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Abstract: Fractional programming problems take into account the situations where the decision maker is 
interested to maximize or minimize the ratios of  some functions rather than a simple function. Fractional 
programming modeling approach has a lot of  scope in dealing with the transportation planning decision problems. 
This paper presents a model for transportation problem with multiple fractional objectives involving uncertain 
parameters. In order to make the model more realistic, we have considered the case when there exists more than one 
fractional objective. All the parameters involved in the proposed model viz. objective function coefficients, 
availabilities and demands are assumed to be uncertain. Moreover, an equivalent deterministic model is also 
presented. Fuzzy goal programming approach is discussed as the solution approach for reaching the compromise 
solution. A numerical example is also given to illustrate the model more clearly. 
Keyword — Fractional programming problem, Transportation problems, Uncertain variables, Uncertain 
programming, Fuzzy goal programming, Membership function 

 
 
 

1. INTRODUCTION 
 

Transportation is an important aspect which remains as an essential part in the study domain of logistics and 
operations management. Transportation problems are concerned in determining an optimal strategy for distributing 
a commodity from a group of supply centers, called sources, to various receiving centers, called destinations. The 
main objectives of the problem underlies in minimizing the parameters such as cost, time, deterioration of items and 
taxes etc. Transportation problem was first studied by Hitchcock (1941).  A special case of transportation planning 
model is, when there is a need to optimize any problem with objective that is in fractional form. The kind of models 
having fractional objective function lies under the category of fractional programming problems. 

Fractional programming is an important part of management decision making which involves rational 
optimization. Ratio of technical or economical terms often represents the efficiency of any system. Fractional 
programming has its applicability in a large number of problems which are widely spread over the literature. Charnes 
and Cooper (1962) gives a transformation in which they converted a linear fractional program with one ratio to a 
linear program. Later, Corban (1973) gives an approach on programming with fractional linear objective function. 
Dür et al. (2007) presented an Algorithm called dynamic multistart improving Hit and Run and applied it to the class 
of Fractional Optimization problem. Pramanik and Dey (2011) presented a fuzzy goal programming approach for 
bi-level linear fractional programming problem with a single decision maker both at the upper level and lower level. 
Pal et al. (2011) solved linear goal programming to multi-objective fractional programming. Saad et al. (2012) gives 
the solution procedure for multi-objective integer linear fractional programming problems with uncertain data. 
Metaheuristics approaches have also been used in last few years to solve fractional programming problems. 
Sameeullah et al. (2008) presented a genetic algorithm based method to solve linear Fractional Programming 
problem. Calvete et al. (2009) developed a genetic algorithm for the class of bi-level problems in which both level 
objective functions are linear fractional and the common constraint region is a bounded polyhedron. Pal et al. (2013) 
used Particle Swarm Optimization algorithm to solve fractional programming problems.  

Linear fractional programming is widely applied in various fields, such as finance, production planning, and 
transportation problem (Ibaraki and Schaible 1983; Stancu-Minasian 1997, Lara and Stancu-Minasian 1999). 
Stancu-Minasian (2017) has written a bibliography on fractional programming problems. Fractional objective 
functions serves as a tool of performance measures in transportation problems. Fractional Transportation problems 
are concerned with shipping the commodities from various sources to destinations along with a goal to maintain 
good relationships between some crucial parameters. These crucial parameters of transportation problems may occur 
in the form such as; actual transportation cost / total standard transportation cost, shipping cost/ preferred route, 
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total return/ total investment etc. Fractional transportation Problems are therefore transportation problems along 
with the ratio optimization of crucial parameters where the ratios are taken as objective functions. The fractional 
transportation problem was originally given by Swarup (1966) and since then it is widely implemented in logistics and 
supply chain management for cost minimization and services improvement. Later, several researchers have shared 
their views in this field like Gupta et al. (1993) presented a paradox in linear fractional transportation problems with 
mixed constraints. Kanchan et al. (1981) investigated transportation techniques in linear plus linear fractional 
programming. Khurana and Arora (2006) considered a transportation problem with an objective function as the sum 
of a linear and linear fractional function with restricted and enhanced flow and presented an algorithm to solve such 
problems. Sivri et al. (2011) proposed a solution approach for solving the transportation problem with the linear 
fractional objective function. Joshi and Gupta (2011) investigated the transportation problem with fractional 
objective function when the demand and supply quantities are varying. Jadhav and Doke (2016) studied fractional 
transportation problem considering cost and profit coefficients as fuzzy parameters. Liu (2016) also studied 
fractional transportation problem with fuzzy parameters. 

In real life problems, the need to tackle transportation problems with multiple objectives arises as there may be 
several objective functions related to a single transportation problem. The objectives are generally conflicting and 
have different units and measuring scale. Multi-objective Transportation problems are thus formulated, as it is very 
difficult to combine these conflicting objectives into one overall utility function. Lee and Moore (1973) applied goal 
programming to find a solution for a multi- objective transportation problem. Zimmermann (1978) applied the fuzzy 
set theory concept with some suitable membership function to solve multi-objective transportation problems. Bit et 

al. (1992) used - cut for a k-objective transportation problem which was fuzzified by fuzzy numbers to obtain a 
transportation problem in the fuzzy sense expressed in linear programming form. El-Wahed and Lee (2006) 
presented an interactive fuzzy goal programming approach to determine the preferred compromise solution for the 
multi-objective transportation problems. Zangiabadi and Maleki (2007) proposed a fuzzy goal programming 
approach to determine an optimal compromise solution for the multi-objective transportation problem by assuming 
that each objective function has a fuzzy goal. Still there is a need to develop more effective models for the fractional 
transportation problems that can deal with uncertainty. 

Uncertainty generally prevails in many decision making problems, as the various parameters related to the 
problem are not certain and are treated as uncertain variables. Uncertain variables are a mixture of uncertainty and 
randomness. Uncertain measure is used to measure the degree of truth of an uncertain event. Liu (2007) first 
developed uncertainty theory. Later, Liu (2010) redefined the theory of uncertainty. Since then researchers have 
applied uncertainty theory in various fields. Gao (2011) studied shortest path problem with the arc length as 
uncertain parameter. Gao (2012) applied uncertainty theory to model single facility location problem. Zhang and 
Peng (2012, 2013) proposed uncertain programming model for Chinese postman problem with uncertain weights. 
Han et al. (2014) proposed the maximum flow problem of uncertain network. Ke et al. (2015) proposed uncertain 
random programming model for project scheduling problem. Liu (2015) presented uncertain multi-objective 
programming and uncertain goal programming. 

Transportation problems may be considered as an uncertain problem, due to the presence of several uncertain 
factors leading to an immediate change in various parameters. Changes in transportation problems may occur due to 
change in sales, change in weather and road conditions, and change in preferences leading to uncertain demand, 
supply and cost parameters. Models considering uncertainty are thus developed to tackle transportation problems 
with several uncertain parameters, treated as uncertain random variables. Sheng and Yao (2012a) studied fixed charge 
transportation problems in uncertain environment. Later Sheng and Yao (2012b) proposed transportation problem 
model with cost and demands as uncertain parameters. Cui and Sheng (2013) developed an uncertain programming 
model for solid transportation problem. Mou et al. (2013) investigated transportation problems with uncertain truck 
times and unit costs. Guo et al. (2015) proposed a transportation problem with uncertain costs and random supplies. 
Yang et al. (2015) studied the concept of type-2 uncertain variables and applied it to solid transportation problems. 
Dalman (2016) studied STP having multi-items to be transported, under uncertain conditions. Zhang et al. (2016) 
developed an algorithm for solving fixed charge solid transportation problem in uncertain environment. 

The uncertain programming models as compared to crisp models are considered as very complex models due 
to the presence of uncertainty. As per the knowledge of authors, no model has been presented till date for the 
fractional transportation problems with uncertain parameters. In this paper, we have proposed a multi-objective 
transportation problem with fractional objective functions, considering all the parameters, viz. objective functions 
coefficients, demands and availabilities as uncertain. Computationally, to reach the optimal solution for uncertain 
fractional transportation problem is very complicated. To deal with such complications, a crisp equivalent model is 
also discussed. Furthermore, some mathematical properties of the proposed model are discussed. As fractional 
transportation problem is widely applicable in logistic industries, hence the proposed approach is very beneficial to 
tackle difficult logistic problems. 


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The rest of the paper is organized as follows. In section 2, we have reviewed some results and definitions in 
uncertainty theory and fractional programming problems. In section 3, the basic form of uncertain programming 
model is discussed. The uncertain multi-objective fractional transportation planning model is presented in section 4. 
An equivalent deterministic model for the proposed uncertain model is given in subsection 4.2 under section 4. For 
solving the multi-objective model obtained in section 5, fuzzy goal programming is discussed as a solution 
methodology. In section 5, the linear membership function, Fuzzy goal model and stepwise algorithm is described. 
In section 6, a numerical example is given to understand the applicability of the proposed model. Data set for the 
problem, model for the given problem and analysis of results is done under section 6. Finally, some conclusions are 
drawn regarding the developed model in section 7. 

 
 

2. PRELIMINARIES 
 

2.1. Uncertainty Theory 
 
A lot of  surveys showed that some imprecise quantities behave neither like randomness nor like fuzziness. This 
provides a motivation to invent another mathematical tool to model those imprecise quantities. In order to do so, an 
uncertainty theory was founded and became a branch of  axiomatic mathematics (Liu, 2010). This section comprise 
of  some basic concepts and results in uncertainty theory (Liu (2007, 2009, 2010, 2012)). 
Definition 1 Assume G to be a non-empty set, and t  be a s - algebra onG . Each element L  in the s - algebra 
t  is called an event. Set function R is called an uncertain measure if  the following four axioms are satisfied byR. 

Axiom 1: (Normality Axiom) { }R G = 1.  

Axiom 2: (Duality Axiom) { } { }cR L + R L = 1 for any tL Î .  

Axiom 3: (Subadditivity Axiom) For every countable sequence of  events { }i tL Î ,we have 

 

 { }i i
i i

¥¥

= =

ì üï ïï ïR L £ R Lí ï ïï ïî 
å

1 1
   (1) 

 

The triplet ( )tG R, ,  is called an uncertainty space. 

Axiom 4: (Product Axiom) (Liu, 2009) Let ( )k k k
tG R, ,  be uncertainty spaces for k = 1,2,3,...  Then the 

product uncertain measure R is an uncertain measure satisfying 
 

 { }k k k
kk

¥ ¥

==

ì üï ïï ïR L = R Lí ï ïï ïî 
 L
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  (2) 

 

Where 
k
L are arbitrary events from

k
t , k" = 1,2,3,...  respectively. 

Definition 2 Let T  be an index set and let ( )tG R, ,  be an uncertainty space. An uncertain process is a 

measurable function from { }tT´ G R, , to the set of  real numbers, i.e., for each t ÎT and any Borel set B of  real 

numbers, the set 
 

{ }t
g gÎ G C Î B( )  

 
is an event. 

Definition 3 Let n
x x x
1 2
, ,...,  be n independent uncertain variables with uncertainty distributionsF

1
,F
2
, n
F

respectively. If  the function ( )nf x x x
1 2
, ,...,  is strictly increasing with respect to 

m
x x x
1 2
, ,...,  and strictly 

decreasing with respect to 
m m n
x x x+ +1 2
, ,...,  , then ( )nfx x x x=

1 2
, ,...,  is an uncertain variable with an inverse 

uncertainty distribution. 



14 
Javaid, Jalil and Asim: A Model for Uncertain Multi-objective Transportation Problem with Fractional Objectives 

IJOR Vol. 14, No. 1, 11−25 (2017) 

 
 
 
1813-713X Copyright © 2017 ORSTW 
 
 

 

 ( ) ( ) ( ) ( ) ( ) ( )( )m m n
r f r r r r r- - - - - -

+Y = F F F F - F -1 1 1 1 1 1

1 2 1
, ,..., , 1 ,..., 1   (3) 

 
The expected value of  an uncertain variable is an average of  the uncertain variable in the sense of  uncertain measure. 
This is called the operational law of  uncertain variables. 
Definition 4 The expected value of  an uncertain variable x  is defined by 
 

 { } { }E x dx x dxx x x
¥

-¥
é ù = R ³ - R ³ê úë û ò ò

0

0
  (4) 

 
provided that at least one of  the two integral is finite. And the variance of  x  is defined by 

 

 ( )V E ex xé ùé ù = -ê úê úë û ê úë û
2

  (5) 

 
Definition 5 For a normal uncertain variable N e s( , ) , the inverse uncertain variable is 
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-F = +
-
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1
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2.2 Fractional Programming 
 
In real life situation we came across such situations where it is needed to maximize or minimize a objective function 
which involves the ratio of  two functions. The problems which involve ratio optimization are commonly called 
fractional programs. The term fractional programming was first introduced by Charnes & Cooper (1962). In this 
section some well known definitions and properties (Bajalinov, 2013) are reviewed. 
The most general mathematical form of  fractional linear programming is given as: 

 

 

n

j j
j
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j j
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Which must be maximized (or minimized) subject to the constraints 

 

 { }x S x R Ax b xÎ = Î £=³ ³, 0   (8) 

 

Where j j n
c d RÎ,  and 

n m m
A R b R´Î Î,  and S  is assumed to be non-empty, convex and compact in 

n
R  and 

further we also assumed that x SÎ  and D x x S> " Î( ) 0 . 

Definition 6 For a Multi-Objective Fractional Transportation Problem 
 

 n

n

C x C x C x
Q x x S

D x D x C x
= Î1 2

1 2

( ) ( ) ( )
( ) , ,...,

( ) ( ) ( )
  (9) 

a point x S* Î is said to be weakly efficient for problem (12) if  and only if  there is no x SÎ such that 

 i i

i i

C x C x
i p

D x D x

*

*
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( ) ( )
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  (10) 

Definition 7 A point x S* Î is said to be strongly efficient for problem (12) if  and only if  there is no x SÎ such 
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3. UNCERTAIN PROGRAMMING - THE BASIC FORM 

 
The type of  mathematical programming which involves uncertain variables is termed as Uncertain Programming. It 
is assumed that x  is a decision vector and x  is an uncertainty vector. Since the objective function f x x( , ) is 
uncertain in nature, hence we cannot minimize it directly we may minimize its expected value i.e., 

 

 ( )
x
Min E f x xé ù

ê úë û
,   (12) 

 

Since, we cannot define a crisp feasible set for the uncertain constraints ( )j
g x x £, 0, j p= 1,2,..., . In this case, it is 

naturally desired that the uncertain constraints hold with confidence levels 
p

a a a
1 2
, ,..., .Then, we obtained the 

following set of  chance constraints, 
 

 ( ){ }j j
P g x j px a£ ³ =, 0 , 1,2,..., .   (13) 

 
In order to obtain the minimum expected value subject to a set of  chance constraints, Liu (2010) proposed the 
following uncertain programming model 

 

( )
x
Min E f x xé ù

ê úë û,    (14) 

Sub to: 

( ){ }j j
g x j px aR £ ³ =, 0 , 1,2,...,   (15) 

 

Theorem 1 (Liu, 2009) Assume that 
n

x x x
1 2
, ,...,  are independent uncertain variables with regular uncertainty 

distributions n
F F F
1 2
, ,..., , respectively. We also assume that f  is strictly increasing with respect to m

x x x
1 2
, ,..., , 

and strictly decreasing with respect to 
m m n
x x x+ +1 2
, ,..., . Also, the constraint function 

j
g  is strictly increasing and 

strictly decreasing with respect to 
jm

x x x
1 2
, ,...,  and 

j jm m n
x x x+ +1 2
, ,...,  respectively for j p= 1,2,..., . The crisp 

equivalence model for the uncertain model (17-18) is as follows, 
 

m m nx
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4. MULTI-OBJECTIVE FRACTIONAL PROGRAMMING TRANSPORTATION PROBLEM WITH 
UNCERTAINTY 

 
Fractional programming problem deals with the situation when the objective function(s) is(are) given in the form of  
ratios of  two linear or non-linear functions, that are to be optimized under any given set of  constraints. Some cases 
of  objectives for transportation problems belonging to the fractional programming category may include the 
minimization of  total actual cost/standard cost, actual time/standard time, actual deterioration/standard 
deterioration, risk assets/capital etc. The fractional programming problem with linear functions is called linear 
fractional transportation problem. In most of  the real world cases, the decision maker has to encounter more than 
one objective under any common set of  constraints. Keeping in view the involvement of  several objectives, in this 
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paper we are proposing a multi-objective transportation problem with fractional objectives. All the parameters in the 
proposed model are assumed to be uncertain. 
For modeling the multi-objective fractional transportation problem, the following assumptions such as index set, 
decision variable and parameters are considered. 
 
 

Nomenclature 

Index set 
i  Index for sources, for all i m= 1,2,...,  
j  Index for destinations, for all j n= 1,2,...,  
K  Index for objectives, for all K k= 1,2,...,  
Decision variable 

ij
x  Amount of  product transported from source i  to destination j  

Parameters 

K
C  Coefficient vector for the numerator of  the thK  objective 

K
D  Coefficient vector for the denominator of  the thK  objective 

K
ij
c( )  Elements of  the set 

K
C  for the thK  objective 

K
ij
d ( )  Elements of  the set K

D  for the thK  objective 

x  Set of  the decision variables 
ij
x  

i
a  Amount of  the product available at source i  

j
b  Demand of  the product at destination j  

i
a  Uncertain availability at source i  

j
b  Uncertain capacity of  destination j  

i
a  Confidence level for 1st constraint 

j
b  Confidence level for 2nd constraint 

K

ij
x ( )  Uncertain coefficient for the numerator of  the thK  objective 

K
ij
d( )  Uncertain coefficient for the denominator of  the thK  objective 

K
ijx
F ( )  Uncertainty distribution for independent uncertain variable K

ij
x ( )  

K
ijd
F ( )  Uncertainty distribution for independent uncertain variable K

ij
d( )  

ia
F  Uncertainty distribution for independent uncertain variable 

i
a  

jb
F  Uncertainty distribution for independent uncertain variable 

j
b  

 
 
 
4.1 Uncertain Model: 
 
The fractional programming model (18-21), presented below is a general model for multi-objective fractional 
transportation problem. 
 

)

m n
K

ij ij
i jK

K m n
KK
ij ij

i j

c x
C x

Min Z x K k
D x

d x

= =

= =

= = =
åå

åå

( )

1 1

( )

1 1

( )
( , 1,2,...,

( )
  (18) 
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Sub to:  
n

ij i
j

x a i m
=

£ =å
1

, 1,2,...,    (19) 

m

ij j
i

x b j n
=

³ =å
1

, 1,2,...,    (20) 

ij
x i m j n³ = =0, 1,2,..., , 1,2,...,   (21) 

 
The constraint equation (19) ensures the limitation on the products to be transported because of  some finite 

availability. Constraint (20) is the demand constraint that ensures the fulfillment of  the demand of  the product at 
each destination. 

All the quantities involved in the model (18-21) are assumed to be known and certain. But some sort of  
uncertainty always exists in the real world situations. To overcome this problem of  the above model (18-21), we now 
assume all the parameters to be independent and uncertain. The new model thus formed, assuming all the 
parameters as uncertain, can be said as, an uncertain multi-objective fractional transportation model.  The presence 
of  uncertain variables makes the model complex, so the operation of  direct minimization cannot be done. That gives 
rise to the study of  some techniques that can deal with the uncertainty. Expected-constrained programming by Liu 
(2009) is one among them. In this technique the minimization (or maximization) of  expected value of  the objective 
function is done under the given chance constraints. Here, we are dealing with a fractional objective function, which 
is simply a ratio of  two independent functions. Hence in the case of  fractional objectives, instead of  taking the 
expected value of  the objective function, we can take expectation of  the numerator and denominator functions 
separately. The following model is the expected-constrained programming model for model (18-21). 
 

m n
K

ij ij
i j

K m n
K

ij ij
i j

E x

Min Z K k

E x

x

d

= =

= =

é ù
ê ú
ê úê úë û= =é ù
ê ú
ê úê úë û

åå

åå

( )

1 1

( )

1 1

, 1,2,...,    (22) 

Sub to: 
n

ij i i
j

P x a i ma
=

ì üï ïï ï- £ ³ =í ï ïï ïî 
å
1

0 , 1,2,...,    (23) 

m

j ij i
i

P b x j nb
=

ì üï ïï ï- £ ³ =í ï ïï ïî 
å
1

0 , 1,2,...,    (24) 

ij
x i m j n³ = =0, 1,2,..., , 1,2,...,   (25) 

 
 
4.2 Equivalent Crisp Model 
 
Mathematically, there arise a lot of  complexities in solving the uncertain fractional programming problem. To 
overcome these complexities, we have discussed a crisp equivalent model for the above proposed fractional 
programming problem (22-25). 

Let us assume that, the functions K
ijx
F ( ) , K

ijd
F ( )  and 

jb
F  are strictly increasing with respect to the parameters 

K
ij
x ( ) , K

ij
d( )  and 

j
b  respectively. Also, the function 

ia
F  is strictly decreasing with respect to 

i
a . The equivalent 

crisp model has now been obtained, using the definitions given in section 3 and theorems. 
 

K
ij

K
ij

m n

ij
i j

K m n

ij
i j

x

Min Z K k

x

x

d

-

= =

-

= =

F
= =

F

åå ò

åå ò

( )

( )

1
1

0
1 1

1
1

0
1 1

, 1,2,...,   (26) 

Sub to: 
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( )
i

n

ij i
j

x i ma a-

=

-F - £ =å 1

1

1 0, 1,2,...,   (27) 

( )
j

m

b j ij
i

x j mb-

=

F - £ =å1

1

0, 1,2,...,    (28) 

ij
x i m j n³ = =0, 1,2,..., , 1,2,...,   (29) 

 

The model (26-29) above is a deterministic multi-objective fractional programming model, and thus can be 
solved by applying any of  the existing technique. In this paper, we have used fuzzy goal programming (FGP) as the 
solution technique. 
 
 
5. FUZZY GOAL PROGRAMMING AS A SOLUTION METHOD 
 
In this section, a fuzzy approach by Zimmermann (1978) for multi-objective linear programming problems is 
discussed. 
 
5.1 Membership Function 
 

For any fuzzy set A  defined as { }A
x x x Am Î, ( ) |  where A

Am : [ 0,1]  is defined as the membership 

function of  A, whereas 
A
xm ( )  is the degree of  membership to which x  belongs to A . From among the various 

existing categories of  membership functions in literature, such as linear, hyperbolic, piecewise-linear etc. In this paper, 
linear membership functions are adopted for computational simplicity. For the minimization objective functions, the 

membership grade 
A
xm ( )  characterizing the objectives 

K
Z x( )  decrease linearly from 1 at worst values U

K
Z( )  to 

0 at best values L

K
Z( ) . Then the corresponding linear membership function 

K K
Z xm ( ( ))  is defined as 

 

 

K K

K K
K K K K K

K K

K K

Z x Z

Z x Z
Z x Z Z x Z

Z Z

Z x Z

m

ìï ³ïïïï -ï= ³ ³íï -ïïï £ïïî

0

0
0 1

1 0

1

0 ; ( )

( )
( ( )) ; ( )

1 ; ( )

  (30) 

 
Figure 1 below illustrates the shape of  the linear membership function defined above. 
 

 

 

0 
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Figure 1. Linear membership function 
5.2 Fuzzy Goal Programming Model 
 

Using the above linear membership functions 
K K
Z xm ( ( )) , K k= 1,2,..., , and the fuzzy decision of  Bellman and 

Zadeh (1970), the max-min multi-objective programming model can be given as 
 

{ }K KK k
Max Min Z xm

=1,2,...,
( ( ))    (31) 

Sub to

 n

ij i
j

x a i m
=

£ =å
1

, 1,2,...,    (32) 

m

ij j
i

x b j n
=

³ =å
1

, 1,2,...,    (33) 

ij
x i m j n³ = =0, 1,2,..., , 1,2,...,   (34) 

 
Now using Max-Min operator, the Zimmerman (1978) model for the proposed fractional programming 
transportation problem can be given as 

 
Max l    (35) 

Sub to: 

K K
Z x K kl m£ =( ( )), 1,2,...,    (36) 

n

ij i
j

x a i m
=

£ =å
1

, 1,2,...,    (37) 

m

ij j
i

x b j n
=

³ =å
1

, 1,2,...,    (38) 

l£ £0 1    (39) 

ij
x i m j n³ = =0, 1,2,..., , 1,2,...,   (40) 

 
where l  is an auxiliary variable. 
 
 
5.3 Stepwise Algorithm for Fuzzy Goal Programming 
 
To solve multi-objective fractional transportation problem using Fuzzy goal programming approach, the following 
steps can be followed; 
 
Step 1. Solve the multi-objective fractional transportation problem for each of  the objectives individually at a time 

and ignoring others, as a simple single objective fractional transportation problem. 
Step 2. Compute the values of  each individual objectives that are derived in step 1. 

Step 3. For each individual objective find the best 
K
Z 1( )  and the worst 

K
Z 0( )  values that corresponds to the set 

of  solutions. Where 
K
Z 1( )  and 

K
Z 0( )  are the highest and lowest tolerance level for thK  fuzzy goal. 

Step 4. Define membership function 
K K
Zm ( )  for thK  objective function, as defined in the above in equation 

(30). Construct the Fuzzy goal programming model using an auxiliary variable l  as defined in (35-40). 
Step 5. Solve the crisp model so formed in Step 4. 

 
The solution so obtained at Step 5 will be the compromise optimal solution for the multi-objective fractional 
transportation problem. 
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6. NUMERICAL EXAMPLE 
 

To demonstrate the proposed model, let us consider the following example of  a transportation problem with three 
fractional objectives. 
 
6.1 Problem Description and Data 
 
For any logistic organization or firm, let the objectives are to minimize the actual cost/ standard cost, actual time/ 
standard time and actual deterioration/ standard deterioration involved in transporting any item(s) from various 
source points to several destinations. The restrictions that are being active are the limited availability at the source 
points and the minimum demand that is to be satisfied at the destinations. All the variables involved are assumed to 
be normal uncertain variable with parameterN m s( , ) . 

The total actual cost A
C( )  and the standard cost S

C( )with Normal distribution parameters A AC C

ij ij
N m s( ) ( )( , )  and 

S SC C

ij ij
N m s( ) ( )( , ) are: 

A
C

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

(20,2) (18,1.5) (18,2) (13,1)

(19,1) (13,1) (16,1.5) (18,2)

(15,2) (11,2) (17,1) (12,1)

(14,1.5) (14,1.5) (16,2) (13,1.5)

S
C

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

(18,1) (16,2) (19,1) (12,2)

(20,1.5) (15,1.5) (15,1) (18,1.5)

(16,2) (12,2) (15,2) (10,1.5)

(13,2) (12,1) (16,1) (14,1)

 

 

The total actual time A
T( )  and the standard time S

T( )with Normal distribution parameters A AT T

ij ij
N m s( ) ( )( , )  and 

S ST T

ij ij
N m s( ) ( )( , )  are: 

 

A
T

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

(30,2) (34,1) (34,1.5) (34,1)

(26,1.5) (24,2) (31,1) (29,1)

(21,1.5) (20,2) (26,1.5) (29,1.5)

(21,1.5) (22,1) (25,2) (31,1.5)

S
T

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

(28,1) (33,2) (32,1) (35,1)

(25,1.5) (25,1.5) (32,1.5) (28,1)

(22,1) (20,1.5) (25,2) (28,1.5)

(21,1) (20,1) (26,2) (30,2)

 

 

The total actual deterioration 
A
D( )  and the standard deterioration 

S
D( )with Normal distribution parameters 

A AD D

ij ij
N m s( ) ( )( , )  and S SD D

ij ij
N m s( ) ( )( , )  are: 

 

A
D

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

(40,2) (34,1.5) (37,1) (28,2)

(38,1) (28,1) (37,1.5) (40,1.5)

(42,1) (39,1) (30,1.5) (41,1)

(29,2) (38,1) (32,2) (32,1.5)

S
D

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê úë û

(38,1) (35,2) (35,1.5) (32,1)

(38,1) (30,1.5) (34,1.5) (36,1)

(40,2) (36,1) (32,1) (37,2)

(33,1) (35,1.5) (32,1) (32,1.5)

 

 

The random supplies with Normal distribution parameters 
i i

N m s( , )  are: 

 

i
a é ù= ê úë û(25,1.5) (30,1.5) (32,2) (28,2)  

 

The random demands with Normal distribution parameters 
j j

N m s¢ ¢( , )  are: 

 

j
b é ù= ê úë û(10,1.5) (14,1) (22,1) (18,1)  

 



21 
Javaid, Jalil and Asim: A Model for Uncertain Multi-objective Transportation Problem with Fractional Objectives 

IJOR Vol. 14, No. 1, 11−25 (2017) 

 
 
 
1813-713X Copyright © 2017 ORSTW 
 
 

 
 
6.2 Model for the Given Problem 
 
The uncertain multi-objective fractional programming model for this problem is given as 

 

A

S

C

ij ij
A i j

CS
ij ij

i j

x
C x

Min Z
C x

x

m

m

= =

= =

= =
åå

åå

4 4
( )

1 1

1 4 4
( )

1 1

.

.
   (41) 

A

S

T

ij ij
A i j

TS
ij ij

i j

x
T x

Min Z
T x

x

m

m

= =

= =

= =
åå

åå

4 4
( )

1 1

2 4 4
( )

1 1

.

.
   (42) 

4 4
( )

1 1
3 4 4

( )

1 1

.

.

A

S

D
ij ij

i jA

DS
ij ij

i j

x
D x

Min Z
D x x





 

 

 



   (43) 

Sub to: 
4

1

3 1
ln 0, 1, 2,3, 4i i

ij i
j i

x i
 
 

 
    
 

   (44) 

4

1

3
ln 0, 1,2,3,4

1
j j

j ij
ij

x j
 


  

 
     

  
   (45) 

0, 1, 2,3, 4, 1, 2,3, 4,ijx i j      (46) 

 

Where 
i
a  and 

j
b  are confidence level for the chance constraints. 

The Model given above is deterministic in nature, hence any multi-objective technique for attaining the 
compromise optimal solution can be applied. 

 
 

6.3 Results and Analysis 
 
The fuzzy goal programming approach described in section 5 is applied to reach the compromise optimal solution 
for the given multi-objective problem with fractional objectives. Following the stepwise algorithm for solving 
through Fuzzy goal programming approach, first of  all individual best and worst values for each objective are 
obtained. The best and worst values so obtained acts as the upper and lower tolerances. Table 1 represents the lower 

and upper tolerances for the three objectives for a set of  values of  
i
a and 

j
b . 

 
Table 1   Individual best and worst values for different confidence levels 

 

Confidence 
Level 

(
i j
a b, ) 

Objective I Objective II Objective III 

Lower 
tolerance 

Z 0
1

 

Upper 
tolerance 

Z 1
1

 

Lower 
tolerance 

Z 0
2

 

Upper 
tolerance 

Z 1
2

 

Lower 
tolerance 

Z 0
3

 

Upper 
tolerance 

Z 1
3

 

0.1, 0.1 1.144201 0.9139062 1.065432 0.9616064 1.093462 0.9004874
0.2, 0.2 1.144220 0.9138967 1.065471 0.9616013 1.093478 0.9004074
0.3, 0.3 1.144232 0.9138853 1.065496 0.9615980 1.093497 0.9003568
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0.4, 0.4 1.144241 0.9138716 1.065515 0.9615955 1.093520 0.9003167
0.5, 0.5 1.144250 0.9138544 1.065533 0.9615932 1.093548 0.9002809
0.6, 0.6 1.144257 0.9138321 1.065550 0.9615909 1.093586 0.9002461
0.7, 0.7 1.144266 0.9138012 1.065567 0.9615886 1.093637 0.9002093
0.8, 0.8 1.144276 0.9137536 1.065588 0.9615858 1.093717 0.9001658
0.9, 0.9 1.144290 0.9136617 1.065618 0.9615817 1.093872 0.9001031

 

The values of  Lower and Upper tolerances 
K
Z 0 and 

K
Z 1  respectively follow a trend along with the change in the 

confidence level. With increase in the value of  i
a and 

j
b , the lower tolerances increase and the upper tolerances 

decrease for each objective function. 
Now the fuzzy goal programming model with the attained individual lower and upper tolerances is given as 

 
Max l    (47) 

Sub to 

K K

K K

Z x Z
K

Z Z
l

-
³ " =

-

0

1 0

( )
1,2,3    (48) 

i i
ij i

j i

x i
s a

m
p a=

é ù-ê ú- + £ =ê ú
ê úë û

å
4

1

3 1
ln 0, 1,2, 3, 4   (49) 

j j

j ij
ij

x j
s b

m
p b =

é ù¢ê ú¢ + - £ =ê ú
ê ú-ê úë û

å
4

1

3
ln 0, 1,2, 3, 4
1

  (50) 

ij
x i j³ = =0, 1,2,3,4, 1,2,3,4,    (51) 

 
On solving the problem so formed, Compromise solution for the original uncertain problem is obtained. Table 2 
represents the compromise optimal solutions and their corresponding actual and standard costs for different values 
of  the confidence levels. 

 
Table 2   Compromise optimal values with actual and standard values of  objective parameters 

 

Confidence 
Level 

(
i j
a b, ) 

Objective I Objective II Objective III 
Actual 
cost 

(
A
C ) 

Standard 
cost 

(
S
C ) 

Z *
1

 

Actual 
time 

(
A
T ) 

Standard 
time 

(
S
T ) 

Z *
2

 

Actual 
det. 

(
A
D ) 

Standard 
det. 

(
S
D ) 

Z *
3

 

0.1, 0.1 1042.58 1083.29 0.96241 1981.22 2026.92 0.97745 2196.56 2334.18 0.94104
0.2, 0.2 1074.54 1116.38 0.96252 2041.12 2086.59 0.97821 2264.74 2406.36 0.94114
0.3, 0.3 1095.78 1138.38 0.96258 2080.95 2126.24 0.97869 2310.07 2454.35 0.94121
0.4, 0.4 1113.21 1156.43 0.96262 2113.62 2158.76 0.97908 2347.27 2493.69 0.94128
0.5, 0.5 1129.19 1172.98 0.96266 2143.58 2188.59 0.97943 2381.37 2529.79 0.94133
0.6, 0.6 1145.18 1189.56 0.96269 2173.57 2218.43 0.97977 2415.52 2565.90 0.94139
0.7, 0.7 1162.61 1207.63 0.96272 2206.26 2250.95 0.98014 2452.75 2605.26 0.94146
0.8, 0.8 1183.89 1229.70 0.96274 2246.17 2290.62 0.98059 2498.21 2653.28 0.94155
0.9, 0.9 1215.91 1262.94 0.96276 2306.26 2350.32 0.98125 2566.67 2725.56 0.94170

 
The values of  the fractional objectives as given in table 2, can be seen increasing with increase in the values of  

confidence levels 
i
a  and 

j
b  from 0.1 to 0.9 both. The actual and the standard values for all the three objectives 

i.e. cost, time and deterioration has also increased with the confidence levels. The decision maker may define the 
confidence level according to situation of  the concerned firm or organization. 

The compromise optimal transportation scheme for the goods is presented in table 3. A sensitivity analysis has 

been carried out to check the effects of  the change of  the confidence level  
i
a and 

j
b . 
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Table 3. Compromise optimal scheme for the transportation of  goods 
 

Confidence Level (
i j
a b, ) Compromise optimal transportation policy ( x * ) 

0.1, 0.1 
x
13

=5.3699, x
14

=14.8137, x
22

=28.1836, x
41

=8.1836, 

x
43

=15.4192, x
44

=1.9754 

0.2, 0.2 
x
13

=5.8193, x
14

=15.0346, x
22

=28.8540, x
41

=8.8540, 

x
43

=15.4167, x
44

=2.2013 

0.3, 0.3 
x
13

=6.1199, x
14

=15.1796, x
22

=29.2996, x
41

=9.2996, 

x
43

=15.4131, x
44

=2.3534 

0.4, 0.4 
x
13

=6.3705, x
14

=15.2943, x
22

=29.6648, x
41

=9.6648, 

x
43

=15.4060, x
44

=2.4822 

0.5, 0.5 
x
13

=6.5971, x
14

=15.4029, x
22

=30.0000, x
41

=10.0000, 

x
43

=15.4029, x
44

=2.5971 

0.6, 0.6 
x
13

=6.8282, x
14

=15.5070, x
22

=30.3352, x
41

=10.3352, 

x
43

=15.3952, x
44

=2.7165 

0.7, 0.7 
x
13

=7.0826, x
14

=15.6178, x
22

=30.7004, x
41

=10.7004, 

x
43 =15.3843, x44 =2.8492 

0.8, 0.8 
x
13

=7.3971, x
14

=15.7489, x
22

=31.1460, x
41

=11.1460, 

x
43 =15.3669, x44 =3.0151 

0.9, 0.9 
x
13

=7.8789, x
14

=15.9375, x
22

=31.8164, x
41

=11.8164, 

x
43 =15.3320, x44 =3.2734 

 
 

7. CONCLUSIONS 
 
The main contribution of  this paper is to develop a multi-objective fractional transportation planning decision model 
via uncertainty theory. Considering the vagueness among the parameters, that mostly exist in real life situations, we 
have assumed all the parameters as independent uncertain variables. As, the models with uncertain variables are often 
complex to deal with, hence the concept of  expected constraint programming is applied to develop the model. An 
equivalent crisp or deterministic model is also discussed for the proposed transportation model. Fuzzy goal 
programming technique (max-min approach) is discussed to solve the obtained multi-objective fractional 
transportation model. At last, to demonstrate the applicability of  the presented model a numerical illustration is also 
given. The results and findings are discussed in detail and the sensitivity analysis for the variation in the confidence 
levels is also given. As fractional programming has a lot of  scope in the modeling of  a wide range of  real life 
situations, like information theory problem, inventory operations problem, investments allocation problems, 
repartition problems etc. Hence, in future the proposed uncertain multi-objective model can be extended to deal 
with the above mentioned real life problems. 
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