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Abstract: Several researchers think that the AHP Cost-Benefit Analysis method may give rise to misleading results
in some situations. Hence they propose four alternative methods: (1) the aggregate $ method, (2) the cost-benefit
ratio method, (3) the difference method and (4) the sum method. However, careful mathematical analysis, backed by
numerical examples, show that the aggregate $ method and the cost-benefit ratio method imply nothing but the same
results yielded by Saaty’s original method (1994). More worrisome, we also show that the difference method and the
sum method cause rank order reversal problems under some conditions.
Keyword — Analytic hierarchy process, Cost-benefit analysis

1. INTRODUCTION

In today’s rapidly changing and global environment, decision-making plays a fundamental role in gaining andmaintaining
the competitive advantage in an enterprise or organization. Decision-making maybe considered an iterative process of
choosing among alternatives in order to achieve goals and objectives. However, in many circumstances making the
right decision is not easily done; it evolves many complex phases: analysis and synthesis, quantitative and qualitative,
objective and subjective, linear and non-linear, etc. It is related to different decision-making models under conditions of
uncertainty or multiple criteria (objectives). So in decision making it is crucial to employ a good logical method. Among
those many related methods proposed by researchers and/or practitioners, Analytical Hierarchy Process (AHP) is one
of the most important.

AHP, developed by Saaty (1996a), is a quantitative multi-criteria decision-making technique (Saaty (1990), Saaty
(1994), Saaty and Kearns (1994), Saaty (1996b), Saaty and Vargas (1997)), which presents complex decision making
problems in hierarchical terms. It merges biophysical, social and economic objectives which allow for more extensive
management decision criteria. Moreover, it allows decision-makers to determine the relative importance of criteria,
and to produce alternative solutions. Employing it in decision making involves four major steps. First, it decomposes
the decision problem into a hierarchical model, i.e., Goals, Objectives and Alternatives; it then establishes priorities
by using pair-wise comparison techniques, eigenvalues and eigenvectors, numerical judgments, graphical judgments
and/or verbal judgments; once judgments have been entered for each part of the model, the information is synthesized
to produce an overall preference which ranks the alternatives in relation to the overall goal; finally, a sensitivity analysis
can be done to reveal how well the alternatives perform with respect to each of the objectives as well as how sensitive
the alternatives are to changes in the importance of the objectives.

The AHP method has received considerable attention (Clayton and Wright (1993), Saaty and Cho (2001)), primar-
ily because it places greater emphasis on the decision makers’ preference structures and can rationally handle difficult
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decisions between complex and confusing alternatives. Many computer software tools such as Expert Choice, Van-
guard Software, etc., have been developed to facilitate the researchers and practitioners in applying AHP to solve many
different real and complex problems. A variety of successful applications in many different areas such as resources
allocation, financial management, enterprise outsourcing selection, etc., has been reported (Blair et al. (2002), Bennett
and Saaty (1993), Azis (1990)).

Although the AHPmodel is widely and successfully used in many fields, some researchers still challenge its appro-
priateness and completeness (Watson and Freeling (1982), Belton and Gear (1983), Dyer (1990), Apostolou and Hassell
(1993), Finan and Hurley (1996), Schoner and Wedley (1989), Bernhard and Canada (1990), Wedley et al. (2001)). For-
tunately, a series of more detailed analyses and expansions of the AHP model developed very soon to cope with these
challenges (Saaty and Hu (1998), Saaty and Ozdemir (2003a), Saaty (2003), Millet and Saaty (2000), Saaty and Ozdemir
(2003b), Saaty et al. (2005)). There are several papers that have worked to revise methods related to AHP that are
worthy mentioning: Chang et al. (2008), Chao et al. (2004), Chu and Liu (2002), Deng et al. (2005), Yang et al. (2004),
Jung et al. (2009), Ke et al. (2011), Lin et al. (2008a), Lin et al. (2008b), Chen et al. (2002), Tung et al. (2012). Wedley et
al. (2001) discuss AHP Cost-Benefit Analysis and mention that in the AHP model, if cost-benefit priorities are derived
from two separate hierarchies, then it is likely that the ratio of cost to benefit priorities will produce misleading results.
To correct this, they think that adjustments must be made to put the numerator and denominator priorities into com-
mensurate terms. Hence they propose four new methods to amend the original AHP Cost-Benefit Analysis method.
For convenience in this paper, we designate their four new methods as follows: (1) the aggregate $ method, (2) the cost-benefit
ratio method, (3) the difference method and (4) the sum method.

The purpose of this paper is to provide a deeper and more accurate understanding of the original AHP Cost-
Benefit Analysis method so that the AHP model may be used more properly by researchers and practitioners. Through
our careful mathematical analysis and thorough examination, we successfully show by mathematical formulation and
demonstrate by numerical examples that the aggregate $ method and the cost-benefit ratio method imply nothing but the same
results as Saaty’s original method (Saaty (1994)). Even worse, we also show that the difference method and the sum method
may cause rank order reversal problems.

2. REVIEW OF PREVIOUS WORK

In AHP Cost-Benefit Analysis, Wedley et al. (2001) illustrate how to put the commensurate ratios between costs and
benefits using the example from Saaty (1994) regarding the best choice of word processing equipment among three
brands: Lanier, Syntrex and Qyx. The cost and benefit scale weights for the alternatives are listed in the second and
third rows in Table 1. The cost-benefit ratios are listed in the fourth row.

Table 1. Benefit weights, cost weights and cost-benefit ratios in two hierarchies

Lanier Syntrex Qyx
Benefit priority (Bp) 0.42 0.37 0.21
Cost priority (Cp) 0.54 0.28 0.18

Cost-Benefit ratio (Bp/Cp) 0.42/0.54=0.78 0.37/0.28=1.32 0.21/0.18=1.17

Using cost-benefit ratios, Saaty selects Syntrex as the best word processing equipment. However, Wedley et al.
(2001) consider that the normalized weights for the costs and benefits in the second and third rows of Table 1 could be
produced by using different sets of financial data. They list three possible sets; for Case 1 B$>C$, for Case 2 mixed,
and for Case 3 B$<C$, such that the normalized weights are predetermined as in Table 1. We quote their results in
Table 2. For later discussion and mnemonics, we designate this aggregate benefit $ and the aggregate cost $ method as
the aggregate $ method.

From their construction, in the first case in Table 2 where B$>C$, all B$/C$ are then larger than 1 that was
constructed by multiplying ($5400, $2800, $1800) by 0.5 to imply that ($2700, $1400, $900). However, the relative
weight remains the same as (0.54, 0.28, 0.18). In the second case, theB$/C$ andBp/Cpratios are the same as Table 1.
In the third case where the financial costs exceed the financial benefit, allB$/C$ are smaller than 1 that was constructed
by multiplying ($5400, $2800, $1800) by 1.5 to imply that ($8100, $4200, $2700). However, the relative weight remains
the same as (0.54, 0.28, 0.18). They claim that, in this case, the results produce three different sets of cost-benefit ratios
with the same normalized weights.
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Table 2. Cost-Benefit ratios with different sets of dollar amounts

Case Measure Lanier Syntrex Qyx
1. B$>C$ Aggregate benefit $ $4200 $3700 $2100

Aggregate cost $ $2700 $1400 $900
Cost$/Benefit $ ratio 1.56 2.64 2.33

2. Mixed Aggregate benefit $ $4200 $3700 $2100
Aggregate cost $ $5400 $2800 $1800
Cost $/Benefit $ ratio 0.78 1.32 1.17

3. B$<C$ Aggregate benefit $ $4200 $3700 $2100
Aggregate cost $ $8100 $4200 $2700
Cost$/Benefit $ ratio 0.52 0.88 0.78

Therefore, Wedley et al. (2001) suggest the following amendment to tie the two hierarchies of cost-benefit within
one hierarchy. Their amendment constructs a new hierarchy that contains the two cost-benefit hierarchies such that a
new top level (B/C Goal) is constructed with relative weights (benefit, cost) = (0.667, 0.333). For later discussion, we
abstractly define the relative weights of the cost-benefit as p and 1− p.

Within one hierarchy, when p=0.667 and 1−p=0.333, the benefit and cost priorities are computed and the results
are listed in the second, for example 0.42(0.667)=0.28 and third rows, for example 0.54(0.333)=0.18, of Table 3. They
calculated the cost-benefit ratio, for example 0.28/0.18=1.56, and then expressed the results in the fourth row of Table
3.

Table 3. Benefit weights, cost weights and cost-benefit ratio within one hierarchy

Lanier Syntrex Qyx
Benefit priority (2Bp/3) 0.42(0.667)=0.28 0.37(0.667)=0.247 0.21(0.667)=0.14
Cost priority (Cp/3) 0.54(0.333)=0.18 0.28(0.333)=0.093 0.18(0.333)=0.06
Cost-benefit ratio (2Bp/Cp) 0.28/0.18=1.56 0.247/0.093=2.64 0.14/0.06=2.33
Benefit-cost = Net benefit 0.28-0.18=0.1 0.247-0.094=0.154 0.14-0.06=0.08
1/cost priority 1/0.54=1.852 1/0.28=3.571 1/0.18=5.556
Normalized of sixth row 0.169 0.325 0.506
1/3 of seventh row 0.056 0.108 0.169
Sum of first and eighth row 0.336 0.355 0.309

From the cost-benefit ratio, Wedley et al. (2001) claim that Syntrex is still the best option. For simplicity, we will
designate the cost-benefit ratio method within one hierarchy as the cost-benefit ratio method.

They define the net benefit as the difference in costs and benefits, calculate the net benefit, and then express the
results in the fifth row of Table 3, for example 0.28-0.18=0.1. For simplicity, we will designate the net benefit method
within one hierarchy as the difference method.

Wedley et al. (2001) consider the lower cost to be highly desirable so they take the inverse of the cost weights and
normalize the results to offer another approach to put costs and benefits in a single hierarchy. For easy comparison,
we quote their computation in the sixth, for example 1/0.54=1.852 and seventh rows, for example

[1.852/(1.852 + 3.571 + 5.556)] = 0.169 (1)

in Table 3. They combine the benefits and the normalized inverse of the costs together using a linear combination
with weights 2/3 and 1/3. The results are listed in the eighth, for example (0.169/3)=0.056 and ninth, for example
0.28+0.056=0.336, rows in Table 3. From the ninth row in Table 3, Wedley et al. (2001) conclude that Syntrex has the
highest composite priority. For simplicity, we designate the sum of the benefits and the normalized inverse of the cost
within one hierarchy as the sum method.

We will show that their aggregate $ method and the cost-benefit ratio methodwith weights p and 1 − p can be handled
abstractly in the next section, making Syntrex always the best choice. We will explain that the aggregate $ methodand the
cost-benefit ratio methodwill always imply the same results as that of Saaty. Hence, we will suggest that the decision-maker
avoid using the aggregate $ methodand the cost-benefit ratio method. Secondly, we will show why the difference methodand the sum
methodare the best methods for preserving Syntrex. However, the difference methodand the sum methodmight cause the rank
order reversal problem. Numerical examples are provided to illustrate our findings. The criteria used to explain why
the ranking order of Lanier and Qyx shift occurs are discussed. The explanations proposed by Wedley et al. (2001) for
the shift will become questionable. We will show that the exact reason is dependent on the p value choice.

1813-713X Copyright © 2018 ORSTW



52 Tuan, Chuang, Tung, Luo : AHP Cost-Benefit Analysis is Justifiable

IJOR Vol. 15, No. 2, 49-59 (2018)

3. OUR ANALYSIS AND NUMERICAL EXAMPLES

In this section we will provide a careful analysis and clear numerical examples to demonstrate that the results of the
four new amendment methods proposed by Wedley et al. (2001) are questionable.

3.1 The Aggregate $ Method and the Cost-benefit Ratio Method

First, we will abstractly discuss their aggregate $ methodand the cost-benefit ratio method. From Table 1, we abstractly denote
the benefit priority for Lanier, Syntrex and Qyx as b1, b2 and 3 and the cost priority for Lanier, Syntrex and Qyx as
c1, c2 and c3 respectively.

The aggregate $ methodand the cost-benefit ratio methodare multiplied by an amount x to bi and an amount y to ci. For
example, in Case 1 in Table 2, x = 10, 000 and y = 5, 000; in Case 2 in Table 2, x = 10, 000 and y = 10, 000; in
Case 3 in Table 2, x = 10, 000 and y = 15, 000; in Table 3, x = p = 0.667 and y = 1 − p = 0.333, where we
compute that

5000(0.54) = 2700, 10000(0.54) = 5400, and15000(0.54) = 8100. (2)

Now, we consider the cost-benefit ratio for three word processing equipment alternatives: Lanier, Syntrex and Qyx,
xb1/yc1, xb2/yc2 and xb3/yc3 respectively. Using different values for x and y, we will have different values for the
cost-benefit ratio. However, the order of xb1/yc1, xb2/yc2 and xb3/yc3 is the same as b1/c1, b2/c2 and b3/c3, which
is independent of the values of x and y. Therefore, the aggregate $ methodand the cost-benefit ratio methodwill derive the
same ordering as that proposed by Saaty (1994). Based on the above analysis, the aggregate $ methodand the cost-benefit ratio
methodobviously imply the same and already known results proposed by Saaty (1994), so we suggest that the decision-
maker should directly use Saaty’s original method instead of the aggregate $ methodand the cost-benefit ratio method.

3.2 The Difference Method

Wedley et al. (2001) claim that after adjustment, when the benefits and costs are in commensurate units, a permissible
calculation in harmony with the regular cost-benefit analysis involves calculating the net benefit such that the cost
priorities are treated as negative priorities. The cost can then be subtracted from the benefit, defined as the difference
method. We quote their results in the fifth row of Table 2. They claim that Syntrex is still the best choice. We assume
that within one hierarchy, the relative weights of the cost and benefit are p and 1− p. The weight p effect should also
be investigated. Different weight ranges should be incorporated into the consideration.

From the difference method, the relative weight of Lanier is

pb1 − (1− p)c1; (3)

the relative weight of Syntrex is
pb2 − (1− p)c1; (4)

the relative weight of Qyx is
pb3 − (1− p)c3. (5)

To derive Lanier is the best choice, we require that

pb1 − (1− p)c1 > pb2 − (1− p)c2, (6)

and
pb1 − (1− p)c1 > pb3 − (1− p)c3. (7)

From Equation (6), we know the following inequalities are equivalent: (a) pb1 − (1 − p)c1 > pb2 − (1 − p)c2;
(b) (b1 − b2)p/(1 − p) > c1 − c2; (c) p/(1 − p) > (c1 − c2)/(b1 − b2), in this step, we use b1 > b2; and (d)
p > (c1−c2)/(b1−b2+c1−c2). By the same argument, fromEquation (7), we derive that the following inequalities are
equivalent: (e) pb1−(1−p)c1 > pb3−(1−p)c3; (f) (b1−b3)p/(1−p) > c1−c3; (g) p/(1−p) > (c1−c3)/(b1−b3),
in this step, we use b1 > b3; and (h) p > (c1−c3)/(b1−b3+c1−c3). Hence, we obtain that there are two restrictions
to guarantee that Lanier is the best choice,

p > (c1 − c2)/(b1 − b2 + c1 − c2) and p > (c1 − c3)/(b1 − b3 + c1 − c3). (8)

To derive Syntrex is the best choice, we require that

pb2 − (1− p)c2 > pb1 − (1− p)c1, (9)

and
pb2 − (1− p)c2 > pb3 − (1− p)c3. (10)
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We know the following inequalities are equivalent: (i) pb2−(1−p)c2 > pb1−(1−p)c1; (j) (b2−b1)p/(1−p) > c2−c1;
(k) p/(1 − p) < (c2 − c1)/(b2 − b1), in this step, we use b1 > b2; and (l) p < (c1 − c2)/(b1 − b2 + c1 − c2). By
the same argument, we derive that the following inequalities are equivalent: (m) pb2 − (1− p)c2 > pb3 − (1− p)c3;
(n) (b2 − b3)p/(1 − p) > c2 − c3; (o) p/(1 − p) > (c2 − c3)/(b2 − b3), in this step, we use b2 > b3; and (p)
p > (c2 − c3)/(b2 − b3 + c2 − c3). Hence, we obtain that there are two restrictions to guarantee that Syntrex is the
best choice,

(c1 − c2)/(b1 − b2 + c1 − c2) > p and p > (c2 − c3)/(b2 − b3 + c2 − c3). (11)

To derive Qyx is the best choice, we require that

pb3 − (1− p)c3 > pb1 − (1− p)c1, (12)

and
pb3 − (1− p)c3 > pb2 − (1− p)c2. (13)

We know the following inequalities are equivalent: (q) pb3−(1−p)c3 > pb1−(1−p)c1; (r) (b3−b1)p/(1−p) > c3−c1;
(s) p/(1 − p) < (c3 − c1)/(b3 − b1), in this step, we use b1 > b3; and (t) p < (c3 − c1)/(b3 − b1 + c3 − c1). By
the same argument, we derive that the following inequalities are equivalent: (u) pb3 − (1 − p)c3 > pb2 − (1 − p)c2;
(v) (b3 − b2)p/(1 − p) > c3 − c2; (w) p/(1 − p) < (c3 − c2)/(b3 − b2), in this step, we use b2 > b3; and (x)
p < (c3 − c2)/(b3 − b2 + c3 − c2). Hence, we obtain that there are two restrictions to guarantee that Qyx is the best
choice,

(c1 − c3)/(b1 − b3 + c1 − c3) > p and (c2 − c3)/(b2 − b3 + c2 − c3) > p. (14)

Now, we compare our derivations of Equations (8), (11) and (14), to put them together to observe that

p > (c1 − c2)/(b1 − b2 + c1 − c2) and p > (c1 − c3)/(b1 − b3 + c1 − c3),

(c1 − c2)/(b1 − b2 + c1 − c2) > p and p > (c2 − c3)/(b2 − b3 + c2 − c3),

and
(c1 − c3)/(b2 − b3 + c1 − c3) > p and (c2 − c3)/(b2 − b3 + c2 − c3) > p,

to derive a workable plan to partition the range of p, then we can claim that the following two restrictions,

(c1 − c2)/(b1 − b2 + c1 − c2) > (c1 − c3)/(b1 − b3 + c1 − c3) (15)

and
(c1 − c3)/(b1 − b3 + c1 − c3) > (c2 − c3)/(b2 − b3 + c2 − c3) (16)

simplify the expressions of Equations (8), (11) and (14) as

p > (c1 − c2)/(b1 − b2 + c1 − c2), (17)

(c1 − c2)/(b1 − b2 + c1 − c2) > p and p > (c2 − c3)/(b2 − b3 + c2 − c3),

and
(c2 − c3)/(b2 − b3 + c2 − c3) > p, (18)

which is a partition of 1 > p > 0.
Based on the results of Equations (17), (11) and (18), we can partition the range of 1 > p > 0 into three disjointed

parts to obtain which word processing equipment will be the best choice.
Based on observations of Equations (15) and (16), we derive that the following are equivalent: (a) (c1−c2)/(b1−

b2 + c1 − c2) > (c1 − c3)/(b1 − b3 + c1 − c3); (b) b2 > [b1(c2 − c3)/(c1 − c3)] + [b3(c1 − c2)/(c1 − c3)]; and (c)
(c1 − c3)/(b1 − b3 + c1 − c3) > (c2 − c3)/(b2 − b3 + c2 − c3).

Therefore, we can abstractly describe the results in the following theorem. The task of eliciting relationships
between the best choice in the difference methodand the weight range are not trivial. They are characterized by several
technical criteria. Here, we list one possible result that is suitable for the example in Saaty (1994).

Take the example of Wedley et al. (2001) with b1 = 0.42, b2 = 0.37, b3 = 0.21, c1 = 0.54, c2 = 0.28, and
c3 = 0.18, then [b1(c2 − c3)/(c1 − c3)] + [b3(c1 − c2)/(c1 − c3)] = 0.2683 that is less than b2 = 0.37 to indicate
that our extra condition in Theorem 1 was supported by data from Wedley et al. (2001).

Theorem 1 For the difference method, under the conditions b2 > [b1(c2 − c3)/(c1 − c3)] + [b3(c1 − c2)/(c1 − c3)],
b1 > b2 > b3 and c1 > c2 > c3, we show that

(1) when 1 > p > (c1 − c2)/(b1 − b2 + c1 − c2), Lanier is the best choice;
(2) when (c1 − c2)/(b1 − b2 + c1 − c2) > p > (c2 − c3)/(b2 − b3 + c2 − c3), Syntrex is the best choice;
(3) when (c2 − c3)/(b2 − b3 + c2 − c3) > p > 0, Qyx is the best choice.
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To help ordinary practitioners to visualize our result, we sketch our findings of Theorem 1 in Figure 1.

Figure 1. The best Choice for word processing equipment by the difference method, where
A = (c2 − c3)/(b2 − b3 + c2 − c3), and B = (c1 − c2)/(b1 − b2 + c1 − c2).

From Theorem 1, we can obviously find that since different best choices can be derived according to different p
values, which means that the difference methodmight cause the rank order reversal problem in many cases.

Example 1 From Table 1, we have b1 = 0.42, b2 = 0.37, b3 = 0.21, c1 = 0.54, c2 = 0.28, and c3 = 0.18 then
(c1 − c2)/(b1 − b2 + c1 − c2) = 26/31 = 0.839. If we take p = 17/20 = 0.85, by the difference method, the weight of
Lanier = 552/2000 > Syntrex = 545/2000. This coincides with our Theorem 1 (1). Using different p values, the
rank order reversal problem may occur. Hence, the difference methodis heavily dependent upon the p value. Unless Wedley
et al. (2001) can give us some further explanation why their choice for the p value satisfies some criteria (for example,
(c1 − c2)/(b1 − b2 + c1 − c2) > p > (c2 − c3)/(b2 − b3 + c2 − c3), otherwise their difference method might cause
the rank order reversal problem.

Wedley et al. (2001) mentioned the shift in the second best choice between (i) the aggregate $ methodand (ii) the net
benefit method. Wedley et al. (2001) claimed that Syntrex remains the best choice, although Lanier and Qyx switched
places in rank order. The explanation of Wedley et al. (2001) for the switch is that Lanier has high costs but also high
benefits. In Lanier’s ratio (Bp/Cp) the high costs are lower compared to Qyx, but the difference between the benefits
and costs is higher. In the following, we will provide our explanation for why that shift, or its lack, depends on the
value of p.

Under the same assumption of Theorem 1, with b2 > [b1(c2 − c3)/(c1 − c3)] + [b3(c1 − c2)/(c1 − c3)],
b1 > b2 > b3 and c1 > c2 > c3, we consider the following cases:

(C1) 1 > p > (c1 − c2)/(b1 − b2 + c1 − c2),
(C2) (c1 − c2)/(b1 − b2 + c1 − c2) > p > (c2 − c3)/(b2 − b3 + c2 − c3), and
(C3) (c2 − c3)/(b2 − b3 + c2 − c3) > p > 0.

For case (C1), we already established that Lanier is the best choice, and then Syntrex is the second best choice if
and only if

pb2 − (1− p)c2 > pb3 − (1− p)c3. (19)

We recall the equivalence relation between inequalities (m) and (p) to derive that the inequality of (19) is

p > (c2 − c3)/(b2 − b3 + c2 − c3). (20)

Under the condition of case(C1), then p > (c1 − c2)/(b1 − b2 + c1 − c2). With the restriction of b2 > [b1(c2 −
c3)/(c1 − c3)] + [b3(c1 − c2)/(c1 − c3)], we obtain that inequalities of (15) and (16) are valid to imply the inequality
of (20) holds. Hence, for case (C1), Syntrex is the second best choice.

For case (C2), we already established that Syntrex is the best choice, and then Lanier is the second best choice if
and only if

pb1 − (1− p)c1 > pb3 − (1− p)c3. (21)

We recall the equivalence relation between inequalities (e) and (h) to derive that the inequality of (21) is

p > (c1 − c3)/(b1 − b3 + c1 − c3). (22)

Similarly, Qyx is the second best choice if and only if

pb3 − (1− p)c3 > pb1 − (1− p)c1. (23)

We recall the equivalence relation between inequalities (q) and (t) to derive that the inequality of (23) is

p < (c1 − c3)/(b1 − b3 + c1 − c3). (24)

Under the conditions of case (C2), then (c1 − c2)/(b1 − b2 + c1 − c2) > p > (c2 − c3)/(b2 − b3 + c2 − c3).
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With the restriction of b2 > [b1(c2 − c3)/(c1 − c3)] + [b3(c1 − c2)/(c1 − c3)], we recall Equations (15) and
(16) to derive that

(c1 − c2)/(b1 − b2 + c1 − c2) > (c1 − c3)/(b1 − b3 + c1 − c3),

and
(c1 − c3)/(b1 − b3 + c1 − c3) > (c2 − c3)/(b2 − b3 + c2 − c3).

Hence, if (c1 − c2)/(b1 − b2 + c1 − c2) > p > (c1 − c3)/(b1 − b3 + c1 − c3), Lanier is the second best choice. If
(c1 − c3)/(b1 − b3 + c1 − c3) > p > (c2 − c3)/(b2 − b3 + c2 − c3), Qyx is the second best choice.

For case (C3), we already know that Qyx is the best choice, and then Syntrex is the second best choice if and only
if

pb2 − (1− p)c2 > pb1 − (1− p)c1. (25)

We recall the equivalence relation between inequalities (i) and (l) to derive that the inequality of (25) is

p < (c1 − c2)/(b1 − b2 + c1 − c2). (26)

Under the condition of case (C3), then (c2 − c3)/(b2 − b3 + c2 − c3) > p. With the restriction of b2 > [b1(c2 −
c3)/(c1 − c3)] + [b3(c1 − c2)/(c1 − c3)], we obtain that inequalities of (15) and (16) are valid to imply the inequality
of (26) holds. Hence, for case (C3), Syntrex is the second best choice.

Based on our above discussion, we derive more robust results for the difference method, such that we abstractly derive
the following results for the second best choice of the difference method.

Theorem 2 For the difference method, under the conditions b2 > [b1(c2 − c3)/(c1 − c3)] + [b3(c1 − c2)/(c1 − c3)], b1 >
b2 > b3 and c1 > c2 > c3, we show that

(1) when 1 > p > (c1 − c2)/(b1 − b2 + c1 − c2), Syntrex is the second best choice;
(2) when (c1 − c2)/(b1 − b2 + c1 − c2) > p > (c1 − c3)/(b1 − b3 + c1 − c3), Lanier is the second best choice;
(3) when (c1 − c3)/(b1 − b3 + c1 − c3) > p > (c2 − c3)/(b2 − b3 + c2 − c3), Qyx is the second best choice;
(4) when (c2 − c3)/(b2 − b3 + c2 − c3) > p > 0, Syntrex is the second best choice.

To help ordinary practitioners to visualize our result, we sketch our findings of Theorem 2 in Figure 2.

Figure 2. The second best choice by the difference method, where A = (c2 − c3)/(b2 − b3 + c2 − c3),
B = (c1 − c3)/(b1 − b3 + c1 − c3), and C = (c1 − c2)/(b1 − b2 + c1 − c2).

Example 2 With the same data as Example 1, Wedley et al. (2001) took p=0.667 and found that Lanier was the second best
choice, which is a shift since in Table 1, the second best choice is Qyx. As (c1 − c2)/(b1 − b2 + c1 − c2) = 26/31 = 0.839,
(c1 − c3)/(b1 − b3 + c1 − c3) = 12/19 = 0.632, and (c2 − c3)/(b2 − b3 + c2 − c3) = 10/26 = 0.385, their result
coincides with Theorem 2 (2). If we change p from 0.667 to 0.4, then Qyx is the second best choice, as indicated in Theorem 2 (3), such that
the shift in the second best choice will not occur. Therefore, their explanation for the shift of the second best choice is questionable. Actually,
the reason for a shift in the second best choice is the different value of p.

3.3 The Sum Method

Now let us consider the sum method. We take the inverse of the costs as 1/c1, 1/c2and1/c3. The costs are then normal-
ized as c2c3/(c1c2 + c2c3 + c3c1), c1c3/(c1c2 + c2c3 + c3c1) and c1c2/(c1c2 + c2c3 + c3c1).

With a given pair of values of relative weight p and 1 − p, the sum of the benefit and the normalized inverse of
the cost for the three alternatives: Lanier, Syntrex and Qyx are considered.

From the sum method, the relative weight of Lanier is

pb1 + (1− p)[c2c3/(c2c3 + c1c3 + c1c2)]; (27)

the relative weight of Syntrex is
pb2 + (1− p)[c1c3/(c2c3 + c1c3 + c1c2)]; (28)

the relative weight of Qyx is
pb3 + (1− p)[c1c2/(c2c3 + c1c3 + c1c2)]. (29)

1813-713X Copyright © 2018 ORSTW



56 Tuan, Chuang, Tung, Luo : AHP Cost-Benefit Analysis is Justifiable

IJOR Vol. 15, No. 2, 49-59 (2018)

To derive that Lanier is the best choice, requires that

pb1 + (1− p)[c2c3/(c2c3 + c1c3 + c1c2)] > pb2 + (1− p)[c1c3/(c2c3 + c1c3 + c1c2)], (30)

and
pb1 + (1− p)[c2c3/(c2c3 + c1c3 + c1c2)] > pb3 + (1− p)[c1c2/(c2c3 + c1c3 + c1c2)]. (31)

We can rewrite Equations (30) and (31) as

p > c3(c1 − c2)/[c3(c1 − c2) + (b1 − b2)(c1c2 + c2c3 + c3c1)], (32)

and
p > c2(c1 − c3)/[c2(c1 − c3) + (b1 − b3)(c1c2 + c2c3 + c3c1)], (33)

where we have used b1 > b2 andb1 > b2.
To derive Syntrex is the best choice, we require that

pb2 + (1− p)[c1c3/(c2c3 + c1c3 + c1c2)] > pb1 + (1− p)[c2c3/(c2c3 + c1c3 + c1c2)], (34)

and
pb2 + (1− p)[c1c3/(c2c3 + c1c3 + c1c2)] > pb3 + (1− p)[c1c2/(c2c3 + c1c3 + c1c2)]. (35)

We can rewrite Equations (34) and (35) as

c3(c1 − c2)/[c3(c1 − c2) + (b1 − b2)(c1c2 + c2c3 + c3c1)] > p, (36)

and
p > c1(c2 − c3)/[c1(c2 − c3) + (b2 − b3)(c1c2 + c2c3 + c3c1)], (37)

where we have used b1 > b2 andb2 > b3.
To derive Qyx is the best choice, we require that

pb3 + (1− p)[c1c2/(c2c3 + c1c3 + c1c2)] > pb1 + (1− p)[c2c3/(c2c3 + c1c3 + c1c2)], (38)

and
pb3 + (1− p)[c1c2/(c2c3 + c1c3 + c1c2)] > pb2 + (1− p)[c1c3/(c2c3 + c1c3 + c1c2)]. (39)

We can rewrite Equations (38) and (39) as

c2(c1 − c3)/[c2(c1 − c3) + (b1 − b3)(c1c2 + c2c3 + c3c1)] > p, (40)

and
c1(c2 − c3)/[c1(c2 − c3) + (b2 − b3)(c1c2 + c2c3 + c3c1)] > p, (41)

where we have used b1 > b3 and b2 > b3.
At this point, there are six inequalities for the sum methodto decide the best choice listed as Equations (32-33, 36-37,

40-41). We try to find additional conditions to synthesize above mentioned six inequalities such that we can partition
for 1 > p > 0 into three disjointed parts to obtain which word processing equipment will be the best choice by the sum
method.

We try to claim the following two additional conditions

c3(c1 − c2)/[c3(c1 − c2) + (b1 − b2)(c1c2 + c2c3 + c3c1)] >
c2(c1 − c3)/[c2(c1 − c3) + (b1 − b3)(c1c2 + c2c3 + c3c1)],

(42)

and
c2(c1 − c3)/[c2(c1 − c3) + (b1 − b3)(c1c2 + c2c3 + c3c1)] >

c1(c2 − c3)/[c1(c2 − c3) + (b2 − b3)(c1c2 + c2c3 + c3c1)].
(43)

We know that inequalities of Equations (42) and (43) are equivalent to

(b1 − b3)/c2(c1 − c3) > (b1 − b2)/c3(c1 − c2), (44)

and
(b2 − b3)/c1(c2 − c3) > (b1 − b3)/c2(c1 − c3). (45)

Based on inequalities of Equations (44) and (45), we claim that inequalities of Equations (42) and (43) are equivalent
to the following new condition,

b2 > [b1c1(c2 − c3)/c2(c1 − c3)] + [b3c3(c1 − c2)/c2(c1 − c3)]. (46)

In Theorems 1 and 2, the results for the choice are highly dependent upon the weight. This leads to a need to
study the relationship between the weight range and the best choice of the sum method. We then abstractly handle the
problem and derive the following results.
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Theorem 3 Using the sum method, under the conditions of b2 > [b1c1(c2− c3)/c2(c1− c3)]+ [b3c3(c1− c2)/c2(c1− c3)],
b1 > b2 > b3 and c1 > c2 > c3, we show that

(1) If 1 > p > c3(c1 − c2)/[c3(c1 − c2) + (b1 − b2)(c1c2 + c2c3 + c3c1)], then Lanier is the best choice
(2) If c3(c1 − c2)/[c3(c1 − c2) + (b1 − b2)(c1c2 + c2c3 + c3c1)] > p >

c1(c2 − c3)/[c1(c2 − c3) + (b2 − b3)(c1c2 + c2c3 + c3c1)], then Syntrex is the best choice;
(3) If c1(c2 − c3)/[c1(c2 − c3) + (b2 − b3)(c1c2 + c2c3 + c3c1)] > p > 0, then Qyx is the best choice.

To help ordinary practitioners to visualize our result, we sketch our findings of Theorem 3 in the next Figure 3.

Figure 3. The best choice for word processing equipment by the sum method, where
A = c1(c2 − c3)/[c1(c2 − c3) + (b2 − b3)E], B = c3(c1 − c2)/[c3(c1 − c2) + (b1 − b2)E], and

E = c1c2 + c2c3 + c3c1.

Example 3 As in Example 2, we have c3(c1 − c2)/[c3(c1 − c2) + (b1 − b2)(c1c2 + c2c3 + c3c1)]=0.738 and
c3(c1 − c2)/[c3(c1 − c2) + (b1 − b2)(c1c2 + c2c3 + c3c1)]=0.530. In Wedley et al. (2001), they take p=0.667 and
claim that Syntrex is the best choice as indicated in Theorem 3 (2). However, using different p values, for example
p=0.5, Qyx is the best choice as in Theorem 3 (3). Hence, the sum methodmight cause the rank order reversal problem.

When constructing one hierarchy to combine two cost-benefit hierarchies, Wedley et al. (2001) did not give any
explanation for the reason why they chose p=2/3 such that (p, 1-p)=0.667,0.333). From our previous study, the aggregate
$ methodand the cost-benefit ratio methodimply the already known results. Hence, we might advise the decision-maker not
to use these two methods. On the other hand, for the difference methodand the sum method, the choice of p will influence
the result; so the selection of the p value requires further investigation. Up to now, how to select a proper p value
has not been explained in detail for methods proposed in Wedley et al. (2001). Consequently, we suggest that the
decision-maker not apply the difference methodand the sum methodto avoid the rank order reversal problem.

4. CONCLUSION

Based on our detailed analysis, theoretical derivations and numerical examples in the above section, we successfully
demonstrate that the four new methods proposed by some researchers for adjusting the original AHP Cost-benefit
Analysis method should be reconsidered. In other words, our careful mathematical analysis and thorough examination,
demonstrated by numerical examples, show that the aggregate $ methodand the cost-benefit ratio method imply nothing but
the same results as Saaty’s original method (1994). Even worse, we have also shown that the difference methodand the sum
methodcause rank order reversal problems under some criteria. We hope that the analytic results presented in this paper
can provide a deeper and more accurate understanding of the original AHP Cost-benefit Analysis method so that the
AHP model may be used more properly by researchers and practitioners.
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