 

 

 

m 

 

 

           4.9 

           4.8 

           4.7 

           4.6 

             

            9.5 

            9.0 

            8.5 

            8.0 

 

           52 

           54 

           56 

           58 

 

           2.1 

           2.2 

           2.3 

           2.4 

 

        55/365 

        60/365 

        65/365 

        70/365 

 

          0.9 

          0.8 

          0.7 

          0.6 

           0.370967 

           0.439593 

           0.501321 

           0.558600 

 

           0.418399 

           0.522858 

           0.616741 

           0.705222 

 

          0.410014 

          0.501651 

          0.578761 

          0.646588 

 

          0.258429 

          0.222757 

          0.181043 

          0.127443 

 

          0.290240 

          0.290169 

          0.290098 

          0.290027 

 

          0.415136 

          0.505855 

          0.578344 

          0.638416 

         18.4641 

         21.3604 

         23.8154 

         25.9550 

 

         19.5789 

         22.7987 

         25.1919 

         27.0191 

 

          20.5204 

          24.8651 

          28.5313 

          31.7641  

 

         12.9934 

         10.9103 

         8.50185 

        5.47454 

          

         14.7521 

         14.6391 

         14.5261 

         14.4131 

 

        21.3080 

        26.4788 

        31.0928 

        35.4257 

 

All the above observations can be summed up as follows: 

From Table 1, following inferences can be made: 

(i). Increase of initial demand ‘a’ , unit purchase cost ‘c’, ordering cost ‘A’ and expiration date ‘m’ will result increase in total 

annual cost TC. That is, change in ‘a’, ‘c’ ‘A’ and ‘m’ will lead positive change in TC. 

(ii). Increase of unit selling price ‘s’ unit stock holding cost ‘h’ and retailer’s permissible delay period ‘M’ will lead decrease 

in total annual cost TC . That is change in ‘s’ , ‘h’ and ‘M’ will lead negative change in TC. 

From Table 2, the following inferences can be made: 

(i). Increase of ordering ‘A’ and expiring time ‘m’ will lead increase in total annual cost TC. That is change, in ‘A’ and ‘m’ 

will cause positive change in TC. 

(ii). Increase of unit selling price ‘s’, unit stock holding cost ‘h’ and retailer’s credit period ‘M’ will lead decrease in total 

annual cost TC . That is change in ‘s’, ‘h’ and ‘M’ will cause negative change in TC. 

From Table 3, the following inferences can be made: 

(i). Increase of initial demand ‘a’, unit purchase cost ‘c’, ordering ‘A’ and expiring time ‘m’  

will lead increase in total annual cost TC. That is change, in ‘a’, ‘c’, ‘A’ and ‘m’ will cause positive change in TC. 

(ii). Increase of unit stock holding cost ‘h’ and retailer’s credit period ‘M’ will lead decrease in total annual cost TC . That is 

change in ‘h’ and ‘M’ will cause negative change in TC. 
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6. CONCLUSION AND FUTURE RESEARCH  

 

This study was motivated by the observation of daily practice in the field of material and pharmaceutical management. In 

this paper, we have developed general approach to determine optimal ordering policy for decreasing demand with time 

dependent deterioration under fixed life time production and trade credits. By adopting the time dependent deterioration, 

the deterioration becomes zero for large expiring date and becomes one for time approaches to expiration date. In this 

paper, we have built up an optimal order quantity model to obtain optimal total annual cost considering (i) customer’s 

trade credit period offered by the retailer is less than retailer’s permissible delay period offered by the supplier (i.e. N < M) 

and (ii) customer’s permissible delay period offered by the retailer is greater than or equal to retailer’s trade credit period 

offered by the supplier (i.e. N ≥M). Mathematical models have derived to find optimal solution. Moreover, we have shown 

that the variation is quite sensitive with respect to different to key parameters 

The possible extension of the present model could be allowable shortages and inflation. The model can also be  generalized 

for adding the freight charges and others. 
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