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Abstract  In this paper, we have developed a new technique for solving bounded-variable linear fractional programming 

problems by converting into linear programming problems. In this technique, we have proposed to convert fractional 

objective function into linear objective function by making a relationship between the numerator and denominator with a 

parameter. A number of  numerical examples are illustrated to demonstrate our technique. We have also developed a 

computer code by using a mathematical programming language AMPL and then present a comparison of  our method with 

existing relevant methods. 
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1. INTRODUCTION 

Linear fractional programming (LFP) with bounded-variables is a special kind of  mathematical programming. It 

consists of  an objective function which is the ratio of  two linear functions and some linear constraints with bounded 

variables. From last three decades LFP problems are getting lots of  attention due to its importance in modeling various 

decision processes in economics, management science, numerical analysis, stochastic programming, and decomposition 

algorithms (Stanchu-Minasian, 1997). 

Hungarian mathematician Bela Martos (1964) first formulated LFP. Mesiter and Oettli (1967), Aggrawal and Sharma 

(1970) applied the idea of  fractional programming to calculate the maximum transmission rate in an information channel. 

Bereanu (1964) applied the idea of  LFP in stochastic programming problem. Under certain economic assumptions, Ziemba, 

Brooks-Hill and Parkance (1974) developed a fractional programming model for an investment portfolio. 

There are many existing techniques for solving LFP problems. A. Charnes and W. W. Cooper (1973) developed a 

transformation technique for solving LFP problems by converting it into single linear programming problems (LP). W. 

Dinkelbach (Bajalinov, 2003) developed a parametric approach to solve LFP. Bitran and Novaes (1972) developed a method 

called updated objective function method to solve LFP by solving a sequence of  linear programs only re-computing the 

local gradient of  the objective function. Hasan and Acharjee (2011) proposed a technique for solving LFP by converting 

into LP. Das and Hasan (2012) developed a technique for solving bounded-variable LFP problems. Das, Hasan and Islam 

(2013) proposed another technique to solve bounded-variable LFP problems by converting into LP problems. 

Bounded-variable LFP problems are more difficult to solve than LFP. In this paper, we develop a new technique for 

solving bounded-variable LFP. We use the idea of  Dinkelbach’s parametric transformation for solving LFP and then use the 

idea of  the bounded valued simplex algorithm for solving LP problems to develop our technique. We use a mathematical 

programming language AMPL to develop a computer code according to our algorithm. There are many existing computer 

techniques that are developed by using MATHEMATICA. But our developed computer technique is easier to use and run. 

It is less time-consuming than other existing methods. To show that in this paper, we have made a comparison between 

other existing methods and our method. 

The rest of  the paper, we have organized as follows. In section 2, we discuss definition of  LFP, bounded-variable LFP 

and a relation between LP, LFP and bounded-variable LFP. In section 3, we discuss briefly about some existing techniques. 

In section 4, we present our proposed method. In section 5, we present a computer code that we have developed by using a 

mathematical programming language AMPL. In section 6, we present some numerical examples and solve these by using 

our method. In section 7, we show a parallel representation of  manual output and the AMPL output of  the numerical 

examples. In section 8, we present a comparison between our method and existing methods. Finally, in section 9, we have 

drawn a conclusion about our work. 
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2. SOME PREREQUISITE 

In the current section, we present some basic definitions relevant to our work. First, we discuss about linear fractional 

programming (LFP). Then bounded-variable LFP and finally discuss a relation between linear programming (LP), LFP and 

bounded-variable LFP. We have discussed these as follows. 

 

2.1 Linear Fractional Programming (LFP) 

 

Problems of  LFP arise when it becomes important to optimize the efficiency of  some activities. Mathematically LFP 

problems can be defined as follows (Stanchu-Minasian, 1997). 

 Maximize (or Minimize) 
1

1

n

j j

j

n

j j

j

p x

z

d x

α

β

=

=

+

=
+

∑

∑
 (1) 

 subject to 

 
1

( , , ) , 1,......,
n

ij j i

j

a x b i m
=

≤ = ≥ =∑  (2) 

 0, 1,......,jx j n≥ =  (3) 

Where , , n

j j j
x p d ∈ℜ , m n

ij
a ∈ℜ ×ℜ  is an m n×  matrix m

ib ∈ ℜ  and ,α β ∈ℜ . It is assumed that
1

0
n

j j

j

d x β
=

+ ≠∑ . 

Equation (1) is representing the objective function which has to be maximized or minimized. It is the ratio of  two linear 

functions. Equation (2) is representing the linear constraints and equation (3) is representing non-negative restrictions. 

In the next section, we have discussed about bounded-variable linear fractional programming problem. 

 

2.2 Bounded-variable LFP 

 

Bounded-variable LFP is a special kind of  LFP. Here decision variables are bounded above and below. Mathematically 

bounded-variable LFP is being formulated as follows (Stanchu-Minasian, 1997). 

 Maximize (or Minimize) 
1

1

n

j j

j

n

j j

j

p x

z

d x

α

β

=

=

+

=
+

∑

∑
 (4) 

 subject to 

 
1

( , , ) , 1,......,
n

ij j i

j

a x b i m
=

≤ = ≥ =∑  (5) 

 , 1,......,j j jl x u j n≤ ≤ =  (6) 

From equation (6), we observe that decision variables
jx are bounded above by

ju and below by
jl . 

LFP and bounded-variable LFP problems have a close relation to LP problems.  Bounded-variable LFP problems can 

be converted into LP problems. In the next section, we have discussed briefly the relationship between LFP and 

bounded-variable LFP with LP. 

 

2.3 Relation Between LP, LFP and Bounded-variable LFP 

 

LFP problems and bounded-variable LFP problems can be solved by converting into LP problems. In the current 

section, we have discussed some conversion procedures of  LFP and bounded-variable LFP into LP (Bajalinov, 2003) as 

follows. 

Case-1: Consider the objective function presented in equation (1) or (4). If 0, 1jd β= =  in either of  these equations 

then the fractional objective function will be converted into a linear objective function i.e. equation (1) and (4) will be 

converted into a linear function as 
1

n

j j

j

z p x α
=

= +∑  (7) 

Case-2: If 0, 1jd β= ≠  then equation (1) and (4) will be converted into linear objective function as follows. 
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1

n
j

j

j

p
z x

α
β β=

= +∑  (8) 

Case-3: If 0jp =  then equation (1) and (4) will become

1

n

j j

j

z

d x

α

β
=

=
+∑

. Here
1

n

j j

j

d x β
=

+∑  is a linear function. 

Therefore equation (1) and (4) can be converted into linear function in this way. 

In the next section, we have discussed some solution procedures of  LFP and bounded-variable LFP problems. 

 

3. LITERATURE REVIEW 

There are many existing techniques to solve bounded-variable LFP and LFP problems. In the current section, we 

discuss about some existing techniques. We discuss about Das and Hasan’s method, Charnes and Cooper’s method, Hasan 

and Acharjee’s method, Bitran and Novae’s method and Das, Hasan, Islam’s method briefly. 

 

3.1 Das and Hasan’s Method 

 

H. K. Das and M. Babul hasan (2012) developed a technique for solving bounded-variable LFP problems. They 

extended the idea of  bounded-variable simplex algorithm for solving LP problems to solve bounded-variable LFP problems. 

They also developed a computer code by using MATHEMATICA according to their algorithm. Their technique has been 

discussed briefly as follows. 

Step-1: Converted bounded-variable LFP problem into standard form. 

Step-2: Then performed 2 1 1

2( ) ( )j

j j j j
z p z z d z∆ = − − − where 1

1

n

j j

j

z p x α
=

= +∑ , 2

1

n

j j

j

z d x β
=

= +∑ until 0j∆ ≤ . 

Step-3: Applied idea of  bounded variable simplex algorithm. 

Their technique is very similar to Swarup’s method (1964) for solving LFP problems. 

 

3.2 Charnes and Cooper’s Method 

 

Charnes and Cooper (1973) developed this method. They developed this technique for solving LFP problems by 

converting into LP problems. Their technique has been discussed briefly as follows. 
Step-1: Considered the transformation y tx=  where 0t ≥  

Step-2: Then converted LFP into two different LP problems. 

Step-3: Optimal solution of  LFP will be found if  two of  these LP problems have an optimal solution. If  one of  them 

is inconsistent or unbounded then LFP will have no optimal solution. 

Demerits 

• This method is only applicable for solving LFP problems not for bounded variable LFP problems. 

• This technique is also very time-consuming because one has to solve two different LP problems. 

 

3.3 Hasan and Acharjee’s Method 

 

M. Babul Hasan and Sumi Acharjee (2011) developed this technique. They proposed a transformation system to 

convert LFP into LP. We have discussed their technique as follows. 

Step-1: In equation (1), denominator function must have to be positive i.e.
1

0
n

j j

j

d x β
=

+ >∑ . 

Step-2: They considered
j jt p d g= − ,

j

j

j j

x
y

d x β
=

+
and g

α
β

= . 

Step-3: Then the objective function of  the LFP becomes z py g= + . They calculated variable values of  LFP by 

1

j

j

j j

y
x

d y

β
=

−
. 

Demerits 

• Like Charnes and Coopers method, this technique is applicable for solving LFP problems only. 

• Although this technique is very interesting but it is laborious and time consuming because one has to do a lots of  

calculations to convert LFP problem into single LP problem. 
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3.4 Bitran and Novae’s Method 

 

In this section, we have summarized Bitran and Novae’s method. In (Bitran, 1972), they developed this. Assuming that 

the constraints set is nonempty and bounded and the denominator 
1

0
n

j j

j

d x β
=

+ >∑  for all feasible solutions, the authors 

proceeds as follows. 

(i) Convert the LFP into a sequence of  LP. 

(ii) Then solve these LPs until two of  them give identical solution. 

 

3.5 Das, Hasan and Islam 

 

Das, Hasan and Islam (2013) proposed a technique to solve bounded-variable LFP by converting into LP problem. 

They used Hasn and Acharjee’s (2011) transformation idea to convert LFP into LP problem. Then they used idea of  

bounded-variable simplex method for solving LP problems. They developed a computer code by using MATHEMATICA. 

They demonstrated their technique by illustrating a number of  numerical examples. 

 

3.6 Dinkelbatch’s Method  

 

This is the most popular technique for solving LFP problems (Bajalinov, 2003). In this section, we discuss this method 

briefly as follows. 

Step-1: Convert objective function (1) into a linear form as
1 1

( ) ( )
n n

j j j j

j j

z p x t q xα β
= =

= + − +∑ ∑  

Step-2: Solve it by using the simplex algorithm. 

Step-3: Solve by using simplex algorithm until the modified objective function gives zero value. 

In the next section, we present algorithm of  our proposed method. We have used the idea of  Dinkelbatch’s technique 

and the bounded-variable simplex algorithm’s (Hillier, 2001) idea to develop this method.  

 

4. PROPOSED METHOD  

In this section, we have presented our proposed method. Consider the bounded-variable LFP presented in Section 2.2. 

We first convert the objective function into a linear form. Then substitute those variables whose lower bounds are not zero 

by using another variable. Then convert the whole problem into standard form. Then apply the idea of  bounded-variable 

simplex method. We have discussed our method in the following steps. 

Step-1: Convert the objective function presented in equation (4) into linear function as follows. 

 ( ) ( )

1 1

( ) ( )
n n

k k

j j j j

j j

f p x t d xα β
= =

= + − +∑ ∑  (9) 

Where t−∞ ≤ ≤ ∞ and k is representing number of  iterations. 

Step-2: Consider
j j jx l y= +  in equation (6). Then the bounded-variable LFP problem will be converted into the 

following form where ( )

1 1

( )
n n

k

j j j j

j j

g p l t d lα β
= =

= + − +∑ ∑ ,
1

n

j i ij j

j

b a lγ
=

= −∑ , and 
j j jv u l= − . 

 Maximize (or Minimize) ( ) ( )

1 1

n n
k k

j j j j

j j

f p y t d y g
= =

= − +∑ ∑  (10) 

 subject to 

 
1

( , , ) , 1,......,
n

ij j i

j

a y i mγ
=

≤ = ≥ =∑  (11) 

 0 , 1,......,j jy v j n≤ ≤ =  (12) 

Step-3: Consider 

( )

1( )

( )

1

( )

( )

n
k

j j j

jk

n
k

j j j

j

p l y

t

d l y

α

β

=

=

+ +

=
+ +

∑

∑
 and choose ( ) 0k

j
y =  initially i.e. when 1k = . 

Step-4: Convert the problem into standard form presented by equations (10), (11), and (12). 
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Step-5: If  any variable is at a positive lower bound then it should be substituted at its lower bound. Then apply idea of  

simplex method. 

Step-6: Let ( )k

j
y  be a non basic variable at zero level which is selected to enter the basic. Compute the following 

quantities.
*

1

( )
min , 0B i

ij

ij

y
a

a
θ

  
= > 

  
,

*

2

( )
min , 0i B i

ij

ij

u y
a

a
θ −

  
= < 

−  
, and 

1 2min( , , )juθ θ θ= . Here *
( )B iy  are basic variables. 

Step-7: Now we have to do any one of  the following three alternatives. 

• If
1

θ θ=  then ( )
B r

y  leaves the solution and ( )k

j
y enters by using the regular row operation of  simplex method. 

• If
2

θ θ=  then ( )
B r

y  leaves the solution and ( )k

j
y enters. Then ( )

B r
y  being non-basic at its upper bound and 

must be substituted by ' '
( ) ( ) ,0 ( )B r r B r B r ry u y y u= − ≤ ≤ . 

• If
juθ =  then

jy  is substituted at its upper bound difference '

j j
u y− , while remaining non-basic. 

Step-8: If ( )
0

k
f = and all 0j∆ ≤ then stop. Otherwise repeat steps 1 to 7. Here j ijB

E p a=∑ and
j j jp E∆ = − . 

 

5. COMPUTER CODE 

In the current section, we present a computer code. We develop this by using a mathematical programming language 

AMPL. Our code consists of  three different parts. These are AMPL model file, AMPL data file and AMPL run file.  We 

present AMPL model file below. 
#---------------------------------------------------- 

#AMPL Model File 

#---------------------------------------------------- 

param n; # no of variables 

param m;                                     # no of rows 

param alpha;                               # numerator constant 

param beta;                                 # denominator constant  

param lembda;                            # a parameter 

param c{i in 1..n};                      # numerator's coefficients 

param d{i in 1..n};                     #denominator's coefficients  

param a{i in 1..m, j in 1..n};      # constraint's coefficients  

param b{i in 1..m};                   # r.h.s constants  

param lw{i in 1..n};                  # lower bounds 

param up{i in 1..n};                  # upper bounds  

var x{i in 1..n}>=0;             # no of variables  

maximize obv: sum{i in 1..n} (c[i]*x[i])+alpha-lembda*(sum{i in 1..n}(d[i]*x[i])+beta); 

subject to cost{j in 1..m}: sum{i in 1..n} a[j,i]*x[i]<=b[j]; 

subject to limit{i in 1..n}: lw[i]<=x[i]<=up[i];  

#---------------------------------------------------------------------------------- 
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Due to the large volume of  whole computer code we have presented AMPL model file here. If  readers are interested 

then please contact with the authors. 

 

6. NUMERICAL EXAMPLES 

In this section, we present some numerical examples and apply our proposed method to solve these. 

 

6.1 Numerical Example 1: This Example has taken from Erik B. Bajalinov (2003). 

 

 Maximize 1 2

1 2

3 6

2 3 12

x x
z

x x

+ +
=

+ +
 (13) 

 subject to 

 
1 2

2 10x x+ ≥  (14) 

 
1 2

2 3 60x x+ ≤  (15) 

 
1

5 15x≤ ≤  (16) 

 
2

4 30x≤ ≤  (17) 

Solution: Suppose,
1 1

5x y= + and
2 2

4x y= +  where
1 2

0, 0y y≥ ≥ . Substituting these into the equations (13) to (17) and 

converting the objective function into linear form and converting the problem into standard form we obtain the followings. 

 Maximize ( ) ( )

1 2 1 2( 3 23) (2 3 34)
k k

f y y t y y= + + − + +  (18) 

 subject to 

 
1 2 1

2 3y y s− − + =  (19) 

 
1 2 2

2 3 38y y s+ + =  (20) 

 
1

0 10y≤ ≤  (21) 

 
2

0 26y≤ ≤  (22) 

Here
1 2
, 0s s ≥  are slack variables and

( ) ( )

( ) 1 2

( ) ( )

1 2

3 23

2 3 34

k k

k

k k

y y
t

y y

+ +
=

+ +
. Initially let (1)

0, 1, 2iy i= = . Now we have 

(1) 0 3 0 23 23

2 0 3 0 34 34
t

+ × +
= =

× + × +
 for the next iteration. Then equation (18) will be converted into the following form. 

 (1)

1 2

6 33

17 34
f y y

−
= +  (23) 

Solution steps for this problem have been presented into the following tables. 

Table 1 : Initial Table for example 1 

B
p

 

↓  

jp →  6

17

−
 

33

34
 

0  0   

Basis ↓
 

1
y

 2
y

 1
s

 2
s

 

*

By  1
θ  

2
θ  

0  1
s

 
-1 -2 1 0 3 - ∞

 

0  2
s

 
2  0 1 38 

38

3

←

 

∞
 

j B ij
E p a=∑  

0
 

0
 

0
 

0
 

 

j j jp E∆ = −
 6

17

−
 

33

34
↑

 

0
 

0
 

(1)
0f =

 

 

Discussion: From Table-1, we observe that maximum value of
j∆  has obtained at fourth column. Therefore

2
y  is the 

entering variable into the solution. It has been indicated by a vertical arrow in the table. Here
1 2

38
,

3
θ θ= = ∞ , and 

3
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1 2 2

38 38
min{ , , } min{ , , 26}

3 3
uθ θ θ= = ∞ = . Therefore, 

2
s  will leave basis and

2
y  will enter into that place. Although 

(1)
0f =  here but since not all

j∆  are negative so we have to go for the next iteration. In the next table, we have presented 

the optimal solution. 

 

Table 2 : Optimum table for example 1 

B
p

 

↓  
jp →  

25

36

−
 

11

24
 

0  0   

Basis ↓
 1

y
 2

y
 1

s
 2

s
 

*

By  

0  1
s
 1

3  

0
 

1 2

3  
85

3  

11

24
  

2
y
 2

3  

1
 

0
 1

3  
38

3  

j B ij
E p a=∑  

11

36  

0
 

0
 11

72  

 

j j jp E∆ = −
 

1−
 

0
 

0
 11

72
−

 
209

( )
36

F y =
 

 

Discussion: Here (4)

1 2

25 11 209 209
( )

36 24 36 36
f y y F y= − + − = − . From Table-2, we see that all

j∆  are negative and 

(4) 209 209
0

36 36
f = − = . Therefore, optimal solution has obtained. Optimal solution is 

1 2

38
0,

3
y y= = . Therefore, 

1 2 max

50 61
5, ,

3 72
x x z= = = . 

 

6.2 Numerical Example 2: This Example has taken from Erik B. Bajalinov (2003). 

 

 Maximize 1 2

1 2

5 10

4 2 11

x x
z

x x

+ +
=

+ +
 (24) 

 subject to 

 
1 2 3

5 20x x x+ + =  (25) 

 
1 2 4

4 14x x x− + =  (26) 

 
1

2 5x≤ ≤  (27) 

 
2

4 12x≤ ≤  (28) 

 
3

0 25x≤ ≤  (29) 

 
4

0 18x≤ ≤  (30) 

Solution: Consider, 
1 1

2x y= + and
2 2

4x y= +  where
1 2

0, 0y y≥ ≥ . Substituting these into the equations (24) to (30) and 

converting the objective function into linear form and converting the whole problem into standard form we obtain the 

following expressions. 

 Maximize ( ) ( )

1 2 1 2(5 24) (4 2 27)
k k

f y y t y y= + + − + +  (31) 

 subject to 

 
1 2 3

5 6y y x+ + =  (32) 

 
1 2 4

4 10y y x− + =  (33) 

 
1

0 3y≤ ≤  (34) 

 
2

0 8y≤ ≤  (35) 

 
3

0 25x≤ ≤  (36) 
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4

0 18x≤ ≤  (37) 

Here 
( ) ( )

( ) 1 2

( ) ( )

1 2

5 24

4 2 27

k k

k

k k

y y
t

y y

+ +
=

+ +
 and choose (1)

0, 1, 2iy i= =  initially. Then equation (31) will be, ( )

1 2

13 7

9 9

k
f y y= − . We 

have presented the initial calculations for this problem into the next table. 

Table 3 : Initial Table for example 2 

B
p

 

↓  
jp →  13

9
 

7

9
−  

0  0   

Basis ↓
 1

y
 2

y
 3

x
 4

x
 

*

By  1
θ  

2
θ  

0  3x
 

5 1 1 0
 

6  

6

5  

∞
 

0  
4x

 
4 -1 0

 
1 10 

2

5
 

∞
 

j B ij
E p a=∑  0 0 0

 
0

 
(1)

0f =
 

j j jp E∆ = −
 

13

7
↑

 
7

9
−

 

0
 

0
 

 

Discussion: From Table-3, we observe that 
1

y
 

 is the entering variable into the basis and 
3

x  is the departing variable 

from the basis. Since not all 
j∆  are negative so we have to go into the next iteration. We have presented optimum solution 

into the next table. 

 

Table 4 : Optimum Table for example 2 

B
p

 

↓  
jp →  

53

65
 

53

47
−  

0  0   

Basis ↓
 1

y
 2

y
 3

x
 4

x
 

*

By  

65

53
 

1
y

 1 1

5  
1

5  

0 6

5  

0  4
x

 0 9

5
−

 
4

5
−

 

1 26

5  

j B ij
E p a=∑  

65

53  
13

53  
13

53  

0 73
( )

53
F y =

 

j j jp E∆ = −
 

0 60

53
−

 
13

53
−

 

0 

Discussion:  Here (4)

1 2

65 47 73 73
( )

53 53 53 53
f y y F y= − − = − . From Table-4, we see that all 

j∆  are negative or equals to 

zero and (4) 73 73
0

53 53
f = − = . Therefore, optimal solution has obtained. Therefore  

1 2 3 4

6 26
, 0, 0,

5 5
y y x x= = = =  and 

optimal solution of  the bounded-variable LFP problem is 
1 2 3 4 max

16 26 50
, 4, 0, ,

5 5 53
x x x x z= = = = = . 
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7. AMPL OUTPUT 

In this section, we solve numerical examples presented in Sction-6.1, and 6.2 by using our developed AMPL code. In 

Table-5, we present manual output and AMPL output of  numerical examples. We also present CPU time used by our AMPL 

code. We have used “_ampl_time” command to determine these times. 

Table 5 : Manual and AMPL outputs 

Numerical 

Examples 

Manual Output AMPL Output Time Used 

(seconds) 

 

Example 1 
1 2

max

50
, 5,

3

61
,

72

Variables x x

Objective z

= =

=
 

 

x [*] := 

     1     5 

     2     16.6667 

max
, 0.84722Objective z =  

 

0.01560009 

 

Example 2 1 2

3 4

max

16
, , 4

5

26
0,

5

50
,

53

Variables x x

x x

Objective z

= =

= =

=

 

 

x [*] := 

     1  3.2 

     2  4 

     3  0 

     4  5.2 

max
, 0.94339Objective z =  

 

0.0780005 

 
Discussion: From parallel representation of  manual output and AMPL output of  examples, we observe that both the 
algorithm we developed and computer code we developed are giving same output. In AMPL output, some variable’s value 
and objective function value have been presented in decimal form. For example, in Numerical example-2 fourth variable 
value is 5.2. 

In the next section, we present a comparison between our method with other methods for solving bounded-variable 

LFP problems.  

 

8. COMPARISON 

In the current section, we make a comparison between our method with other two different methods for solving 

bounded-variable LFP problems. In Section 3.1, we present Das and Hasan’s method (2012) and in Section 3.5 we present 

another method developed by Das, Hasan and Islam (2013). They used MATHEMATICA to develop their computer code 

and used “Timeused[ ]” command to determine CPU time. To find run time we use “_ampl_time_” command. We have 

used Intel(R) Pentium(R) Dual CPU B970 @2.30GHz~2.3GHz , Memory(RAM): 2.00GB, System type: 32-bit operating 

system. We develop a graphical comparison between these two methods and our developed method on the base of  CPU 

time used by computer code. We present this comparison below.  
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Figure 1 : Comparison between existing methods and our method 

In the above figure, we considered Das and Hasan’s (2012) method as Method-1 and Das, Hasan and Islam’s method 

(2013) as Method-2. We observe that Method-1 and Method-2 used 0.329 and 0.133 seconds respectively to solve 

example-1 and it takes 0.01560009 seconds to solve by our developed method. For example-2, Method-1 and Method-2 take 

1.106 and 0.14 seconds respectively and 0.0780005 seconds by our method. Therefore we can conclude that our developed 

technique is easier and less time consuming than other techniques. 

 

9. CONCLUSION  

There are many existing techniques to solve bounded-variable LFP problems. In this paper, we developed a new 

technique to solve bounded-variable LFP. We used a parametric transformation to convert fractional objective function into 

linear form. We developed a computer code using a mathematical programming language AMPL. We solved numerical 

examples by our developed method. Then compared the results obtained by computer code.  Finally, we made a 

comparison between our method with two other existing methods. Finally, found that our technique is easier and took less 

time than the other techniques.  
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