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Abstract: Increasing number of  complex traffic networks and disasters today has brought difficulty in 
managing the rush hours traffic as well as the large events in urban areas. The optimal use of  the vehicles and their 
assignments to the appropriate shelters from the disastrous zones are highly complicated in emergency situations. 
The maximum efficiency and effectiveness of  the evacuation planning can be achieved by the appropriate and 
significant assignment of  the transit dependent vehicles during pre and post-disaster operations. 

This paper presents a comprehensive overview of  the evacuation planning optimization techniques developed 
over the years, emphasizing the importance of  their formulation and the solution strategies on disaster management 
from the transit-based perspective. Each technique is briefly described and presented lucidly with some of  its known 
applications, significances, and solution strategies expecting that it should be able to guide much more interest into 
this important and growing area of  research. 
Keyword — Disaster management; evacuation planning; transportation network; vehicle assignment. 

 
 
 

1. INTRODUCTION 
 

Evacuation planning is an important aspect of  disaster management. Emergency evacuation is the immediate and 
urgent movement of  people away from threat, from the danger zone to the safety zone. According to (DHS, 2004) 
an evacuation is “organized, phased, and supervised withdrawal, dispersal, or removal of  civilians from dangerous or 
potentially dangerous areas, and their reception, and care in safe areas.” It concentrates mainly to find the optimal 
use of  vehicles and the routes as effectively as possible with utmost reliability. The most fundamental necessity of  
human beings is saving lives which should be the core objective of  the planning. But the life of  a human being is 
always in danger and under the threat because of  natural or man-made disasters. Most of  the disasters cannot be 
predicted and are unavoidable, and the damages caused by them are severe. The increasing rate of  such disasters 
demands the comprehensive analysis and planning for the evacuation management. Past evacuation experiences on 
different situations are to take account of  planning and mitigation strategies which are followed by the response and 
recovery to normalize the situation. Disaster operations can be performed before or after the disasters as pre-and 
post-disaster operations. Short-notice evacuations, facility location, and stock pre-positioning are carried out as the 
main pre-disaster operations whereas the relief  distribution, logistic support services, and the casualty 
transportations are the main aspect of  post-disaster operations (Caunhye et al., 2012; Dhamala et al., 2018). In 
evacuation planning, auto-based and transit-based evacuees can be categorized like high and low-mobility 
populations, respectively. The former are supposed to withdraw the hazardous area by using their own vehicles 
whereas the latter need to be sent to the transit hubs for further evacuation. In large cities of  developing countries, 
many people fall into low-mobility population and are to be given a special attention due to their ages, language 
inefficiencies, different health problems, or other physical disabilities. The great loss of  people on Hurricane Katrina 
was due to the lack of  proper planning for the transit-based evacuees (Litman, 2006). 

The traditional vehicle routine problem (VRP), deals for the distribution of  goods from different depots to 
customers to design the least cost delivery is the main root of  transit dependent evacuation planning. It has several 
variations depending on different contexts, among them relief  distribution, logistic support and management, and 
evacuee transportation are of  great importance on emergencies. Among its different extensions, the Split Delivery 
Multi Depot Vehicle Routing Problem with Inter-depot Routes is relatively similar and applicable form of  VRP in 
evacuation scenarios for transit dependent vehicles. For an overview of  VRP variants and their different applications, 
we refer to (Kumar and Panneerselvam, 2012; Laporte, 2007).  

Basically, evacuation models can be classified into two broad categories, microscopic and macroscopic. The 
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former emphasizes individual parameters like walking speed, physical ability, reaction time, and the interaction of  
each evacuee with other evacuees during the movement and are based mainly on simulation (Dhamala, 2015). But in 
later the occupants are treated as a homogeneous group and are taken account of  their common characteristics only 
and are able to produce mainly the lower bounds (Hamacher and Tjandra, 2002). These two aforementioned models 
can also be combined in an interactive solution process as in (Hamacher et al., 2011), where the output of  one is 
used as input to other so that the output of  both remains stable and is named as sandwich method. The effectiveness 
of  transit-based evacuation highly depends on the location of  pick-up facilities, allocation of  the resources and 
evacuation management system. Different mathematical models were developed to address such transit-based 
evacuation under both predictable and unpredictable disasters and are integrated to the location-allocation design 
with the routing, assignment and scheduling of  the buses on evacuation network. In a real scenario, the evacuee 
walking time to various pick-ups, their  waiting and loading time at pick-ups, service delays on the system etc. are 
also to take account which is rarely been considered in existing literature. Comparatively, a reliable location model has 
been developed in (Shi et al., 2013) which integrate the pre-and post-emergency operations in an exponential number 
of  facility disruption scenarios including their interconnection to pick-up location, service facility and the vehicle 
assignment to determine the optimal evacuation, however, the assumptions like constant rescue demand with 
identical and independent facility disruptions may not always be realistic.  Moreover, not only the evacuation 
network, pick-up facilities might also be disrupted in real practice. Hence, during designing of  the evacuation system, 
the care should be taken not only on the efficiency but also on the reliability and efficacy. 

Evacuation problems were combined with location analysis to reduce the evacuation time by facility location 
approach in (Hamacher et al., 2013). In a modeling by (Chen and Zhan, 2008) on three different types of  road 
networks like a grid network, a ring road structure, and a real road network the overall benefit of  the chosen bus 
stops located within the evacuation area has been maximized by dividing the area into smaller sub-sections, zones 
can be grouped together, and a minimum number of  bus stops can be set for the sub-section of  evacuation bus 
stops where the total benefit will increase as the total number of  optimum bus stops increased. Assuming that a 
complete evacuation is not possible, authors in (Sayyady and Eksioglu, 2010) used to maximize the number of  
evacuees served, which incorporates traffic flow dynamics from the simulation package with a logistic function to 
estimate the number of  evacuees at each pickup location, likewise for solving the problem of  refuge location 
through facilitating buildings to provide shelter to the victims with the quality service after a disaster has also been 
highlighted in (Pèrez-Galarce et al., 2017). Dealing with the household behavior under the emergency evacuation 
scenarios, authors in (Murray-Tuite and Mahmassani, 2003) have provided two formulations to determine the 
meeting location for household members and their sequence pick-up. Vehicles are distributed according to the 
location of  the drivers and are taken heterogeneous depending upon their capacity which is more convenient in an 
emergency. 

Evacuation planning strategies, models, methods, and their operations may vary due to their applicable 
geographical scales, total affected population size and density, behavioral and organizational situations, modes of  
transportation, traffic capacity, evacuation objectives, and the time spans. An emergency situation caused by different 
factors like fire, nuclear reactor accident, terrorist attack, hurricanes, earthquakes, floods or landslides are all different 
in nature. Evacuation scheduling, traffic route guidance, destination optimization, optimal route choice, and other 
various approaches have significantly contributed to accelerate the evacuation process, even then the integrated 
optimal plan to have a single comprehensive solution to the problem is lacking for real case scenarios. Different 
models and strategies have been developed so that the solution methods can be applied effectively to the realistic 
networks of  reasonable size and also with possible extension of  further improvements on different parameters to 
enhance the performance of  evacuation process. Significant contributions have been made by many researchers in 
the scientific field of  evacuation planning utilizing the highly prominent transit like in (Abdelgawad and Abdulhai, 
2012; Chiu et al., 2007; Hobeika and Kim, 1998; Shayti and Mahmassani, 2006). An overview of  the mathematical 
modeling and algorithms of  evacuation problems has been presented in (Bretschneider, 2012; Hamacher and 
Tjandra, 2002) whereas, different surveys of  discrete dynamic network flows are in (Aronson, 1989; Dhamala, 2015). 

Contraflow has gained a considerable attention in evacuation literature because by finding the ideal direction of  
lanes of  a road network, the flow can be increased and evacuation time can be reduced as compared to the 
evacuation in the existing road reconfiguration and is applicable to reduce congestion, eliminates the crossing at 
intersections and traffic jams during the day-to-day rush hours.Depending upon the objectives, different contraflow 
variants on the evacuation models like maximum dynamic contraflow, lexicographic contraflow, the earliest arrival 
contraflow and many more have been studied by the authors in (Dhamala and Pyakurel, 2013; Pyakurel et al., 2015; 
Pyakurel, 2016; Pyakurel and Dhamala, 2014; Pyakurel and Dhamala, 2015). 

A critical review on the evacuation planning of  network design problem has been presented in (Abdelgawad 
and Abdulhai, 2009) which has reviewed and compiled the main evacuation strategies, network design problem 
formulation, traffic simulation and the optimization tools. Depending upon the nature and circumstances of  the 
disasters a survey in (Xiongfeil et al., 2010) has suggested for the improvements of  models with more reasonable and 
realistic assumptions including travel behaviors. There are many uncertain factors in disasters like evacuee’s route 
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choice behavior, departure time, road capacity and so on, which demands the stochasticity and robustness. 
In this paper, we present a comprehensive overview of  the most important transit dependent evacuation 

approaches focused on disaster management that were not covered widely in an organized form in the literature. 
Section 2 presents the transit-based evacuation model from different perspectives. Different solution strategies will 
be discussed in section 3 whereas the applications in section 4 with the conclusions in section 5. 

 
 

2. TRANSIT-BASED EVACUATION MODEL 
 

Transit has a unique role in evacuating the car-less, elderly, and the needy populations with different disabilities. Even 
when transit evacuation is planned carefully, communications and logistics issues are taken care of, the behavior, 
knowledge, attitude and nature of  the evacuees still play a major role in effective emergency evacuations. Moreover, 
the knowledge, ages, readiness, and/or the willingness of  people to evacuate may be different, it also demands 
behavioral analysis. Furthermore, the lack of  coordination between the transit agencies and the traffic operators may 
highly affect the system. In a survey of  about high-risk area of  hurricane as in (Blendon et al., 2005) have noticed 
that about 54 % of  households, the traffic congestion was the main reason for not evacuating on such high-risk 
hurricane strikes and has noticed that more fatalities were caused by evacuation than the hurricane. Whereas, in a 
survey (Litman, 2006) it was noticed that, 71 % of  those who died in Hurricane Katrina in New Orleans were age of  
60 and 47 % over of  75. This also demands the need of  transit vehicles for effective evacuation. 

To cope the situations, a prominent bus-based evacuation problem (BEP) model, as a unique variant of  VRP is 
proposed by (Bish, 2011), with the objective to minimize the time of  evacuation in case of  a short notice using given 
number of  homogeneous buses. It is formulated as a mixed integer linear program in which the decision variables 
determine the assignment of  routes to buses and assignment of  buses to the evacuees so that the evacuation time of  
the last evacuee to reach the safe destination is minimized for the given number of  evacuees at the sources. For the 
formulation of  BEP network, let N  be the set of  nodes and A  be the set of  arcs in the networks ( ),N A , 
where N  is composed of  three subsets Y ,P  and S  where Y  stands for the set of  yards at which buses are 
initially located and dispatched from; P , as a set of  demand nodes representing pickup locations requiring the 
evacuation services; and S , as a set of  shelters (sinks) where the evacuees are to be transported. Let V  be the 
available vehicles (say buses) each having a capacity Q  is subdivided into the subsets i

V  for i YÎ , and the bus 

i
j VÎ  is initially located at yard i . Let the demand node j  has a demand ,

j
D j PÎ  and shelter i  has a 

capacity ,
i

C i SÎ . Then the arc( ),i j  has a non-negative travel cost of  
ij
t  for ( ),i j AÎ . In fact, the travel cost 

is proportional to the travel time and distance. All costs in the network are taken symmetric and are supposed to 
satisfy the triangle inequality for all arcs. 

 
Decision variable 

: 1,mt
ij
x  if  trip t  for bus m transverse arc( ),i j , else 0 , ( ), , , 1,2,..,i j A m V t q" Î Î = . 

: No.mt
j
b of  evacuees assigned to bus m after trip t  (or, released from, if j  is a shelter), 

, , 1,2,..., .j N m V t q" Î Î =  

:
evac

G duration of  evacuation  
 

BEP formulation 
    

evac
minimize G   (1) 
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 { } ( ) 0,1 . , , , 1,2, ,mt
ij
x i j A m V t qÎ " Î Î = ¼   (14) 

 ( ) 0. , , , 1,2, ,mt
j
b i j A m V t q³ " Î Î = ¼   (15) 

Constraint (2) needsthe evacuation duration be greater than or equal to the maximum cost incurred by the bus with 
the highest travel cost and is to be minimized by (1) as the “min–max” objective. Constraint (3) ensures that a bus 
traveling to demand node j  on trip t  leaves node j  on trip 1t + , the flow-balance constraint for the demand 
nodes. Constraint (4) ensures that the last trip of  the bus may end at a shelter, the flow-balance constraint for the 
shelters. Constraint (5) allows a bus to make at most one trip at a time; constraint (6) tells that the first trip of  each 
bus starts from its yard; constraint (7) tells that the buses do not leave the yard for later trips; and constraint (8) does 
not allow the last trip a bus can make to end at a demand node. Constraint (9) signifies that a bus can only pick up 
evacuees from node j ,if  it is traveling to that node where constraint (10) and constraint (11) are the bus capacity 
and the shelter capacity constraints respectively. Where, constraint (12) and constraint (13) signify that all evacuees 
are picked up and are delivered to a shelter, respectively. Moreover, constraints (14) and (15) are the logical binary 
and non-negativity restrictions on the x and b variables, respectively. 

 
Example 1: In this instance as in Figure 1 with one yard, three demand nodes and three sinks, it is assumed that the number of  
evacuees at the demand nodes be as same as the vehicle capacity or its integral multiples where the demands be ( )3, 3,1

i
l = , capacities 

at sinks be ( )3, 4, 3
j
u =  with buses available be 3 . The distance of  the demands from the yard be ( )4, 3,6d =  with the 

distances between P  to S  as  
4 7 9

10 7 5

7 6 9

t

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

 

In general, BEP is formulated so as to choose the minimum of  the evacuation times of  all possibilities where the critical path of  
the plan is for B3 or bus B1 as in Table 1, which shows the feasible solution of  BEP with the evacuation duration of  25. 

 
 

Table 1. Table of  feasible solution of  BEP 
 

Trip 1 2 3 Tour plan Time 
B1 (1,3) (2,1) - 1 + 13 + 33 + 31 25 
B2 (2,1) (2,3) - 2 + 21 + 21 + 23 21 
B3 (1,1) (1,2) (2,3) 1 + 11 + 11 + 12 + 22 + 23 25 
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Figure 1: A simple BEP               Figure 2: A simple evacuation network 
 
 

Authors in (Goerigk and Grün, 2014) have presented lucidly the robust bus evacuation problem (RBEP), in 
which the exact numbers of  evacuees are not known in advance though a set of  likely scenarios is known and after 
sometime such uncertainty will be removed. In such instance, it is to decide whether the buses are better to send 
right now as the here-and-now bus under such uncertainty or to wait as wait-and-see bus until the exact scenario becomes 
known. 

Considering both the transit time and capacity on each path, the concept of  combined evacuation time (CET) 
and the quickest paths has been introduced by (Min and Neupane, 2011). For T be the travel time of  the path (the 
sum of  travel time of  edges in the path), C be the capacity of  path (the minimum capacity of  the edges in the path), 
and x be the number of  evacuees at the source P, the evacuation time (ET) is given by, 

 1.
x

ET T
C

é ù
ê ú= + -ê ú
ê ú

  (16) 

The path *
1
P is said to be the quickest path if  and only if, 

{ } { }i1 1, 1,2, , \ .
i j

x x
ET T ET T j k

C C

é ùé ù ê úê ú= + - £ = + - " Î ¼ê úê ú ê úê úê ú ê ú
 Let * * *

1 2
, , .

k
P P P¼  be edge-disjoint paths 

from source P  to sink S  with i
C  and i

T  be the capacity and transit times of  paths *
i
P  and x  be  the 

number of  evacuees at P  then the combined evacuation time is given by  

 ( )* * * 0
1 2

0

, , . 1.

n

i ii
k n

ii

x C T
CET P P P

C

=

=

é ù
+ê ú

ê ú¼ = -ê ú
ê ú
ê ú

å
å

  (17) 

 
Example 2: Consider three possible paths * * *

1 2 3
,? ?P P P  in between demand node P  and the sink S  with their respective travel 

time  T  and capacity C  as in Figure 2. Suppose the evacuees at demand node be 52  then the ET  through these paths can be 
calculated by using equation (16) be 23 , 20  and 17  respectively among them ( )*

3
ET P  be chosen as the quickest path. But if  

the next path *
1
P  be added on the evacuation route then the CET  as in equation (17) becomes ( )* *

3 1
, 16CET P P =  which is 

shorter than the current evacuation time. Moreover, by adding the next path *
2
P  also on the route CET becomes 

( )* * *
1 2 3
, , 13CET P P P =  further improved, which is smaller even than the route *

1
P , with longest travel time. Hence, we can remove 

the route *
1
P  with longer travel time from the evacuation route, since ( )* *

2 3
, 11CET P P CET= <  and the evacuation time be 

reduced even more by 2 . Note that, the purpose of  adding paths into the evacuation route is to reduce the ET  by distributing the 
evacuees in multiple paths and will be terminated when the CET  by the current quickest path becomes greater than the previous 
CET . Running time is determined by the number of  iteration which is bounded by the total number of  paths in and does not depend 
much on the number of  evacuees. 
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2.1 Dominant Vehicle Assignment on Transit Routes. 

 
Among all feasible routes on the evacuation network, a route p  is said to dominate another route 'p  and is 
named as the dominant route, if  it does not have longer evacuation duration, it does not have the more cost for the 
demand nodes considered and every unreachable demand nodes on route p  is also unreachable for 'p . If  
different routes lead to the same shelter and neither of  them is better than the others over all criteria, then neither of  
the routes is dominating. There are different factors affecting for the selection of  such dominant routes and mainly 
depends upon nature of  the available network. The problem is not only on the selection of  a route and the selection 
of  a shelter for each route but also on the route-to-vehicle assignment and vice versa, which is more complex in 
practice. Furthermore, the network adds complexity to the solution and impacts on the problem. It needs the 
modification and extension on the model to make it more realistic and applicable. 
 

                
 

Figure 3: A simple network               Figure 4: A split delivery network 
 
 

In general, it seems that sending each vehicle to its closest shelter to last pickup node is the appropriate route to 
be assigned for the optimal routing.  Likewise, one may assume that the split delivery network will improve the 
evacuation duration. But, it is not always (Dror, 1990). 
 
Example 3: In this simple network as in Figure 3, let a bus which has picked up a full load of  evacuees at 1

P  can still pick up a 

full load at 2
P  with uncapacitated shelters 1

S  and 2
S . Then, if  the shelter closest to its last pickup node is assigned, then the bus 

would be on 1 1 2 2
P S P S- - -  and will have the cost of  9, whereas the optimal solution would be on the route 

1 2 2 2
P S P S- - -  with cost of  6. 

 
Example 4: Consider a simple split delivery network as in Figure 4 where Y and S are yard and sink respectively, with P1, P2 and P3 
be three different demand nodes. The evacuation durations with and without split delivery and their respective bounds are shown as in 
Table 2, where the vehicles were scheduled simultaneously. This signifies that the split delivery network will not always improve the 
evacuation duration. 

 
Table 2: Table showing the observations. 

 
No. of Vs. With SD Without SD Bound Remarks 
1 4X+є 6X 1.5 Improved 
2 2X+є 4X 2 Improved 
3 2X 2X 1 Not improved 

 
 

Moreover, in Figure 4, the evacuation cost is X6  for 3  vehicles without split delivery where the cost 
becomes approximately the same, i.e., X6 e+ , only for 1  vehicle. Which signifies that 1  vehicle covering all the 
routes will have approximately the same cost as multiple vehicles covering the same routes in such simple evacuation 
network. 

 
 

2.2 Location Allocations of  Transit Vehicles 
 

Authors in (Zhang and Chang, 2014) have proposed a model to determine the pick-up locations within several 
clusters of  demand zones for the routing and scheduling of  transit vehicles based on vehicle availability and the 
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time-dependent evacuee demand pattern. By suggesting the equilibrium of  the evacuee arrival process and the 
functioning pick-up facility, authors in (An et al., 2013) have presented the optimal resource allocation strategy to 
balance the trade-off  between evacuees' risks and the operation costs, and about its dynamic nature in (He and Peeta, 
2014) addressing of  when, for how long, and where to assign to improve the evacuation efficiency. 

Let 
i
P  be the number of  evacuees in pick-up location who need to be transported one of  the shelters; 

: 1 ,1
ij

A f i n j m= £ £ £ £  be the allocation of  fleet; 
ij
f  be the amount of  fleet assigned to transferring the 

evacuees from i
P  to i

S  with 
ij
t  be the time for round trip between them including the boarding and alighting 

time. Define ij

ij
ij

f
h

t
=  be the number of  evacuees transferred per unit time from i

P  to i
S  and 

1 1

m m
ij

i ij
j j ij

f
t h

t= =

= =å å  the rate at which evacuees are transferred from i
P  to any of  the shelters. Then maximum 

evacuation rate resource allocation is to maximize the number of  evacuees who reach safety by any given deadline 
after the evacuation, under some capacity constraints, and is given by, 

 

 ( )   
1 1

n m
ij

i j ij

f
maximum s

t= =

G = Gåå   (18) 

 
For *S  be the optimal solution of  (18) as in (Aalami and Kattan, 2017), the minimum network clearance time 

resource allocation is to evacuate the whole endangered population to shelters in the shortest possible time, i.e.  
 

 ( )   *

1

n

i
i

minimum S P
=

ì üï ïï ïG ³í ýï ïï ïî þ
å   (19) 

 

Theorem 1. (Aalami and Kattan, 2017), Let i

i

P
k

t
=  denote the clearance time of  i

P . Then in the minimum 

clearance time resource allocation, { }, 1,2, , .
i j
k k i j n= " Î ¼  

Proof: Let { }: max
x i jj

K i k k= =  and { }: min
y i jj

K i k k= =  be the set of  indices of  the pick-up locations 

with largest and smallest clearance time respectively. x
K  and 

y
K  both are non-empty. Assume the contrary, 

x y
K KÇ = Æ . If  not, then, min

j j ii
x k k= , proof  becomes obvious. So for, 

x y
K KÇ = Æ  the network 

clearance time can be reduced by taking a small portion of  the resonance from the pick-up locations with indices in 

x
K  and allowing them to pick-up locations with indices in 

y
K  which contradicts the assumption. Hence, 

x y x y
K K K K= =Ç . ▓ 

 
However, in general, minimizing the evacuation time for all pick up locations is desired during evacuation, but 

if  a city is threatened by wildfire then the neighborhoods close to the wildfire are supposed to be evacuated before 
the ones faraway where the minimum network clearance time resource allocation is not the right choice. 

 
 

2.3 Lane-based Vehicle Assignment for Transit Vehicles during Congestion 
 

Most of  the traffic delays and the potential accidents are due to the merging and crossing conflicts at the intersection. 
To address this, comparatively a smart traffic routing without crossing and merging conflicts has been proposed by 
(Cova and Johnson, 2003) and is further improved by many others like (Bretschneider, 2012; Bretschneider and 
Kimms, 2011; Xie and Turnquist, 2011), following the assumption that, vehicles have to order in the appropriate 
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lanes that correspond to their subsequent turn before they enter the intersection and the restructuring of  traffic 
routing with regard to a safe evacuation process to minimize the evacuation time. Likewise, the effectiveness of  lane 
based system even in the damage traffic sensors and interrupted communication system has been presented by 
(Ardekani and Hobeika, 1988). Different heuristic approaches have been suggested in (kimms and Massen, 2011; 
Kim et al., 2007) to solve the problem of  minimization of  evacuation egress time with time-dependent node and arc 
capacity by lane reversal approach. The demand management strategies of  staging and routing have been presented 
in (Bish et al., 2013) incorporating to some extent for the evacuee behavior aspects subjected to route the vehicles to 
their closest evacuation zone exit and to minimize the number of  intersection merging-conflicts, which also satisfy 
the shortest evacuation plan criterion given by (Yamada, 1996). 

Lane-based reversal design and routing with intersection crossing conflicts elimination for the evacuation has 
been integrated in a bi-level model in (Zhao et al., 2016) by applying a tabu search algorithm to find an optimal lane 
reversal plan in upper-level and the simulated annealing algorithm on the lower level consisting of  single arc and 
multiple arcs approaches on lane based route plans with intersection crossing conflict elimination to minimize the 
total evacuation time on the network. Such network optimization model with the bi-level scheme has been 
formulated in (Liu and Luo, 2012) with the upper level determining the best sets of  signalized and uninterrupted 
flow intersections and the lower-level handling routing assignment of  evacuation traffic demand. The upper level 
describes the behavior of  the policy makers or planners for minimizing the total evacuation cost whereas, the 
lower-level problem captures the behavior of  evacuees in choosing the evacuation routes under the budget 
constraints. In fact, such information is critical for emergency managers to allocate the limited resources to the most 
appropriate location and the mass transit VRP can been solved iteratively between two levels of  problems as the 
transit problem and the passenger problem as in (Pages et al., 2006), where the transit problem has been taken as the 
initial problem and its initial solution is used to improve by assigning the passengers on the routes. The transit signal 
priority method in (Lin and Gong, 2016) has given the priority on (i) transit vehicle arrival time estimation, (ii) 
queuing vehicle dissipation time estimation, (iii) traffic signal status estimation, (iv)transit signal optimization, and (v) 
arterial traffic signal coordination for transit vehicle in evacuation route. In a survey, with some demographical 
analysis of  the Upstate New York city, the authors in (Hess and Gotham, 2007) have suggested to the planners, 
transit providers, emergency management officials and even to the researchers for the development of  multi-modal 
mass evacuation plans with the incorporation of  more high-capacity vehicles for the comprehensive and effective 
emergency management plan for the large scale evacuation. 

 
 

2.4 Cost Objective and Min-max Objective on Transit Vehicle Assignment 
 

(Bish, 2011) illustrates the impact to the optimality of  the solution on the min-max objective given by (1) and the 
cost objective, where the cost objective is taken as, 
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Both the min-max and the cost objective can have multiple optimal solutions, some of  which are better than others 
and become the dominating solutions. In case of  multiple optimal solutions, there might be some bottle-neck 
vehicles where some of  the solutions may include the undesirable or unnecessary routes and may increase the costs 
and trips on evacuation process. An alternative lexicographic min-max objective with the lexicographic constant L 
has been introduced as, 
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The first term denotes the evacuation duration and it lexicographically dominates the second term denoting the total 
evacuation cost on cost objective. (Sherali, 1982) has considered the lexicographic constant, 
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lexicographically dominates the second term. As a dual, the cost and duration can be minimized lexicographically as, 
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By various approaches including some empirical evidences (Bish, 2011) has concluded some useful results on 
BEP regarding the fleet size and different objectives: 
●For a single vehicle as the fleet size, the min-max and cost objectives have equivalent optimal solutions.  
●For the min-max objective there is an optimal threshold fleet size. Increasing the fleet size beyond this threshold does not impact 
optimality. 
●For the min-max objective, the evacuation duration does not always decrease in a convex manner with the number of  vehicles. 

In another approach, the authors in (Campbell et al., 2008) concentrate on the min-max objective to minimize 
the time until the last delivery is made for the relief  supplies in a disaster.  In general, when the cost objective is 
taken, it becomes the route selection problem and if  min-max objective, then it becomes the route selection as well 
as the route-to-vehicle assignment, and is obviously more complex. 

As already mentioned above, the VRP objective minimizes the total routing cost for the entire vehicle 
considered where the minimization of  the duration of  evacuation, i.e., the min-max objective for the routing cost is 
concerned on BEP. Basically on evacuation, minimizing the cost should not be the primary concern as the most 
common objective is to minimize the time till the last delivery, including the safety of  drivers and evacuees. Besides 
this common mini-max objective on BEP, authors in (Sayyady and Eksioglu, 2010) have addressed to identify the 
number of  public transit vehicles needed to evacuate all transit-dependent citizens during no-notice evacuation. Not 
only this, the model is concentrated  to identify paths for vehicles to have the  minimum the number of  casualties; 
to minimize the total evacuation time; and  to maximize the vehicle utilization on the system. Moreover, their model 
maximizes the number of  evacuees served assuming that a complete evacuation is not possible and thus the 
objective function is quite different from the common min-max objective.  

 

       
 

Figure 5:  Different scenarios of  vehicle assignment            Figure 6: Relation between  & Vt  

 
 

Example 5: Consider a simple scenario with four different assignments with one, two, three and four vehicles as in Figure 5 where 
vehicles start from the depot S  denoted by square and assigned to the demands i

P  denoted by circles and finally return to the depot 
again. Let all the unmark arcs are with length unity, the relation between the number of  vehicles V , and the respective maximum route 
length t  is shown in the Figure 6. 

 
 

2.5 Integrated Contraflow Approach of  the Vehicle Assignment on Transit-based Evacuation 
 

Authors in (Kim et al., 2007), study the microscopic model for the reconfiguration of  transportation network and 
provide a pair of  heuristic approaches as the greedy and bottleneck relief for the high quality solution with significant 
performance and for the large scale evacuation, respectively and they improve the evacuation egress time by about 40 
percent or above in different experimental results. In a recent work, different analytical solutions of  continuous time 
contraflow problems has been presented in (Pyakurel et al., 2017), with an extension of  dynamic contraflow to more 
general setting where the given network is replaced by a two terminal abstract contraflow network with each element 
having symmetric capacity and established a remarkable theorem with its analytical proof, on the flow value. 

 
Theorem 2.(Pyakurel et al., 2017) If  the minimum dynamic abstract cut capacities are symmetric for a two terminal abstract 
contraflow network, the flow value can be increased up to double with contraflow reconfiguration. 

 
An integrated contraflow strategy has been presented by (Hua et al., 2014)containing non-contraflow to 

shorten the strategy set up time, full-lane contraflow to maximize the evacuation network capacity and bus 
contraflow to realize the transit cycle operation. Here, the routing problem of  the transit-based evacuation has been 
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considered as the minimum cost flow problem with multiple origin nodes and single super destination node. This is a 
mixed integer linear programming problem which can be solved in a very efficient way using the branch and bound 
method. The auto-based evacuation method has a bi-level structure and is usually solved by using heuristic 
algorithms as in (Miandoabchi and Farahani, 2011). The evacuation model has been formulated with the objective to 
route the transit vehicles to their closest evacuation destination as follows: 
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Constraints (24) and (25) describe the equality of  inflow and outflow volume i.e., the flow conservation. 

Constraint (26) ensures the proper amount of  flow on each link ( ),i j  i.e., if  1
ij
z =  then the bus contraflow 

configuration is applied on the link, otherwise the link is not served on evacuation for N  and A  be the set of  
nodes and links, as usual for  S A I D

N N N N NÈ È È=  as different nodes like super origin, access, intersection 
and destination nodes. The lower bounds on all transit-based flow variables are provided by constraint (27). 

A multi-modal optimization evacuation framework has been proposed by (Abdelgawad et al., 2010) to optimize 
simultaneously the minimizing of  in-vehicle travel time, minimizing of  the at-origin waiting time and minimizing 
fleet cost for mass transit evacuation. By the comparative analysis of  different evacuation scenarios they claimed that 
considering only the travel time underestimates the waiting time of  the evacuees in no-notice evacuation. In another 
hand, minimizing of  the evacuee waiting time implies evacuating all the population instantly and will ultimately 
demand their simultaneous evacuation, which may lead to longer travel times in the system and the longer evacuation 
time with congestion on the transportation network. Furthermore, minimizing travel time causes the delaying of  the 
evacuees at the origin and will ultimately increases the waiting time. A good compromise and their proper trade-off  
is always challenging as these two objectives might be conflicting to each other. 

 
 

3. SOLUTION STRATEGIES 
 

Mathematical models seldom represent all the existing characteristics of  real-life situations as on their formulation, 
one has to idealize the real-life problem by making some simplifying hypotheses (Lancaster, 1976). So, one has to be 
careful using the solutions of  such models as they tend to be large and exhibit an exponential complexity with the 
problem size. Its performance and efficiency depends upon the nature of  road network, population density, the 
behavior of  the population and on many other factors.  

So far as the BEP is concerned, the objective is to minimize the duration of  evacuation by routing and 
scheduling a fleet of  homogeneous and capacitated buses which were initially located at one or more yards. Most 
often, the number of  evacuees at each pickup location can exceed the capacity of  a single bus, which signifies the 
necessity of  split delivery service. Moreover, the number of  available buses is insufficient to transport all the 
evacuees without multiple trips and each shelter has a capacity that limits the number of  evacuees it can serve. Such 
situations also demand the split delivery service. In such situations, the author in (Bish, 2011) has proposed and 
analyzed two alternative models for the multi-depot, multi-trip, bus-based evacuation problem, at which the first 
simultaneously identifies optimal route construction and assignment of  the vehicle where the next identifies the 
optimal route assignment from a set of  feasible routes. Unlike to this, a multi-items, multi-vehicles, multi-periods, 
soft time windows with a split delivery strategy has been formulated in (Lin and Luo, 2011) as a multi-objective 
integer programming model and is solved heuristically by the genetic algorithm (GA) followed by decomposition of  
the original problems. Whereas, (Goerigk et al., 2013) have developed a simplified version of  BEP model for the 
evacuation of  a region from a set of  collection points to a set of  capacitated shelters with the help of  buses in 
minimum time assuming that the bus pick-ups exactly the number of  people that equals its capacity when visiting a 
source and hence, no need of  split delivery services. By assuming that the number of  evacuees is not known exactly, 
the BEP is extended to RBEP in (Goerigk and Grün, 2014) as mentioned above.    
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The development of  large scale simulation-optimization approach as a decision support tool optimizing 
network performance and logistics during emergencies has been presented in (Cavusoglu et al., 2013) for the 
evacuation of  car-less populations via different transits. Considering the preferences of  the evacuees for their 
departure times, routes, and destinations, authors in (Huibregtse et al., 2011) have developed an iterative solution 
technique where the objective function and the simulation model can be chosen by the analyst, and can be applied to 
an arbitrary region and hazard. However, the output depends upon the choice of  the objective function. Simulation 
models also enable transportation planners and practitioners to develop and compare different evacuation plans for 
different hypothetical situations to predict traffic conditions and the evacuation duration. Such techniques has also 
been used to investigate how different evacuation scenarios like alternatives exits, number of  vehicles changed, and 
other traffic control plans would affect the evacuation duration. Such models have been presented systematically in 
(Naghawi and Wolshon, 2010) to simulate the transit based evacuation strategies where the average travel time and 
total evacuation time were used to compare the results of  different evacuation time periods. They also proposed 
comparatively the effective scenario of  transit based evacuation routing plan with reduction in overall travel time as 
well as the total evacuation time with respect to the peak hour general evacuation scenarios. Simulations are the 
powerful tools to evaluate traffic scenarios though it misses the optimization potential. Fluid models and the models 
based on differential equations capture very well the dynamic behavior of  traffic as the continuous quality but 
comparatively inefficient to handle the large network. The authors in (Xie and Turnquist, 2011) have presented 
comparatively the effective way to use existing network capacity by identifying the candidate emergency vehicle 
routes and then the reconfiguration of  the network for evacuees to satisfy the multiple objectives for emergency 
management. 

An intelligent algorithm, by embedding the GAhas been developed in (Deai et al., 2011) to solve the 
optimization model of  a real evacuation network having 19 pickups and 4 shelters. A hybrid type of  GA has been 
formulated in (Song et al., 2009) for the solution of  a location routing problem to get its optimal transit routing in 
the system. Various constraints have been satisfied in its initialization and reproduction process. The proposed 
hybrid GA has also been tested in a small evacuation network and found to be better than the traditional GA. An 
alternative evacuation route plan strategy is suggested by (Lim et al., 2016) with mixed integer nonlinear 
programming formulation for real time evacuation where the traffic network are affected partially or totally for short 
or long periods of  time. Though in a minor incident, one can wait until the incident is cleared to follow the 
pre-planned route but in a severe incident it is better to have an alternative path to evacuate the outbound flows due 
to over congestion and minimize the evacuation clearance time. Unlike to this the authors in (Sayyady and Eksioglu, 
2010) have considered the case of  minimum casualties within minimum time with maximum use of  vehicles. 

As the exact methods tend to perform poorly on large size instances and demands the heuristics. Two heuristic 
algorithms have been used to solve BEP in (Bish, 2011), the first is to produce quickly the feasible solution and is 
also to improve the solution by route swapping and assignment based on a simple search technique whereas the next 
based on mathematical programming formulation. Authors in (Goerigk et al., 2013) have presented branch and 
bound algorithms for various computational results to find lower and upper bounds with several node pruning 
techniques and branching rules. Four greedy algorithms are also presented to construct the feasible solutions and 
three algorithms to find lower bounds, though the greedy algorithms cannot give always the optimal solution. These 
bounds have been integrated into the branch and bound framework to obtain the near optimal solution. 

Authors in (Pereira and Bish, 2014) have presented a spatial-temporal synchronization of  vehicles with 
customer-oriented objective function to mitigate the evacuation risk for maximum service level with the routing and 
scheduling having a constant evacuee arrival rate, BEP-CA. They signify the dynamic relationship between the 
maximum service level and the fleet size for the development of  more efficient transit based regional evacuation 
plan. Assuming the evacuation to begin in zero time the objective is taken as to minimize the total exposure, 
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Unlike to such constant arrival rate, the arrival pattern of  the evacuees at a pick-up locations have been represented 
as a mobilization curve in (Jamei,1984) by  
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where t

x  is the cumulative percentage of  evacuees loaded in the network by time t ¢ , LR  is the loading rate of  
the evacuees to disaster and is referred as the slope of  (33) and h  be the half  loading time. With reference to 
different LR , there are different evacuation scenarios, as the low LRs  is during the early stage of  evacuations for 
the no notice evacuation scenarios and the high LRs  during short notice evacuation scenarios. 

A simplified version of  one of  the earliest algorithms, Capacity Constrained Route Planer (CCRP) algorithm is 
also presented in (Mishra et al., 2015) and is claimed better than most of  the heuristic algorithms. 

 
 

Algorithm 3.1: Simplified CCRP Algorithm 
1. P is added to the priority queue. 
2. The nodes in priority queue are ordered based on its distance from P 
3. While the evacuees are in P, find a path P* having minimum destination arrival from P to S taking the capacity of 
nodes and edges into consideration. 
4. Find the capacity of P* and reserve capacity along the path for a group size equal to minimum capacity. 
5. If evacuees left at P, go to step 3. 

 
 

Authors in (Min and Neupane, 2011) have presented the simple version of  Quickest Path Evacuation Routine 
(QPER) algorithm for R  be the set of  paths in the evacuation routes with ( ) ( ),RC e CP e  and ( )TT e  be the 
reserved capacity, original capacity and the travel time respectively of  the edge e then the capacity and travel time of  

the paths for *p PÎ  becomes ( ) ( ) ( )( )
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on above mentioned equation (16), the combined evacuation time by the route R  becomes 
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Algorithm 3.2:QPER Algorithm 

●Initialization 
1. Set R = Æ  and ( ) 0,RC e e E= " Î . 

2. Set *,CET p CET= ¥ = ¥ . 
● Iteration 

3. Repeat the following while *pCET CET£ : 

(i). Find the quickest path *p  with the minimum combined evacuation time { }( )*T CET R p= È . 

(ii). If *T p CET=  do the following: 
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(a). Set { }( )* *,R R p p CET C= È =  and CET T= . 

(b). For each edge  on *e p  set ( ) ( ) ( )*RC e RC e CP p= + . 

● Path removal 
4. Repeat the following while there is a path ( ) ( )  * *. .p R s t TT p CET RÎ > . 

(i). Set { }*\R R p= . 

 
The running time of  QPER algorithm is determined by the number of  iterations and is bounded above mainly 

by total number of  paths rather than the number of  evacuees and makes it suitable for large scale networks. A 
slightly modified and simple version of  this algorithm has been presented and applied for the single source single 
sink evacuation (SSEP) problem in (Mishra et al, 2015) for k edge-disjoint paths * * *

1 2
, , ,

k
P P P¼  from P  to S  in 

ascending order of  their transit times with 1 2 k
T T T£ £¼£ . For * * *

1 2
, , ,

i k
S P P P= ¼  paths to the set of  routes 

R  are added as a simple SSRP algorithm as in Algorithm 3.3. 
 

Algorithm 3.3: SSEP Algorithm 
(i). { }*

1
.R P=  

(ii). ( )1
.CET CET S=  

(iii). Start with 1.i =  Execute step (iv) and (v) till i k£  and 1
.

i
T CET

+
£  

(iv). Add path 1i
P

+  to R . 

(v). ( )1i
CET CET S +=  and 1.i i¬ +  

(vi). Return R . 
 

For such edge disjoint paths * * *
1 2

{ , , , }, 1,
i

P P P i¼ £  the next path *
1i

P
+  is discovered in residual graph if  

and only if  ( )1i i
T CET S+ £ . As the saturated nodes and edges in each iterations are deleted in maximum m n+  

iterations are carried out but not more than x  as each path can evacuate at least an evacuee. So, at most 
( )min ,m n x+  paths are disconnected. For ( )m O n= , its time complexity is at most ( )logO xn n . For such 

single source single sink problem the SSEP algorithm has been developed to the evacuation route planner algorithm.  
 

Algorithm 3.4: Evacuation Route Planner Algorithm for .-P S  
●Input: A network ( ),G V E  with designated ,P S VÎ . Every node v VÎ  has an occupancy and maximum 
capacity. Every edge e EÎ  has a maximum capacity and transit time. Initially, all evacuees are in .P  
●Output: Evacuation route plan for each evacuee. 
 1 begin 
 2    Initialize R = Æ  and CET = ¥ . 
 3    Initialize 0i ¬ . 
 4    While S  is reachable from P  and number of discovered paths * 1p -  do 

 5        Find the shortest path  *
1i

p
+  from P  to S  for 1 1

,
i i
T C

+ +  be its transit time and capacity. 

 6        if 1i
T CET

+
£  then 

 7            { }*
1i

R R p += È  

 8            ( )1i
CET CET S +=  

 9            Reduce the capacity of each node and each edge of 1i
P

+  by 1i
C

+ . 

 10           { }     
1

\ :
i

V V v v is a saturated node of P += . 

 11           { } 
1

\ :
i

E E e e is a saturated edge of P += . 
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 12       end 
 13       else 
 14           break  
 15       end 
 16   end 
 17   Let { }* * *

1 2
, , ,

k
R p p p= ¼ . 

 18   Send i
x  evacuees via *

i
p  for 1 i k£ £ , where 1i

i
i

x
T CET

C

é ù
ê ú+ - =ê ú
ê úê ú

. 

 19 end 
 

The idea of  CET in (Min and Neupane, 2011) is extended to the probabilistic behavior of  the evacuees in 
(Mishra et al, 2015) assuming that the evacuees do not follow the path suggested as in Algorithm 3.1. For this, let a
and 1 a-  be the probabilities that for suggested and the next (those, who will try to reach their nearest exit), then 

the total number of  evacuees following 1
 p  and i

p  becomes ( )
2
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i i
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x xa
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+ -å  and i
xa , 1i ¹  respectively  

with the expected time at which the last person arrive at the destination through such paths be 
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+ - ¹  respectively. Thus the expected evacuation time in this 

scenario becomes, 
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It has the lower bound as 
( )

1
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1
1
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Emergency evacuation strategies based on the spatial and temporal information of  the evacuees has been 
formulated in (Zheng, 2014)  where the buses run continuously on the basis of  the where-and-when information 
and according to the needs of  the evacuee, rather than the fixed routing in order to minimize the exposed casualty 
time rather than the operating cost. For the solution, a Lagrangian-relaxation-based algorithm was proposed where 
the model was formulated as usual as a mixed-integer linear programming formulation. 

 
 

4. APPLICATIONS 
 

Two instances of  (i) finding a bomb within city center of  Keiserslautern Germany and (ii) an earthquake with a 
subsequent flood in the area of  Nice, France were taken in (Goerigk and Grün, 2014) to test the applicability of  
their modeling of  a comprehensive evacuation planning using genetic solution algorithm. Four notable applications 
of  lane-evacuation routing were effectively conducted in a similar manner in Salt Lake City, Utah as in (Cova and 
Johnson, 2003) for different situations by creating pedestrian and vehicle evacuation zone. The evacuation of  
Yokosuka City by (Yamada, 1996) and the evacuation of  Knox County, as a county-wide evacuation scenario for 
Tennessee in (Han et al., 2006) were carried out using a maximum cost flow network model. An application of  BEP 
is presented by (Pyakurel et al., 2015) in a hypothetical case study of  the evacuation planning of  transit dependent 
people of  Kathmandu valley to evacuate the population of  around 25,672 within the area of  1.45 km2 using 
branch-and-bound and tabu search algorithms. The best results obtained for an instance are; evacuation time of  29 
minutes with 6 or 5 sources and 5 sinks for evacuation of  50 percent population using 140 buses having 90 evacuees 
per bus capacity and 15 km/hr speed. 

By using an optimal spatio-temporal evacuation (OSTE) model, authors in (Abdelgawad et al., 2010) have 
investigated, analyzed and purposed the  multiple time-structure model for the transit vehicle routing and 
scheduling from a multi-objective perspective with real-life constraints and also suggested for the need of  other 
modes like cycling and walking. For large-scale multi-modal emergency evacuation, authors in (Abdelgawad and 
Abdulhai, 2010) have also used it to optimize the routing and scheduling of  mass-transit vehicles on the city Toronto 
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by using only 1320 transit shuttle buses and 4 rapid transit lines to evacuate efficiently the transit-dependent 
population of  about 1.34 million within 2 hours. 

Among others, authors in (Zhang et al., 2010) have applied the numerous optimization and simulation 
approaches to model the trip route assignment to maximize the flow of  evacuees from the risk area to safety or to 
minimize the travel time based on Dijkstra algorithm on time-space network. For this, firstly all residents or other 
evacuees are evacuated safely to temporary safe stop by foot and secondly they are picked up by public transit which 
also signifies the importance of  public transit-dependent emergency evacuation in developing countries, like Nepal. 
Moreover, a transit based evacuation model for metropolitan areas was tested significantly on the city of  Baltimore's 
downtown road network in a study by  (Zhang and Chang, 2014)  assuming an incident of   sudden terrorist 
attack. There were about 40 pedestrian demand points, 2 transit depots, and 10 safe destinations. The applicability of  
the proposed model and its advantages compared with the available models in the literature was found significant.   

The effective and imperative study on the emergency evacuation planning model for the specific need 
populations addressing the optimal location of  bus stops has been presented by (Kaisar et al., 2012) and was applied 
to a real-life to evacuate the effects of  location, number, and distribution of  optimal evacuation bus stops. By 
selecting 20, 40, and 60 bus stop scenarios; they experienced that 20-bus-stop scenario has a high delay because of  
the congestion of  the buses; 40-bus-stop scenario yields the highest delay, travel, and stop times since the bus stop 
locations still requires a large number of  evacuation trips whereas the 60-bus-stop scenario produced the most 
efficient evacuation time. Its delay, travel, and stop times were all the lowest compared to the others. The proposed 
methodology was applied to the real-life case of  the downtown Washington, D.C. to select the most suitable location 
and number of  bus stops. It suggests not only for the need of  different evacuation routes, headways and frequencies 
in which the buses depart or pick up, but also to explore the new, possible and appropriate evacuation bus stop 
locations within the network. Restructuring of  evacuation planning approach has been implemented in (Lim et al., 
2016) including a network preprocessing algorithm and a network flow optimization approach and was developed to 
find a set of  alternative paths and their corresponding flow rates. This approach was tested successfully further on 
the actual evacuation network of  the Greater Houston area. 

To test the integrated contraflow strategy for the multi-modal evacuation, authors in (Hua et al., 2014) have 
considered the evacuation network of  Ningbo city, located on the east coast of  the Pacific Ocean where there are on 
an average of  3.1 typhoons per year. They present a plan to evacuate 350,000 people with 69,000 auto vehicles each 
vehicle with an average capacity of  2.9 and buses with each 35 seats. An arterial sub-network, as the road segment 
without direct connection to the origin nodes and the local roads which are connected to the origin nodes as the 
access to arterials are considered on the network aggregation for the two-stage evacuation process. They have 
presented the separate evacuation models for the transit-based and auto-based evacuees where the transit-based 
evacuation problem is solved with a minimum cost flow model in first priority and then only the auto-based 
evacuation problem is addressed with a bi-level network flow model. The approximate optimal evacuation plan of  
the evacuation network has been obtained at the top level, where the traffic volumes and travel times in streets were 
derived from equilibrium traffic assignment in the bottom level. However, it is almost impossible to optimize an 
evacuation network containing all the arterials and local roads, simultaneously. But, the network aggregation method 
has maintained the balance between the accuracy and efficiency though the management of  arterial-arterial 
intersections and the transit priority at the intersections are not considered which may further improve the 
transit-based evacuation. To evacuate the area surrounding a nuclear power point, (Campos et al., 2000) have 
successfully applied the k-shortest path method. For such disasters situations, like nuclear accidents, hurricanes, and 
floods etc. different approaches of  simulation tools has also been applied. For the mass evacuation of  the areas 
surrounding the sites of  nuclear power points (Sheffi et al., 1982) have used the macroscopic traffic simulation 
model to simulate the traffic patterns to have minimum clearance time.  

The most prominent applications of  the transit vehicles with their optimal routing and scheduling has been 
applied in (Abdelgawad and Abdulhai, 2012) to evacuate the entire city of  Toronto, Canada with a population of  
about 2.37 million. The model generates optimal scheduling and timetable for each train on the subway lines and the 
big shuttle buses on the transportation network.  The results show that the Toronto Transit Commission fleet is 
capable of  evacuating the transit-dependent population of  about 1.34 million within 2 hours on average. The four 
subway lines of  the city of  Toronto carry approximately 0.62 million people and can evacuate these people in less 
than 3 hours of  average whereas, 1320 shuttle buses of  the Toronto Transit Commission can evacuate the remainder 
of  the transit dependent population of  about 0.72 million in approximately 1.5 hours on average. 

 
 

5. CONCLUSIONS 
 

This paper has attempted to provide a comprehensive review of  the fundamental and prominent transit-based 
approach of  evacuation planning optimization problems. With some highlights on various types of  the evacuation 
models on different basis, we are concentrated mainly on the bus-based evacuation. At the meantime, different 
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mathematical models and algorithms which were developed over the years to address such transit-based evacuation 
under both predictable and unpredictable disasters with the location-allocation design, pick-up locations, their 
routing, assignments and scheduling on the evacuation network are also addressed. The determination of  optimal 
fleet size, their assignment for optimal routing, and the appropriate network structure and their impact to the 
optimality of  the solution on the mini-max objective and the cost objective are also addressed with some highlights 
on the traffic control delays at the  intersections, the lane reversal and crossing elimination strategies including their 
different characteristics. Additionally, some representative real-world applications of  each approach have also been 
presented so far, expecting that it should be able to guide much more interest into this important and growing area 
of  research and some of  the extensions might be as follows:  
●Therouting modification, management of  arterial sub-networks, and transit priority at the intersections can be
considered for the further improvements of  the lane reversal and crossing elimination strategies.
●In practice, people may be of  limiting resources during the evacuation planning. So, different resource-constraint
version of  the problem can also be expected.
●Most of  the problems have been tackled with various heuristics. In the networks of  practical size, alternative
solution methodologies, such as problem decomposition and use of  meta-heuristics and different other relevant
algorithms can be performed to improve and adjust the solutions.
●Most of  the evacuation models are with several assumptions like symmetric networks, constant evacuation demand,
constant evacuee rate, and homogeneous distributions of  evacuees, identical and independent facility disruptions and
many more; which are not always realistic.
●Various simulation approaches are developed on various situations with different parameters for different
objectives and constraints and might be the better choice for further modifications.
●The location planning of  the collection points, selection of  the optimal pick up locations, appropriate shelters,
planning of  logistic surroundings and the provisioning and medical shelters can also be considered moderately for
the better evacuation planning in practice.
●Public transit shuttle buses, rapid transit vehicles and different automobiles are used on evacuation planning in a
single platform demands the multi-modal evacuation and can also be integrated with walking, cycling etc. The
coordination between transit modes, route choice and the evacuees' behavior and some specific needs are still lacking.
It demands the further investigation.
●Furthermore, more theoretical and analytical studies, relevant lower bounds, algorithms with performance
guarantee and their dominance, complexity results, etc. are still lacking and insufficient.
●Many of  the parameters are not known and mostly non-linear with full of  uncertainties. So, various limitations may
exist on the findings and always expecting for the further improvements.
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