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Abstract  Applying network analysis, a manufacturing system can be constructed as a manufacturing network by 
representing each workstation as an arc and each inspection station as a node. In particular, the capacity of  each workstation is 
stochastic (i.e. multistate) due to the possibility of  failure, partial failure, and maintenance. In practical cases, such a 
manufacturing network has to achieve a specified production level to satisfy the customers’ orders. Hence, maintenance is 
necessary to guarantee a manufacturing network can retain a minimal production level. A maintenance model, namely 
maintainable manufacturing network (MMN), is proposed to evaluate whether the manufacturing system can provide 
sufficient capacity subject to maintenance budget or not. The maintenance reliability is further proposed to calculate the 
probability that the MMN provides a sufficient capacity level to meet the minimal production level under maintenance budget 

Keywords  Maintainable manufacturing network (MMN), Maintenance reliability, Minimal production level.  

1. INTRODUCTION

From the perspectives of both operations research and production management, production performance is dependent
on the capacity of a manufacturing system. Meanwhile, the capacity of a manufacturing system is determined by capacities of 
all workstations in the system. Thus, it is a crucial task to retain the production level of a manufacturing system for 
comprehending whether it can satisfy customers’ demand or not. To retain a minimal production level, maintenance should be 
involved to guarantee the manufacturing system can provide a sufficient capacity by Lin and Chang (2012). In addition, budget 
is always an important constraint to be considered in maintenance. Such being the case, it emerges a valuable issue to study the 
maintenance with budget constraint for keeping the minimal production level of a manufacturing system.  

Network analysis in terms of AOA (activity-on-arc) diagram is an applicable approach to represent a manufacturing 
system by Lin (2007), Yeh (2008). That is, we may construct the manufacturing system as a manufacturing network for further 
analysis. For a practical manufacturing network, each arc can be regarded as a workstation consisting of identical or similar 
machines; while each node is an inspection station following each workstation. In particular, the capacity of each workstation 
in the manufacturing network is stochastic due to the possibility of failure, partial failure, and maintenance of machines. 
Therefore, the manufacturing network characterized by such workstations also has stochastic capacity and we can treat it as a 
genre of stochastic-flow network by Jane et al. (1993), Lin (2007), Zuo et al. (2007), Yeh (2008). In addition, defect rate of each 
workstation affects the performance of a manufacturing network and leads to defective products, in which defective products 
would be reworked or scrapped by Stevenson (2015). In other words, a practical manufacturing network has to be capable to 
deal with rework and scrap. 

Several studies have been devoted to applying manufacturing network to investigate the performance of a manufacturing 
system. Lin and Chang (2013) proposed a typical manufacturing network model to consider rework and scrap. In Lin and 
Chang’s study, the input flow for a specified demand is calculated to judge the minimal capacity needed to be provided by each 
workstation. Hence, the minimal capacity vectors for all workstations can be derived. In terms of such vectors, the system 
reliability (i.e. defined as probability of demand satisfaction) of a manufacturing network can be evaluated. Several extension 
works further consider other characteristics in production, such as time constraint by Lin et al. (2016), quality issue by Chang 
(2015), and labor intensive industry by Chang et al. (2015), for achieving practical needs. However, none of the above studies 
takes maintenance as a consideration. 
   This paper addresses a maintainable manufacturing network (MMN) in which the MMN has to guarantee a 
minimal production level so that it can produce at least d units of product per unit time under a maintenance budget 
B. The performance indicator, maintenance reliability, is defined as the probability that the MMN provides a sufficient 
capacity level to meet the demand under maintenance budget. The production manager could determine if the production level 
of the MMN can satisfy the customers’ orders or not. The remainder of this paper is organized as follows. Problem description, 
assumptions, and notations are introduced in Section 2. The maintenance model with budget constraint is studied in Section 3. 
A numerical example is demonstrated in Section 4 to illustrate three proposed algorithm and how the maintenance reliability
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 may be calculated. Conclusion of this paper is summarized in Section 5. 

2. PROBLEM DESCRIPTION, ASSUMPTIONS AND NOTATIONS

An MMN is requested to provide a minimal production level to produce d units of products under the situation that WIP
may be defective during processing. Therefore, the input raw materials I should be more than the output products O. To retain 
the production level, a budget B is allowed to maintain the MMN. This paper determines the minimal capacity vectors that an 
MMN should provide to satisfy the minimal production level. Subsequently, we evaluate the maintenance reliability that 
satisfies the production level in terms of minimal capacity vectors. To evaluate the maintenance reliability of the MMN, this 
paper is studied based on the following assumptions: 
1. Each node (inspection station) is perfectly reliable.
2. The capacity xi of each arc ai (workstation) is a random variable takes value from {0, 1, 2, …, Mi} according to a given

probability distribution.
3. The capacities of different arcs (workstations) are statistically independent.
4. Each defective WIP is reworked at most once by the same workstation. That is, if the defective WIP after reworking is

still defective, then it is scrapped.

Notations 

n number of arcs (workstations) 

ia ith arc, i = 1, 2, …, n 

A  1 2, ,  , na a a : set of arcs

N set of nodes (inspection stations) 
G (N, A): an MMN 
d     minimal production level 
I input amount of raw materials 
O output amount 

iw workload of ai, i = 1, 2, …, n 
W (w1, w2, …, wn): workload vector 
yi minimal capacity of ai 
Y (y1, y2, …, yn): minimal capacity vector 
B maintenance budget 

 TC X   total cost to maintain the arcs from the state X
ci per unit maintenance cost of ai, i = 1, 2, …, n 
C  1 2, ,  , nc c c : set of maintenance cost 
Mi maximal capacity of ai, i = 1, 2, …, n 
xi current capacity of ai, i = 1, 2, …, n 
X (x1, x2, …, xn): capacity vector 
M {M1, M2, …, Mn}: set of maximal capacity 

id capacity of a machine in workstation ai

Δ {δ1, δ2, …, δn}: machine capacity vector 

iw a vector in which the ith position is set as δi and others are 0 

MR maintenance reliability 

Φ set to store minimal capacity vectors 

Nomenclatures 

MMN maintainable manufacturing network 
RSDP recursive sum of disjoint products 

3. MAINTENANCE MODEL

Let G = (N, A) represent an MMN, in which N is the set of nodes (inspection stations) and  1 2, ,  , na a a A  is the 

set of arcs (workstations). The capacity xi of each workstation ai for i = 1, 2, …, n is a random variable and thus the MMN also 
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performs stochastic capacity. For a production level d, the amount of raw materials should be determined backward in 
advanced. Let I be the amount of raw materials needed to produce O units of product such that O ≥ d. Set the defect rate qi and 
success rate pi = 1 – qi (0 ≤ pi ≤ 1) of each ai, the workload (denoted by wi) can be derived in terms of I and qi. The input I and 
workload pattern (w1, w2, …, wn) can be solved by several presented methods no matter rework is considered in an MMN (Lin 
and Chang, 2013) or not (Chang et al. 2015). Thereafter, the minimal capacity Y can be generated by some well-developed 
methods (Lin and Chang, 2013; Chang et al. 2015). 

3.1 Construction of maintenance model 

The MMN must be maintained to keep a minimal production level so that it can produce at least d units of product per unit 
time. That is, once we obtain the minimal capacity vector Y such that V(Y) ≥ d, such Y is defined as the minimal production 
level. The maintenance is therefore taken into account to retain a sufficient capacity level to meet the demand subject to a 
maintenance budget B (i.e. the proposed model in Lin and Chang (2013) does not consider the maintenance budget, which 
implies that the budget is infinite). We measure the probability that the MMN can produce at least d under the maintenance 
budget B. Such a probability is henceforth referred to as the maintenance reliability, which is a performance indicator to 
identify a maintenance strategy so that the MMN satisfies the basic order requirement (i.e. minimal production level). The 
maintenance cost is calculated in terms of the amount of capacity that each workstation needs to be maintained to satisfy a 
minimal production level. This guarantees the production level is greater than the minimal production level and could be as 
high as the best performance level. Thus, the total cost to maintain the workstations in an MMN from the state X is 

1

( )
( )

n
i i

i
i i

M x
TC X c

d


   , (1) 

where ci is the per unit maintenance cost to maintain a machine and δi is the capacity of a machine in workstation ai. Hence, 
( )i i

i

M x
d


 is equivalent to the number of machines for ai to recover from the current capacity xi to its highest capacity Mi. The 

amount, 
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i
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c

d
, is the cost for such a maintenance action. For instance, given the current capacity vector X = (25, 25, 

20), the maximal capacity set M = {M1, M2, M3} = {35, 30, 32}, the unit maintenance cost C = {c1, c2, c3} = {100, 120, 150}, 
and the single machine capacity in workstations Δ = {δ1, δ2, δ3} = {5, 5, 4}. The total maintenance cost to restore an MMN 
from state X to its highest capacity is 
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However, it is not necessary to recover workstations to their highest capacities (i.e. maximal number of machines in each 
workstation). That is, we can restore to any specific capacity state instead of Mi, necessitating a simple modification to equation 
(1). The following constraint shows that the total maintenance cost can not exceed the budget B, 

1
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M x
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d


 (2) 

Under the maintenance budget B, the maintenance reliability RM is the probability that the MMN can produce at least d 
units/time with maintenance action. Thus, the maintenance reliability is Pr{X|V(X) ≥ d and TC(X) ≤ B}. For the minimal 
capacity vector Y = (y1, y2, …, yn), we has two cases to determine the state Y can be maintained under budget B or not. If TC(Y) 
≤ B, it is indeed that such Y is the minimal capacity vector fulfils both d and B. Otherwise, the workstation in the MMN should 
be maintained earlier rather than falling to the state Y. A branch-and-bound based adjusting algorithm is proposed to find all 
the minimal capacity vectors satisfy both d and B. 

3.2 Algorithm to generate all minimal capacity vectors 

Based on the minimal capacity vector Y, the system state to be restored from X can be determined with the following steps. 
Step 0. Input Y and initialize Φ = ∅, where Φ is the set to store the minimal capacity vectors fulfilling both d and B. 

Step 1. Find the maintenance cost 
1

( )
( ) 

n
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d


 . 

Step 2. If TC(Y) ≤ B, then Y ∈ Φ and go to Step 4. 
Step 3. If TC(Y) > B, do the following steps. //Adjusting procedure 
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3.1 For the unqualified Y, let Yi = Y + ωi. In the equation, ωi is a vector in which the i th position is set as δi and others 
are 0. If the capacity of ai in Yi is larger than Mi, remove the Yi. 

3.2 Compare each Yi with X ∈ Φ. If Yi is larger than or equal to any X in Φ, delete Yi; otherwise, Yi ∈ Φ. If Yi is less than 
an X in Φ, delete that X from Φ. 

3.3 Treat each Yi as the role of Y and go to Step 1. 
Step 4. All the Yi = (yi1, yi2, …, yin) ∈ Φ are the minimal capacity vector for d and B. 

Step 1 checks the total maintenance cost to restore the MMN from state Y is exceeding the budget or not. Step 2 shows that 
if TC(Y) ≤ B, it is necessary that Y is the minimal capacity vector satisfies both d and B. For the Y such that TC(Y) > B, Step 3 
utilizes an adjusting procedure, which applies a branch-and-bound approach, to obtain the set Φ. Each adjusted Yi ∈ Φ is 
generated from Y by adding ωi to reduce the total cost. That is, the MMN is maintained just enough to prevent it from falling 
below the minimal production level. 

Since we adjust only one ai at a time, several Yi are generated from the algorithm. For those Yi still exceeding the budget B, 
each unqualified Yi can be branched as Yi,i in further depth (see Figure 1). Suppose Y1, Y2, …, Yh are all the minimal capacity 
vectors satisfy d and B. The reliability with maintenance can be represented as 1{ } vM

h
v DR Pr 


, where

 y yD X X Y   for v = 1, 2, …, h. To calculate 1
h
v vD , there are several methods can be adopted, such as the 

inclusion-exclusion principle (Hudson and Kapur, 1985; Lin, 2009; 2010), disjoint-event method (Hudson and Kapur, 1985; 
Yarlagadda and Hershey, 1991), state-space decomposition (Aven, 1985; Jane et al., 1993), and recursive sum of disjoint 
products (RSDP) algorithm (Zuo et al., 2007). Jane and Laih (2008) proved that the state-space decomposition performs a 
better efficiency in computation and storage space than inclusion-exclusion principle and disjoint-event method. In addition, 
Zuo et al. (2007) pointed out that the RSDP is more efficient than the state-space decomposition, especially for larger 
networks. Hence, the RSDP algorithm is beneficial to be applied for the reliability evaluation. 

Figure 1 Search tree for all minimal capacity vectors. 

4. A NUMERICAL EXAMPLE

An example is utilized to demonstrate the proposed algorithm in Section 3.2. A manufacturing network with six
workstations (see Figure 2) that has to satisfy the minimal production level with d = 150 per unit time. The defect rate and 
capacity distribution of workstations are provided in Table 1. 

Y 
TC(Y) > B 

Y2 = Y + ω2 

If TC(Y2) > B, adjust Y2 

Yn = Y + ωn 

Check TC(Yn) ≤ B or not 
Y1 = Y + ω1 

Check TC(Y1) ≤ B or not 

Y2,2 = Y2 + ω2 

If TC(Y2,2) > B, adjust Y2,2 
Y2,n = Y2 + ωn 

Check TC(Y2,n) ≤ B or not 
Y2,1 = Y2 + ω1 

Check TC(Y2,1) ≤ B or not 

ωi: ith position is set as δi and others are 0. 

… 

… 

… 

… 

… 

… 

i = 1 i = 2 i = n 

i = 1 i = 2 i = n 

i = 1 i = 2 i = n 

…
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Figure 2 An MMN with six workstations. 

Table 1. The workstation data of Figure 2. 
Workstation Defect 

rate 
Capacity Probability Workstation Defect 

rate 
Capacity Probability 

a1 0.98 

0 0.001 

a4 0.97 

0 0.001 
50 0.002 40 0.002 
100 0.002 80 0.002 
150 0.005 120 0.005 
200 0.010 160 0.015 
250 0.010 200 0.025 
300 0.975 240 0.950 

a2 0.95 

0 0.001 

a5 0.90 

0 0.005 
50 0.002 40 0.005 
100 0.002 80 0.010 
150 0.005 120 0.010 
200 0.010 160 0.010 
250 0.980 200 0.960 

a3 0.96 

0 0.002 

a6 0.93 

40 0.003 0 0.005 
80 0.005 40 0.005 
120 0.005 80 0.005 
160 0.010 120 0.010 
200 0.010 160 0.015 
240 0.015 200 0.960 
280 0.950 

According to the approach presented by Lin and Chang (2013), the workload vector W = (w1, w2, w3, w4, w5, w6) = (201.210, 
202.581, 192.452, 184.754, 179.211, 161.290). Subsequently, the minimal capacity vector satisfies W is, Y = (y1, y2, y3, y4, y5, y6) 
= (250, 250, 200, 200, 200, 200). Note that, the maintenance budget is not considered yet. Here, we further consider that the 
MMN is maintainable and it has to guarantee a minimal production level with d = 150 with a budget B = 2000.  
Step 0. Input Y = (250, 250, 200, 200, 200, 200) and initialize Φ = ∅. 
Step 1. For Y, TC(Y) = 20(300–250) + 20(250–250) + 15(280–200) + 15(240–200) + 15(200–200) + 10(200–200) = 2800. 
Step 2. TC(Y) > B = 2000, go to Step 3. 
Step 3. Adjusting procedure for Y. 

3.1 For i = 1, 2, …, 6, do the following steps. 
Y1 = Y + ω1 = (250, 250, 200, 200, 200, 200) + (50, 0, 0, 0, 0, 0) 

= (300, 250, 200, 200, 200, 200); 
Y2 = Y + ω2 = (250, 250, 200, 200, 200, 200) + (0, 50, 0, 0, 0, 0) 

= (250, 300, 200, 200, 200, 200); 
Y3 = Y + ω3 = (250, 250, 200, 200, 200, 200) + (0, 0, 40, 0, 0, 0) 

= (250, 250, 240, 200, 200, 200); 
Y4 = Y + ω4 = (250, 250, 200, 200, 200, 200) + (0, 0, 0, 40, 0, 0) 

= (250, 250, 200, 240, 200, 200); 
Y5 = Y + ω5 = (250, 250, 200, 200, 200, 200) + (0, 0, 0, 0, 40, 0) 

= (250, 250, 200, 200, 240, 200); 
Y6 = Y + ω6 = (250, 250, 200, 200, 200, 200) + (0, 0, 0, 0, 0, 40) 

= (250, 250, 200, 200, 200, 240). 
The capacity of a2 in Y2 is larger than the maximal capacity M2 = 250, so it is not feasible and should be removed. The 
same follows for Y5 and Y6, which are also removed. 

3.2 Since Φ = ∅, none of the Yi is deleted in this step. 
3.3 Treat each Yi as the role of Y and go to Step 1, respectively. 
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Step 1a. For Y1, TC(Y1) = 20(300–300) + 20(250–250) + 15(280–200) + 15(240–200) + 15(200–200) + 10(200–200) = 1800 
< B = 2000. Then Φ = Φ ∪ {Y1} = {Y1}. 

Step 1b. For Y3, TC(Y3) = 2200. 
Step 2b. TC(Y3) = 2200 > B = 2000, go to Step 3. 
Step 3b. Adjusting procedure for Y3. 

3.1b For i = 1, 2, …, 6, do the following steps. 
Y3,1 = Y3 + ω1 = (300, 250, 240, 200, 200, 200); 
Y3,2 = Y3 + ω2 = (250, 300, 240, 200, 200, 200); 
Y3,3 = Y3 + ω3 = (250, 250, 280, 200, 200, 200); 
Y3,4 = Y3 + ω4 = (250, 250, 240, 240, 200, 200); 
Y3,5 = Y3 + ω5 = (250, 250, 240, 200, 240, 200); 
Y3,6 = Y3 + ω6 = (250, 250, 240, 200, 200, 240). 
The capacity of a2 in Y3,2 is larger than the maximal capacity M2 = 250, so it is not feasible and should be removed. 
The same follows for Y3,5 and Y3,6, which are also removed. 

3.2b Since Φ = {Y1} and Y3,1 > Y1, Y3,1 is removed. 
3.3 Treat each Y3,i as the role of Y and go to Step 1, respectively. 

The adjusting procedure and results are shown in Figure 3. 

Step 4. Φ = {Y1, Y3,3, Y3,4} are the minimal capacity vectors for d and B. 
Three minimal capacity vectors, Y1 = (300, 250, 200, 200, 200, 200), Y3,3 = (250, 250, 280, 200, 200, 200), and Y3,4 = (250, 

250, 240, 240, 200, 200), satisfying d and B are derived. The maintenance reliability RM = 0.84560 is derived by the RSDP (Zuo 
et al., 2007) algorithm afterwards. 

Figure 3 Adjustment process for the example. 

5. CONCLUSION

To assess the robustness of a manufacturing system, this paper constructs an MMN model considering reworking action
and defect rates for all workstations. In addition, a maintenance budget is considered to retain the MMN can satisfy a minimal 
production level. The probability that an MMN could fulfil production level d units of products, namely maintenance reliability, 
is evaluated to indicate the performance of the MMN. An algorithm is proposed to generate all minimal capacity vectors 
to produce sufficient products and satisfy minimal production level d. The proposed model and algorithm can be extended 
to more than one reworking actions cases intuitively. Based on the maintenance reliability, the production manager could 
conduct the sensitivity analysis to investigate the most important workstation in an MMN to improve the system to be more 
reliable.
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