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Abstract: In the last decades, research on emergency traffic management has received high attention from the opera-
tions research community and many pioneer researchers have established it as one of the most fertile research areas. We
consider the computationally hard flows over time problems from wider perspective including flow/time dependent
attributes (dynamic flows), a possibility of flows loss on paths while travelling (lossy network problems), arcs/path
reversal capability (contraflow models) and possibilities of eliminating merging and crossing conflicts at intersections
(abstract flows). The topics also include the networks for relief distribution, location-allocation of facilities, multi-
criterion characteristics and transit based flow models in brief. The issues are highly motivated from the perspective of
traffic control and emergency route choice and scheduling.

Despite of many directions such as differential equations for fluid flows, measure and function theory, cell trans-
mission approach and optimal control theory, we have restricted to the perhaps most computationally acceptable re-
search domain, the network flow optimization approach with macroscopic behavior. We compactly review the contri-
butions, explore the featured results, present structured systematic analysis and state the weakness and strength of the
models and solution strategies the authors carried out during several years. A large number of problems belong to the
category of strongly NP-hard problems and demand efficient computational techniques that at least yield acceptable
approximate solutions. This comprehensive survey on evacuation problems complements the number of previous re-
views by adding many recent results obtained in the field so far. Moreover, it highlights the main stream research and
most promising challenges in modeling and solving more realistic real-life scenarios and explores some possible future
research fields.
Keyword — Network optimization, dynamic flows, transportation problems, evacuation planning, algorithms, com-
plexity

1. INTRODUCTION

The rapid increase of natural (for example, earthquakes - 1255, 1934 and April 2015 in Nepal, March 2011 in Japan,
Haiti, Chichi, Bam, Kashmir and Chile; volcanic eruptions, landslides, floods, tsunamis - Japan and the Indian Ocean;
hurricanes - Katrina, Rita and Sandy in USA; typhoons) and human crated (for example, chemical explosions and
terrorist threats - September 11 attacks in USA) disasters forces the emergency planning researchers to build up an
effective evacuation plan that saves the people and property, and also supports humanitarian relief with optimal use
and equitable distribution of available resources. Authors in (Kruhl et al. 2018) address the issues in Nepal earthquake
2015 and the consequences. Unplanned saturation of metropolitan cities and heavy population migration into them
overloads the existing traffic capacity, demand an effective and universally acceptable emergency plan that could address
urgent emergency exit of the evacuees, emergency logistic supports to them and temporarily shelter location-allocation
management, which is still in lacking.

There exist a flow of research ranging from wide spectrum of mathematical frameworks, like variational inequality,
optimal control, differential equations of fluids, numerical simulations, like cell transmission models to the approaches
of mathematical programming, like continuous as well as discrete network flow models. The existing models and
methods seek to address the issues from different point of views, for example, single commodity or multi commodity
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flows, single or multi-modal vehicles, quickest or largest flows, transit dependent or self vehicle movements, continuous
or discrete time settings, queuing constant or variable attributes, macro or micro behaviors, single or multi objectives,
and so on. Unfortunately, none of them beat the others as more accurate models seeking to capture the closer reality
may not yield efficient practical implementations for the real-world large scale problems.

In general, the continuous models yield more accurate results over the discrete ones but are computationally more
challenging. Likewise the models with flow/time dependent attributes imply heavy computational costs caused by the
nonlinearities which suggests to relax the models with constant attributes for computationally possible approximations.
The flow models with differential equations yield accurate results for small size problems but are rather complicated
for large scale realistic problems. The macroscopic models are the aggregate results of group behaviors as a single
object instead of computationally harder microscopic models which include individual characteristics. An appropriate
choice of vehicle (transit or car) dependent models depends on their availability and users ability, but the most effective
integrated one is almost unsolvable. Naturally, user optima and system optima objectives might have their particular
interests conflicting each other. Most general problems that have to address the characteristics of diversified vehicles
and commodities are rather complicated from the computational point of view.

One of the most effective approach for handling evacuation problems in different disasters is the dynamic network
flow (flow over time) model as it performs better approximation results in comparison to the others in reasonable
computational time. Discretization of the models is being a better option for good approximations to real-life solutions.
Even nonlinearities caused by flow and/or time dependent attributes could be approximated by constant attributes
which may be obtained by some queuing rules or travel experiences and continuous time settings replaced with discrete
time steps at pre-specified time points. Here, the evacuation region is represented by a network where nodes represent
the locations, where evacuees are gathered or waiting for transshipment and the arcs are the road segments or node
connections through which the flow (evacuees) travel. The nodes and arcs should be equipped with capacities and
travel times. An assignment or prediction of flows for varying demands over time on peak period traffic imposes a
heavy pressure on capacity and transit times. More widely, modeling of flows over time ranges in varieties of networks,
for example, financial and commodity flows, production systems, political and social networking, communication,
information, public utilities and services, computers, air and road traffic control, and evacuation plans, see for instance
(Aronson 1989, Dhamala 2015, Powell et al. 1995). From macroscopic analysis, the arcs on the network can also
be thought as fluid transporting pipelines, where the length and width determine arc transit time and its capacity,
respectively.

As mentioned, there exists a wide range of literature on network flow problems, we refer to some survey papers
and the references therein for more information, for instance, Akter and Wamba (2017), Altay and Green III (2006),
Anaya-Arenas et al. (2014), Aronson (1989), Cova and Johnson (2003), Dhamala and Adhikari (2018), Dhamala (2015),
Hamacher and Tjandra (2002), Hamacher et al. (2013), Kotsireas et al. (2015), Moriarty et al. (2007), Pascoal et al.
(2006), Powell et al. (1995), Yusoff et al. (2008).

Covering all aspects of these model varieties and solution strategies in a single survey is impossible and quite
diverging because of which we selected the most prominent ones - the dynamic traffic assignment problem, the flow
maximization and time minimization flow over time problems, the transshipment problems and the minimum cost
flow problems mostly for single commodity flow in discrete time settings. A so-called natural transformation translates
these solutions in case of certain continuous flows. The node-arc structure is also viewed with arc-path structure in
this study, called the abstract flow problem. One of the main approaches of this work is also to cover the contraflow
reconfiguration approach which is very effective from managerial implications and also a widely accepted model in
use. Though most of literature and software considers them as heuristic solutions, we summarize a number of current
results that explain the contraflow technique analytically. In fact, results show that contraflow increases the flow values
and decreases the evacuation time significantly. Few applications related to our flow over time problems, such as
location-allocation benefits, multi-objective applications, logistic supports, tollbooth problem, supply chains, coupling
of car/transit based and pedestrian movements, are considered and highlighted here. It is tried to summarize the results
together with their insights giving hints to most of the models illustrating the networks.

The paper is organized as follows. Section 2 defines all parameters used in the network flow theory, gives dynamic
flow varieties and illustrates the ways how to represent them using convenient networks. Different solution strategies
for flow maximization, time minimization, quickest transshipment, generalized flow over time (Subsection 3.2) and
abstract flows (Subsection 3.3) are compactly explained in Section 3. Subsection 3.1 and Subsection 3.4, respectively,
describe the flow models with constant and variable attributes (inflow, load and flow dependent transit times and time
dependent attributes). The contraflow approach is surveyed in Section 4 with heuristic and analytical solutions in
Subsection 4.1 and Subsection 4.2, respectively. The concluding remarks are given in Section 6 after few highlights on
certain applications in Section 5.
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2. PRELIMINARIES

We give some basic definitions and fix few notations that are used in the following sections. Notice that for static
models all time requirements are irrelevant and they are removed from the dynamic flow models.

2.1 Basic Denotations

Flow rates. Besides the static flows that pass with a single wave and do not vary over time, defining a flow rate on an
arc that is the number of flow units (e.g. cars, etc.) traveling the arc per unit time at a specific point of time is vague and
rather complicated. Among many other possibilities of defining the flow rates, the inflow, outflow and intermediate
flow rates are, respectively, measured at the entry, exit and intermediate points on an arc. Notice that none of them are
satisfactory as homogeneous flow on an arc can rarely be observed in real-world applications. We denote the flow rate
on arc e at time θ by Φe(θ) and the dynamic flow function as Φ : A× T → R+. The flows from node v at time θ to
the same node with travel time one will be denoted by ϕv(θ + 1) = Φ(vθ, vθ+1)

Capacity. Arc upper capacity (bound) function bu : A × T → R+ on network N = (G,A) limits the flow rate
passing along the arc for each point in time. Likewise, an arc lower capacity (bound) function bl : A× T → R+ limits
the flow from below. Although the lower bound restrictions usually are not taken into account in the literature, it is
beneficial in introducing them to maintain certain load of the transportation network that is applicable in absence of
feasible flow. Usually, for time independence, the upper capacity is denoted by be on arc e and the lower capacity is
treated as zero if not mentioned otherwise. The capacities may depend upon many factors like the condition of roads,
movement of vehicles, presence of traffic control resources, climatic conditions, and so on, Bozhenyuk et al. (2017).
For example, the number of lanes on roads naturally limits the vehicle counts. A node may also be associated with a
capacity function av for v ∈ V , that allows holdover of flows at nodes and can be set to zero if not used at the nodes
other than sources and sinks. Similarly the nodes may be equipped with the initial occupancy, if any.

Transit times. A combination of density, speed and flow rate evolving along the arc taken into account realizes a
complete realistic flow model with flow-dependent transit times (FDTT) on arcs. But such a model requires rather
complicated analysis and computational challenges. A transit time function τ : A× T → R+ measures the amount of
time it takes for the flow to travel along an arc on networkN = (G,A). Since the flow values on arcs may change over
time in general, FDTT function may be interpreted as in the definition. The inflow-dependent transit times (IFDTT)
and load-dependent transit times (LDTT) on arcs basically relax the more general setting of (FDTT), where transit
time of an arc depends on the behavior of the current flow on this arc. With (IFDTT), the transit time τe(Φe(θ)) is a
function of inflow rate Φe(θ) on the arc e at given time θ, so that time flow units enter an arc with uniform speed and
their speed remains uniform through traveling this arc. Whereas with (LDTT), the transit time τe(le(θ)) depends on
the total amount of flow on an arc e at a given time θ, i.e., the load le(θ) on e. In this approach all units of flow on an
arc enjoy the same speed and the transit time of an arc varies with each unit of flow entering or leaving the arc with the
continuous changes of flow on this arc. There exist various ways of considering the transit time attribute, however, we
represent them by the same denotation τe as for the constant transit times (CTT) on the arc e ∈ A to be understood
with any specific context chosen. An accurate estimation of link travel times is quite complicated as it is a nonlinear
function of probable congestion. We recommend Smith and Cruz (2014) for an overview and various approaches of
travel times estimation on arterial links, free and high ways. Note that non-negativity property of transit times can be
dropped applicable to the residual networks.

Costs. On networkN = (G,A), the arcs may be associated with non-negative costs caused by many reasons at each
point of time. The cost per unit flow on an arc e ∈ A at time θ, if it exists, is denoted by ce(θ). If the cost remains
constant throughout the give time horizon, it is a function on the set of arcs only.

Example 1 Assume that Figure 1(a) represents a dynamic network in which each arc has constant capacity and constant transit time.
Arc (s, x) has capacity 3 and transit time 1. Assume that the unit time is 5 minutes and unit flow is 100 evacuees. Then, it takes 5
minutes for evacuees to travel arc (s, x) and a maximum of 300 evacuees can simultaneously travel through this arc. During most of the
evacuation processes, movement of evacuees towards the sources is not allowed as in Figure 1(b). However, these arcs may still be useful for
other humanitarian logistic supports and facility locations. For static network, the transit time is considered as cost. The maximum static
flow through paths s− x− d and s− y − d is 7 and the corresponding minimum cost 32. The dynamic flow through the same paths
with T = 5 is 10.

Figure 2 depicts the time expanded network corresponding to Figure 1(b) with respect to the increment of arc
travel times by one unit on each arcs (s, x), (s, y), (x, y), (x, d), (y, d) at time θ = 1, 2, 3, 4, 5, respectively, and
remaining all other arc travel times the same as shown in the figure. This illustrates a time expanded network of the
time dependent dynamic network.
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Figure 1: (a) Existing evacuation network (b) Maximum static flow solution with time as cost on arcs.
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Figure 2: Time expanded network with cost as travel time on arcs.

Natural transformation. The continuous and discrete flow models are connected by the natural transformation (1)
dealing with the same time complexity, Fleischer and Tardos (1998).

Φc
e(λ) = Φe(θ), for all θ and λ with θ ≤ λ < θ + 1 (1)

if Φe(θ) is the amount of discrete dynamic flow that enters arc e at time θ = 0, 1, . . . , T with constant capacities on
the arcs. For static flow Ψe on arc e, the discrete dynamic flow with travel time τe is

Φe(θ) =

τ(e)−1∑
σ=0

Ψe(θ − σ), for all θ = 0, 1, . . . , T − 1 (2)

The flow that enters e at time θ−τe arrives at the head node at time θ in discrete time, but at time [θ+1) in continuous
time. Then the flow Φc is feasible and the amount of source-sink flow at any integer time interval [θ, θ + k), for
θ = 0, 1, . . . , T , k ∈ N , will be the same for both settings.

2.2 Dynamic Flow Model Varieties

Minimization problems. Let Φe(θ) be the volume of flow on arc e at time θ, be(Φe(θ)) be the maximum amount
of flow out from arc e, de(θ) be an amount of flow entering arc e, fu(θ) be an external input in node u and heθ(Φe(θ))
be the travel cost function associated to e. Then, Merchant and Nemhauser (1978) give the most general non-linear
non-convex formulation of the dynamic traffic assignment problem (DTAP) as (3-6). The exogenous flows in (DTAP)
allowed only at the beginning can be considered as initial occupancies in evacuation problems.

minimize
T∑

θ=0

∑
e∈A

heθ(Φe(θ)) (3)

such that for all time periods θ = 0, 1, . . . T − 1

Φe(θ + 1)− Φe(θ)− de(θ) + be(Φe(θ)) = 0, ∀ e ∈ A (4)∑
uv∈A

duv(θ)− fu(θ)−
∑

wu∈A

bwu(Φwu(θ)) = 0, ∀ u ̸= d (5)

(Φe(θ), heθ) ≥ 0, ∀ e ∈ A (6)
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This single destination deterministic discrete time model, in which flow rates, travel costs and route choices are
independent, represents the congestion explicitly in the constraints. As a result, the analytical and numerical solutions
are hard to realize for large size network problems. They proposed a piecewise linearization and a linear programming
technique satisfying a certain ordered set property. They show that the simplex algorithm yields the optimal objective
function value for the modified constrained linear problem.

In general, the cost function heθ(.) has been assumed to be nonnegative, continuous, convex and nondecreasing,
for example heθ(Φe(θ)) is directly proportional to the flow volumeΦe(θ) on e. Also, the maximum (capacity) outflow
be(Φe(θ)) associated with arc e can be taken as an upper bound to the actual outflow ae(θ) in presence of the flow
control be(Φe(θ))−ae(θ) ≥ 0. With this assumption, Carey (1987) converted the non-convex (DTA) model to system
cost minimization convex problem as (7-11). In both models the inflows and outflows are non-negative.

minimize
T∑

θ=0

∑
e∈A

heθ(Φe(θ)) (7)

such that for all time periods θ = 0, 1, . . . T − 1

Φe(θ + 1)− Φe(θ)− de(θ) + ae(Φe(θ)) = 0, ∀ e ∈ A (8)∑
uv∈A

duv(θ)− fu(θ)−
∑

wu∈A

awu(Φwu(θ)) = 0, ∀ u ̸= d (9)

be(Φe(θ)) ≥ ae(Φe(θ)) ≥ 0, ∀ e ∈ A (10)
(Φe(θ), heθ) ≥ 0, ∀ e ∈ A (11)

Carey’s model is a convex programming problem as the capacity outflow function be(Φe(θ)) is also convex in ad-
dition to the cost function heθ(Φe(θ)) by which the latter model exploits rich convex optimality properties. Moreover,
it benefits on the improvements of aggregate network costs by reducing the arc flow rates below their maximum level
for new optimal pattern of the flow controls. Their main result is to establish sufficient conditions for optimal flow
controls to be zero, i.e., be(Φe(θ)) − ae(θ) = 0 for realizing a practical flow. For approximate solutions, they extend
the model with multiple destinations by adding a super destination and introducing either (i) fixed aggregate demands
at each destination, or (ii) negative costs with the out-flows at each destination and in the objective function. Moreover,
the flexible departure times and elastic demands are also addressed with this model.

Carey (1992) extensively discusses the complications of including nonconvex constraints in the dynamic assign-
ment problem with multiple destinations or commodities. The model has been modified to convex linear approach for
addressing the flow behavior with link travel times, mainly depending on inflow-outflow rates and some traffic control
effects ahead on the links, Carey and Subrahmanian (2000). The first-in-first-out (FIFO) property which could be
satisfied with restricted inflows not decreasing sharply after a sharp increase has been discussed extensively. Realizing
the nonlinearity and nonconvexity relationships between travel times and flows on arcs, they use them to define sets
of time-space links avoiding nonlinearly of these relationships in the mathematical programming. They also discuss
different ways of handling the FIFO property, either ignore them if present in small size and not very critical links, or
introduce additional nonconvex constraints and relax them to linear constraints with zero-one integer variables. Also
the FIFO property can be maintained by starting a solution process with a small set of time-space links and make more
iterations with additions or subtractions of such links in the process. Moreover, the conditions of holding back of flow
on links, an extension of the model with multiple destinations and possible extensions to user equilibrium are discussed
in Carey and Subrahmanian (2000).

Papageorgiou (1990) presented a macroscopic modeling for multi sink dynamic traffic freeway and/or road net-
works with time varying demands and illustrated various interesting instances. The other models for the (DTAP) deal
with simulation-based, variational inequality and optimal control approaches, for example see Daganzo (1994), Harker
and Pang (1990), Peeta and Ziliaskopoulos (2001). The cell-transmission approach may be of more practical interest
since it incorporates the user-equilibrium constraints. In this model, the highway links are segmented into cells with
a specific capacity that could be traversed in an unit time. A limitation of flow from one cell to another controls the
congestion. The transportation cost has to be minimized over the set of arc-flows using the mathematically richer
variational inequality models. The single and multi-destination problems with time-varying parameters depending on
inflow-outflow and flow controls on entrance, arc-path links and exit are modeled with constrained optimal control
(DTA) models. A number of system optimization and user equilibrium problems on transportation networks have
been dealt with continuous as well as discrete time settings. However, all of these formulations differently suffer from
a number of theoretical optimality conditions and practical dealings like inefficiencies in handling many behavioral and
FIFO constraints.

The field of (DTAP) includes a rich class of research with density dependent travel times on a dynamic network.
The nonlinear density dependent travel time function imposes the dynamic flow conservation constraints also to be
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nonlinear. This happens since the density dependent travel times implies nonexistence of an arc belonging to a source-
sink path caused by higher congestion, for example, to the preceding arc. The first among the two common objectives
in (DTAP) take care of the system optimum minimizing the average travel time where the individuals should share the
lateness. However, the second objective considers user optimum where the individuals do not care each other.

In order to deal with this nonlinearity, Kaufman et al. (1998) approximate the travel times by 0-1 decision variables.
This leads to (DTAP) as a minimum cost capacitated dynamic network flow problem. The other iterative approaches
fix the travel times temporarily according to the current flow and update them with respect to the new flow until the
iterative travel time is convergent (Chen and Hsueh 1998, Janson 1991, Jayakrishnan et al. 1995 and Ran and Boyce
1996). In each iteration a nonlinear programming problem is solved as a convex optimization problem, where the travel
time has to be temporally fixed firstly before finding an optimal flow under this constrained finally.

Note that the following maximization, universally maximization, quickest, lexicographic maximum and trans-
shipment flow problems relax the (DTA) models by considering the arc travel times as constant with free-flow speed
environment. For general time/flow dependent problems, special donations will be made whenever necessary.

Maximization problems. The maximum flow problems are more useful when there is no reliable information re-
garding the initial occupancies and source nodes are capable to house a significant number of evacuees before the
evacuation process starts. With an inflow rate Φe(θ) on arc e at discrete time θ that may change over the planning
horizon T , the dynamic flow Φ satisfies the flow conservation and the capacity constraints (12-14). The flow may wait
at intermediate nodes with inequality constraints, however, waiting is not permitted otherwise.

T∑
σ=τe

∑
e∈B(v)

Φe(σ − τe)−
T∑

σ=0

∑
e∈A(v)

Φe(σ) = 0, ∀ v ̸∈ {s, d} (12)

θ∑
σ=τe

∑
e∈B(v)

Φe(σ − τe)−
θ∑

σ=0

∑
e∈A(v)

Φe(σ) ≥ 0, ∀ v ̸∈ {s, d}, θ ∈ T (13)

be(θ) ≥ Φe(θ) ≥ 0, ∀ e ∈ A, θ ∈ T (14)

Note that the inequalities like (13) could be replaced with an equality by addressing the waiting flows ϕ(.) at
intermediate nodes and the initial occupancies at sources (see, Hamacher and Tjandra (2002), for details).

The earliest arrival flow problem (EAFP), also known as the universal maximum flow problem (UMFP), maxi-
mizes the objective function val(Φ, θ) in (15) for all θ ∈ T satisfying the constraints (12-14). However, for a given
time T , the maximum dynamic flow problem (MDFP) maximizes the objective function val(Φ, T ) in (15) for θ = T
satisfying the constraints (12-14). The maximum flow value is denoted by valmax(Φ, θ).

val(Φ, θ) =
θ∑

σ=0

∑
e∈A(s)

Φe(σ) =
θ∑

σ=τe

∑
e∈B(d)

Φe(σ − τe) (15)

For a given valueQ0, the quickest flow problem (QFP) looks for the minimal time minT = T (Q0) such that the
flow value is at least Q0 satisfying the constraints (12-14) with equality in (13). As the universal maximum flows yield
optimal solutions from the start of an evacuation plan without an earlier estimation of the completion time, this model
captures the essence of most realistic scenarios.

For a given time horizon T and an ordered set of multi-terminals, the lex-maximum dynamic flow problem
(LMDFP) finds a feasible flow that lexicographically maximizes the amount leaving (entering) each terminal in the
given priority order.

Let us introduce an additional parameter λe ∈ R+ on arc e, say a gain factor, in order to model a generalized
dynamic flow when only λe units of flow leave fromw at time θ+τe by entering a unit of flow on e = (v, w) at time θ.
If the flow is only lost but never gained along all arcs, then λe ≤ 1 for all arcs e ∈ A holds, and we call the network as
lossy. Then the generalized dynamic flow (GDF) Φ : A× T → R+ for given time T satisfies the constraints (16-18).

θ∑
σ=τe

∑
e∈Bv

λeΦe(σ − τe) ≥
θ∑

σ=0

∑
e∈Av

Φe(σ), ∀ v ̸∈ {s, d}, θ ∈ T (16)

T∑
σ=τe

∑
e∈Bv

λeΦe(σ − τe) =
T∑

σ=0

∑
e∈Av

Φe(σ), ∀ v ̸∈ {s, d} (17)

be(θ) ≥ λeΦe(θ) ≥ 0, ∀ e ∈ A, θ ∈ T (18)

The generalized maximum dynamic flow problem (GMDFP) is to find a GDF of maximum value valmax(Φ, T )
in (19). The total amount of flow that arrives at the sink in time steps {0, 1, . . . , θ} for all θ ∈ T gives the earliest
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arrival flow of a GDF. Note that no flow remains in the dynamic network at time T which is ensured by assuming that
Φe(θ) = 0 for all θ ≥ T − τe.

val(Φ, T ) =
∑
e∈Bd

T∑
σ=τe

λeΦe(σ − τe) (19)

Let Ψ : A → R+ be a non-negative static flow function with uniform unit costs on arcs satisfying the objective
function (20) and the constraints (21-22), respectively.

val(Ψ) =
∑
e∈Bd

Ψe =
∑
e∈As

Ψe (20)

∑
e∈Bv

Ψe −
∑
e∈Av

Ψe = 0, ∀ v ∈ V \{s, d} (21)

be ≥ Ψe ≥ 0, ∀ e ∈ A (22)

The static flow that maximizes the objective (20) turns into a zero circulation by adding an extra arc (d, s) with
value val(Ψ) through it and the flow conservation condition is also satisfied at terminals. If the objective function
is multiplied by cost coefficients, then it is a minimum cost static flow (MCSF) problem. For the fixed flow value
val(Ψ), the (MCSF) problem seeks to shift this value with minimum cost

∑
e∈A ceΨe. A (MCSF) problem with zero

circulation turns into a minimum cost circulation flow (MCCF) problem. Also the generalized maximum static flow
problem (GMSFP) has analogous formulation by dropping out the time parameters in constraints (16-18) and the
objective function (19), respectively.

Goldberg and Tarjan (1990) state a summery of existing results on the polynomial time algorithms for the min-
imum cost circulation problem relying on cost and capacity scaling algorithms that require a maximum flow and a
shortest path computation as subroutines, respectively. Moreover, they presented various pseudo-polynomial, polyno-
mial and strongly polynomial minimum cost circulation algorithms. Their approach solves the maximum flow problem
with successive approximations based on cost scaling and conclude that the minimum cost circulation algorithm is not
much harder than the maximum flow problem. Naturally, the pseudo-polynomial complexity depends on the maximum
absolute values of arc cost and capacity, respectively.

Transshipment problems. Let N = (V,A, b, τ, S,D, µ(s), µ(d)) be a multi-terminal network with a source-
supply and sink-demand vectors µ(s) and µ(d), respectively, such that µ(S ∪ D) =

∑
v∈S∪D µ(v) = 0. The

supply and demand at sources and sinks are positive and negative, respectively, whereas these rates are balanced at
intermediate nodes. The multi-terminal (EAFP) sends the total supply µ(S) =

∑
s∈S µ(s) from S to the total de-

mand µ(D) =
∑

d∈D µ(d) in D with maximum value at each point of time θ > 0. If all demands are fulfilled with
supplies by shifting them within given time T , then the problem turns into the transshipment problem. The earliest
arrival transshipment problem (EATP) maximizes val(Φ, θ) in the objective function (23) satisfying the multi-terminal
constraints (12-14) for all time points θ ∈ {0, 1, . . . , T}.

val(Φ, θ) =
θ∑

σ=0

∑
e∈A(s):s∈S

Φe(σ) =
θ∑

σ=τe

∑
e∈B(d):d∈D

Φe(σ − τe) (23)

If all supplies are transshipped from S toD satisfying its demands in minimum time minT = T (µ(S ∪D)), then the
problem is called quickest transshipment problem (QTP).

Minimum cost flows. Let ce(θ) be the cost per unit flow and Φe(θ) be the flow rate on arc e at time θ, then the
total cost of dynamic flow Φ : A× T → R+ is defined by

c(Φ) =
T∑

θ=0

∑
e∈A

ce(θ)Φe(θ). (24)

Variants of operational research models and algorithms on minimum cost flow problems are available in literature,
for example, the multicommodity quickest minimum cost flow problem by Fleischer and Skutella (2002), the minimum
cost flow over time problems (either find minimum cost flow for a given time horizon or find a quickest flow within a
given total cost) by Klinz andWoeginger (1995, 2004), the time varying minimum cost flow problem by Cai et al. (2001)
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and the infinite horizon minimum cost dynamic flow problem that maximizes throughput by Orlin (1984). However,
most of the problems in this class are computationally strongly hard and no polynomial solutions exists unlessP = NP
holds. Hardness occurs as neither the min-cost quickest flow nor the min-cost maximum flow solutions belong to the
class of temporally repeated flows. Therefore, researchers seek for a best polynomial time approximation algorithms.

For the transportation of several distinct categorizes of flow through a single network, a number of attempts have
been made to model multi-commodity flows over time, for example, the quickest minimum cost multi-commodity flow
problem (Fleischer and Skutella 2007), the fractional multi-commodity flow problem over time (Hall et al. 2007a), the
quickest multi-commodity flow problem with inflow-dependent transit times (Hall et al. 2007b, Hall et al. 2003). These
problems areNP-hard because of which algorithms are designed for acceptable approximate solutions including fully
polynomial time approximation schemes (FPTAS). The static length bounded flows with bounded costs support for
provably good multi-commodity flows over time and waiting at nodes may play significant roles in these solutions.
Pattern-based mixed-integer programming models with the number of lanes represented by integer variables are dis-
cussed in Bretschneider (2013) which incorporates the two-commodities - vehicles of evacuees (e.g., cars) and buses.

2.3 Network Representations

Residual networks. Let e′ = (w, v) be the reverse of an arc e = (v, w). The static residual network N (Ψ) w.r.t.
a static flow Ψ is given by (V,A(Ψ)), where A(Ψ) = AF (Ψ) ∪ AB(Ψ) with AF (Ψ) = {e ∈ A | Ψe < be} and
AB(Ψ) = {e′ ∈ A | Ψe > 0}. The arc length is given by τe for e ∈ AF (Ψ) and −τe for e′ ∈ AB(Ψ). For nodes
v, w ∈ V , let Pvw(Ψ) be the shortest path from v to w inN(Ψ). The residual capacity b(Ψ) : A(Ψ) → R is defined
as be(Ψ) = be − Ψe for e ∈ AF (Ψ) and be(Ψ) = Ψ′

e for e ∈ AB(Ψ). There may exist an augmenting path for
increasing the source-sink flow.

Given a network N = (V,A, b, τ, S,D, T ), we define an admissible time ae in (25) as additional attributes for
finding the shortest augmenting path with static network.

Ae =

{
{θ : be(θ)−Ψe(θ) > 0}, if e ∈ A
{θ + τe′ : Ψe

′(θ) > 0}, if e′ ∈ A.
(25)

Here in (25), first condition represents the set of times necessary to increase flow along ewhile the second represents the
set of possible times to decrease flow along e′ by sending back some flows along e. Then, for given feasible dynamic flow
Φ, the dynamic residual network is defined as N (Φ) = (V,AF (Φ) ∪ AB(Φ)) with AF (Φ) = {e : e ∈ A,Ae ̸= 0}
and AB(Φ) = {e : e′ ∈ A,Ae ̸= 0}. Moreover, the residual transit times are defined as

τe =

{
τe, if e ∈ AF

−τe′ , if e ∈ AB
(26)

Time-expanded network. The discrete dynamic flow problems are dealt with in Ford and Fulkerson (1962) intro-
ducing the static time-expanded network N (T ) = (VT , AM ∪ AH), where VT = {vθ | v ∈ V, θ = 0, 1, . . . , T},
AM = {(vθ, wθ+τe) | e = (v, w) ∈ A, θ = 0, 1, . . . , T−τe} andAH = {(vθ, vθ+1) | v ∈ V, θ = 0, 1, . . . , T−1}.
A moment arc e ∈ AM has the constant capacity be, whereas a holdover arc in AH has infinite capacity that allows
storage of flow at intermediate nodes. The latter are represented by the initial occupancies if they are known in advance.
With these the networkN (T ) expands to the multi-terminal network and it requires to add the super-source and super
sink nodes with specific costs and arc capacities. Links from the super source to the source nodes and from sink nodes
to the super sink node are problem dependent. The dynamic flow in N is equivalent to the static flow in N (T ). To
realize it, at a point of time θ, one can take a flow on eθ ∈ AM as the flow amount into e ∈ A, and reversely, the
average flow on e ∈ A of flow over time Φ in T as the flow value into eθ ∈ AM . As N (T ) has O(nT ) nodes and
O((n +m)T ) arcs, any algorithm based on it has pseudo-polynomial running time. For example, the multi-terminal
(MDFP) is solvable in pseudo-polynomial time onN (T ). But it is still an open problem whether there is a polynomial
solution for it in general.

Extended network. The construction of a two-terminal network N ⋆, called the extended network, is generalized to
the multi-terminal network N by adding a super-terminal node (⋆) and introducing arcs (⋆, si) to each si ∈ S with
infinite capacity and zero transit time, and arcs (di, ⋆) to each di ∈ D with infinite capacity and transit time -(T + 1)
for given time period T . For the network clearance problem, the capacities on (⋆, si) and (di, ⋆) are replaced by the
initial occupancies at si and the total demand at D, respectively (see, Hamacher and Tjandra (2002) for details).

Condensed network. By rescaling the time where each arc length (transit time) is a multiple of∆ > 0 and capacity
is multiplied by ∆, a condensed time expanded network N∆(T ) with time horizon

⌈
T
∆

⌉
is constructed. In N∆(T ),

node V is copied
⌈
T
∆

⌉
times as Vρ∆ for ρ = 0, . . . ,

⌈
T
∆

⌉
such that copy Vρ∆ corresponds to flow through V in the
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Figure 3: The maximum dynamic flow and earliest arrival flow solutions, respectively, in the time-expanded networks
corresponding to Figure 1(b), with source node s, sink node d, and intermediate nodes x and y.

interval [ρ∆, (ρ+ 1)∆). If
⌈
T
∆

⌉
is integer, then any flow over time in T and a static flow of equal cost in N∆(T )

are equivalent. However, for non-integer time
⌈
T
∆

⌉
, any flow in N∆(T ) corresponds to a flow over time of equal

value that completes before time T +∆. However, as the transit times are rounded up in N∆(T ), its maximum flow
approximates the maximum flow of an optimal solution in the original setting and it can be transformed into a flow
over time with original arc lengths without too much loss in flow value Fleischer and Skutella (2007). Only two paths
s− x− d and s− y − d carry the flows in condensed time-expanded network.

s

3∆,∆
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d

Figure 4: The condensed graph corresponding to Figure 1(b) and its time expansion with∆ = 2

Standard chain decomposition. Most of the polynomial time dynamic flow algorithms are based on the temporally
repeated static flow solutions introduced by Ford and Fulkerson (1962). By considering the constant arc travel times
as costs, they decompose the obtained maximum flow minimum cost static flow solution Ψ : A → R+ into p-chains
(paths) γk , denoted by Γ = {γ1, γ2, . . . , γp}, each carrying the value val(γk) to the sink such that Ψ =

∑p
k=1 γk .

This standard chain decomposition uses its chain flows in the same direction as Ψ does. The decomposition Γ of a
feasible static flow Ψ yields a feasible dynamic flow for given finite time horizon T by pushing the flow values of each
chains from zero till the time permits, for example till time T − τ(γ) for the chain γ in Γ, whenever this chain has
length at most T . The Γ-induced dynamic flow value denoted by ΓT equals to val(Φ, T ) for Φ, which depends only
on Ψ and not on a particular choice of any standard chain decomposition, can be expressed as

val(Φ, T ) =
∑
γ∈Γ

(T − τ(γ) + 1)val(γ) = (T + 1)val(Ψ)−
∑
e∈A

τeΨe (27)

By calculating a minimum cost circulation to the network with additional arc e = (d, s) having infinite capacity and cost
-(T+1), a maximum dynamic s-d solution has been obtained in polynomial time. Unfortunately, this efficient approach
can not be applied for the exact solutions of many evacuation problems, like multi-terminal and two-terminal earliest
arrival flows. However, there are many instances wherein this technique can be applied for calculating an approximate
solution.

Non-standard chain decomposition. Hoppe and Tardos (1994), and Hoppe (1995) introduced a non-standard
chain decomposition, wherein a chain flow might be canceled via another chain flow in a proper way (see, Figure 5).
To verify dynamic feasibility, chains in this decomposition have to be checked very carefully. Consider an arc e = (u, v)
in the chains γ and γ′ used in forward and backward directions. Then the portion of flow on γ from source to u that
has to be canceled on e must be reached to u before γ′ reaches there. Also, the flow from v to the sink through γ that
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has to be canceled by γ′ should not already left v. It also induces an optimal dynamic flow solution through, so-called
generalized temporally repeated flows.

In this decomposition, consider the chains Γv and Γ′
v as the multi-sets of all chain flows in Γ whose extensions

use edges ⋆v and v⋆, respectively. In Γv , flows start from v at time 0, but the flow from any chain γ′ ∈ Γ′
v takes τ(γ′)

time to reach terminal v. The time θ is taken sufficiently large, i.e., θ ≥ τ(γ′) for each γ′ ∈ Γ′
v so that flow along each

chain has reached the terminal v. Moreover, the arc setA on the left side of equation (28) contains only the arcs having
positive capacities. Then the net value of flow Φ out of vertex v during the time θ is given by equation (28).

val(Φ, T )v =
∑
γ∈Γv

θ|γ| −
∑

γ′∈Γ′
v

(θ − τ(γ′)) =
∑
e∈A

(τe
∑
γ∈Γ′

v

γ′e) (28)

0

s

2

x

1

2

0

-1

y

d

s
0 1 2 3

Figure 5: An illustration of backward flow cancellation in generalized temporally repeated flows

Fan and bow networks. Let us denote the non-decreasing left-continuous inflow dependent transit times step func-
tion by τs with only integer values. Then the graph NF (T ) = (V F

T , A
F
M ∪ AF

H) represents a fan network, where
V F
T = {vθ | v ∈ V, θ = 0, 1, . . . , T} denotes the set of nodes, Köhler (2002). The set of holdover arcs AF

H =
{(vθ, vθ+1) | θ = 0, 1, . . . , T −1} with infinite capacity allows a possibility of holding a flow at node v. The set of fan
arcs is denoted as AF

M = {(vθ, wθ+τs
e (θ)

) | e = (v, w) ∈ A, θ = 0, 1, . . . , T − 1, τ se is travel time on e at time θ}.
The capacitated horizontal fan arcs that control the flow distribution are continued with uncapacitated fan arcs pointing
downwards that give the different possible transit times. For the flow rate ye sent into the fan, transit time to the slowest
portion of this flow is at least τse (ye). Figure 6 represents an arc of time-expanded fan network with inflow rates 1 and
4, and T = 6. However, the fan network representation only realizes a relaxation of the real (IFDTT) settings. For
example, as represented by Figure 6, every flow units should travel e with τse (z2) = 4. But only z2-z1 units travel with
time 4 as z1 may already travel with time 1.

Figure 6: Expansion of a single arc e = (v, w) in the fan network with travel times 1 and 4, for at most z1 and z2 flow
units, respectively. All arcs except the regulating are of infinite capacity.

The size of fan network increases the size of time-expanded network by its step functions very largely. Therefore,
it is quite hard to handle the flow over time with (IFDTT) even with approximate settings in the fan. In order to deal
with a certain class of flows over time with (IFDTT), the bow network has been introduced, Köhler (2002).

Again define the transit times given by the step functions τse on arc e, and consider the breakpoints of flow rates
0 < z1 < z2 . . . zk = be with the corresponding transit times τ1 < τ2 < · · · < τk , respectively. Then the bow
network is defined by NB = (V B , EB), where V B = V and e ∈ EB consists of two classes of arcs, namely, the
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bow arcs bi and the regulating arcs ri, i = 1, . . . , k. The former are uncapacitated with transit times τ i, whereas the
latter have zero transit time and capacity zi. The size of this expansion is linear in the number of arcs. Clearly, the
fan-network is a time expansion of the bow network.

(be, τ
s
e (ye))

e
v w

(z2, 0)

r2
v

(z1, 0)

r1

b2

(∞, τ2)

b1

(∞, τ1)

w

Figure 7: Expansion of e = (v, w) in the bow network with travel times 1 and 4, for at most z1 and z2 flow units.

For given flow over time Φ in the original network N with (IFDTT) step functions τse and time horizon T given
by the flow ratesΦe(θ) : A×T → R+, the flow over timeΦB on the bow expansion of e is considered as in Definition
(29).

ΦB
a (θ) =

{
Φe(θ), if a = bi or a = rj with j ≥ i
0, otherwise (29)

With this, every flow over time with (IFDTT) in N can be considered as a flow over time with constant transit times
in NB , but not conversely. The problem on bow network is certainly a relaxation of the original (IFDTT) flow over
time problem.

3. EXISTING APPROACHES

3.1 Evacuations With Constant Attributes

3.1.1 Maximum Evacuation Problems

The earliest arrival flow solutions of Minieka (1973) and Wilkinson (1971) on s-d dynamic network could be viewed
within the non-standard chain decomposition approaches as they apply the flow cancellation property in successive
shortest augmenting path algorithms. Minieka (1973) iterates the maximum flow algorithm of Ford and Fulkerson
(1962, 1958) T -times and Wilkinson (1971) constructs a minimum cut. The non-standard chain decomposition here
uses the minimum cost maximum flow static flow calculated by the shortest augmenting path algorithm of Ford and
Fulkerson (1962, 1958) such that the shortest residual (s, v) and (v, d) lengths are nondecreasing in the process. The
shortest directed path sends the incremental s-d flow in the residual network with remaining capacities. However,
these algorithms are not polynomial but pseudo-polynomial in time as they are essentially represented by the time
expanded networks with backward chain flows. The successive shortest path algorithm with scaling on bounded integer
capacities yields a (1 + ϵ)-approximate earliest arrival flow for any fixed error factor ϵ > 0 that is of polynomial time,
Hoppe and Tardos (1994). Again a decomposition defined by the sequence of augmentations of the obtained flows
induces a dynamic flow. For O(logU) scaling phases for capacity rounding with O(mϵ ), each of which computed with
O(m+ n logn), they proved Theorem 3.1.

Theorem 3.1 Let valmax(Φe, θ) be the maximum value in time θ ≤ T for any dynamic flow problem, then the capacity scaling
successive shortest path algorithm computes dynamic flow valeafmax (Φe, θ) in timeO(mϵ (m+n logn) logU) such that valmax(Φe, θ) ≤
(1 + ϵ)valeafmax (Φe, θ).

Earliest arrival solutions do not necessarily exist for the general S-D flows (Baumann and Skutella 2006, Fleischer
2001). Authors in (Richardson and Tardos 2002 , Fleischer and Skutella 2007) show an existence using the lexicograph-
ically maximal flows in the time expanded network. In (Hajek and Ogier 1984, Fleischer 2001) a polynomial time
solution is obtained for zero travel times on all arcs, however, an approximate solution is obtained for arbitrary arc
travel times in (Fleischer and Skutella 2002). Authors in (Baumann and Skutella 2009, Baumann 2007) solve the S-D
flow problem with a strongly polynomial time algorithm in the input plus output size. Authors recursively construct the
piecewise linear function for the time-dependent maximum flow value followed by a submodular function minimization
within the parametric search, Megiddo (1979). They make use of the quickest transshipment algorithm of Hoppe and
Tardos (2000) to obtain the earliest arrival flows.

Consider any subset A of terminals with µ(A) =
∑

w∈A µ(w) and the maximum flow maxθ(A) possible to be
sent from the sources inA to the sinks outsideA in time θ without taking care of µ(w) for w ∈ V . Then there exists a
feasible flow for time θ if and only if maxθ(A) ≥ µ(A) for allA ⊆ S∪D. Also it holds: maxθ(A) = −min{costθ(Φ) |
Φ circulation in modified N ′}, Ford and Fulkerson (1958). The function θ 7→ maxθ(A) is a piecewise linear and

1813-713X Copyright © 2018 ORSTW



112 Dhamala, Pyakurel, Dempe : A Critical Survey on the Network Optimization Algorithms for Evacuation Planning Problems

IJOR Vol. 15, No. 3, 101-133 (2018)

convex cost function of the parametric min-cost flow problem, and the function maxθ : S ∪D 7→ R is submodular,
Baumann and Skutella (2009). Define the earliest arrival flow pattern h : R+ → R+ that sends the amount of flow
h(θ) into the sink at time θ without violating source constraints. It is piecewise linear but may be non-convex. The
h(θ) units of flow have arrived at the sink by time θ for all θ ≥ 0 simultaneously in the earliest arrival flow. Let
θ1 = max{θ | h(θ) = maxθ(S)} and S1 ⊂ S be such that maxθ1(S1) = maxθ1(S)− µ(S − S1). Then

h(θ) =

{
maxθ(S) if θ < θ1,
h1(θ) + µ(S − S1) if θ ≥ θ1,

where h1 is the earliest arrival flow pattern for source S1. An earliest arrival flow pattern is reduced to the problem of
computing an s-d earliest arrival flow pattern for S1. An earliest arrival flow pattern is recursively computed on the
smaller set of sources with polynomial time on the input size plus the number of breakpoints. An earliest arrival flow
can be calculated in a modified network with k additional nodes and arcs for given earliest arrival flow pattern with k
breakpoints Baumann and Skutella (2009).

Let us consider the set of k terminals d1, d2, . . . , dk in a multi-terminal network. Minieka (1973) and Megiddo
(1974) obtain a static flow that lexicographically maximizes the flows leaving these terminals and lexicographically
minimizes the flows entering the sinks in this given order. Minieka (1973) gives an existence proof that requires the
max-flow min-cut theorem and bases on the independence departure-arrival flow patterns. The results are also valid
if all sources are getting higher ranks than all sinks. Megiddo (1974) obtains a solution to this priority based problem
imposing the source to be ranked first without pre-specified ordering of the sinks. Gallo et al. (1989) presents a more
general parameterized maximum flow algorithm that has the complexity of a single maximum flow algorithm.

A dynamic lex-max flow solution has to perform this within a given time T . An easy extension of this static
approach yields a higher complexity dynamic solution in time-expanded network N (T ) with di(0) for source di and
dj(T ) for sinks dj . All of the time-expanded network size dependent lex-maximal flow algorithms are of exponential
growth. Improving this complexity, Hoppe and Tardos (2000) present a chain-decomposable based polynomial time
algorithm on the successive residual networks of the original network. Given zero flow at start, their lex-max dynamic
flow algorithm calculates successive layers of minimum cost static flows in the residual network of previous layers and
adds standard chains to the existing one. For given period T , the time complexity to compute this feasible and hence
the lex-maximal flow takes k times the complexity of minimum cost flow computations.

Theorem 3.2 (Hoppe and Tardos 2000) A k-terminal lexicographically maximum dynamic flow problem can be solved in polynomial
time O(k · g(nm)), where O(g(nm)) is required for one minimum cost flow computation.

In a problem of building evacuation, the multiple zones can be prioritized based on emergency levels, like fire
blocking and smoke, wherein priority based evacuation steps are quite important. Hamacher and Tufecki (1987) obtain a
lexicographical minimum cost dynamic flow by augmenting the current flow in a lexicographically shortest augmenting
path as long as it exists. To achieve this, higher costs on arcs of lower priority levels have to be assigned. Their intention
is to prevent unnecessary movements within the building and complete an order based evacuation process as quickly
as possible. The non-dominated evacuation routes are obtained using dynamic programming formulation of the multi-
objective evacuation problems, where several attributes on arcs can be imposed using the dynamic severity matrix,
Kostreva and Wiecek (1993).

3.1.2 Quickest Evacuation Problems

Quickest paths. As a variant of the shortest path problem, a solution to the single-source single-sink quickest path
evacuation problem sends a predetermined number of evacuees in minimum possible time through a single path, Chen
and Chin (1990). This approach has a relevance in an evacuation scenario when evacuees intend to choose a single path
or tunnel from their initial location without having any other external evacuees from other positions, for example when
the spectators are evacuated from a sports stadium. These shortest paths are of interest with respect to the travel times
as well as that of the number of evacuees continuously passing over the time. As a sub-path of a quickest path may not
necessarily be a quickest path, a careful analysis is required in to order to figure out the relations between quickest and
shortest paths. Rosen et al. (1993) present an efficient algorithm of complexity O(κ(m+ n logn)), where κ denotes
the number shortest paths of distinct capacity values. Additional polynomial algorithms and extensions to the quickest
path evacuation problems with flow dependent transit times can be found in (Hamacher and Tjandra 2002, Hung and
Chen 1993, Tjandra 2003). Theorem 3.3 states a nice property connecting quickest and shortest paths in single-source
single network, Rosen et al. (1991).

Theorem 3.3 Let Nδ = (V,Aδ, b, qo) be a sub-network of N = (V,A, b, qo) with capacity b and flow volume qo, where
Aδ = {e | e ∈ A, be ≥ δ} and Pk be a shortest s-d path in Nδk with distinct capacity values k = 1, 2, . . . , κ. If

τ(Pκo
) +

qo
b(Pκo

)
= min

k=1,...,κ

{
τ(Pk) +

qo
b(Pk)

}
,
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then Pκo
is the quickest s-d path in N = (V,A, b, qo), where τ(Pk) and b(Pk) represent the length and capacity of the path Pk ,

respectively.

Quickest flows. The quickest (flow) evacuation problem, also known as the minimum time network clearing prob-
lem, extends the quickest path problem by allowing multiple paths for sending an initially located predetermined volume
of flow Q0 in minimum time. The multi-source single-sink (QFEP) for building evacuation in emergencies has been
considered in ( Berlin 1978, Chalmet et al. 1982), in which Chalmet et al. (1982) study the network flow theory to
analyze the evacuation times. A solution to the single-source single-sink quickest evacuation problem has been ob-
tained by iteratively solving the maximum dynamic evacuation problem, Burkard et al. (1993) (cf. Algorithm 1). They
establish that the s-d quickest flow problem has strong relation to the corresponding maximum flow problem and to
linear fractional programming problems.

Algorithm 1 The s-d quickest evacuation algorithm

1. Apply any method to estimate the time T (binary search, interpolation or Newton’s method).

2. Solve the parametric cost linear program-minimum cost circulation for given parameter T .

3. Repeat Steps 1 and 2 until the minimum time T (Q0) with val(Φ, T ) = Q0.

In fact the quickest flow problem can be considered as the inverse problem of the maximum dynamic flow
problem. The dynamic flow Φ is quickest of value val(Φ, T ) with minimum time T , if valmax(Φ, T − 1) < val(Φ, T )
for an integer time T ≥ 0. Algorithm 1 computes a quickest flow determining a MDF Φ for T ∗(val(Φ, T )) and
decreasing its value to val(Φ, T ) if valmax(T ∗(val(Φ, T )) > val(Φ, T ), where T ∗(val(Φ, T )) denotes the minimum
time for the transshipment of value val(Φ, T ).

Theorem 3.4 The time depending maximum value function valmax(Φ, T ) is monotonically increasing and increases strictly if T ≥
min{T ′ | valmax(Φ, T ′) > 0}. The function ∆(T ) = valmax(Φ, T ) − valmax(Φ, T − 1) is monotonically increasing for all
T > 0 in the range {0, 1, . . . , valmax(Ψ)}, where Ψ represents an arbitrary MSF.

Exploiting the properties of piecewise-linear and increasing function valmax(Φ, T ) as a continuous function, sev-
eral efficient algorithms including also a strongly polynomial one are presented for the s-d quickest flow problem
in Burkard et al. (1993). The obtained earliest arrival flow valmax(Φ, T ) simultaneously yields the quickest flow
time T (Q0) with valmax(Φ, T ) = Q0, Jarvis and Ratliff (1982). However, with this approach the solution com-
plexity is earliest arrival flow solution dependent, for example a pseudo-polynomial algorithm of Wilkinson (1971)
can be considered for computing of a s-d EAF solution. For an integer T , a binary search procedure takes time
O(m logn(m+ n logn)min{log val(Φ, T ), valmax(Ψ)}) and an interpolation and Newton’s approximation based al-
gorithm takes timeO(m logn(m+n logn) log∆max), where∆max = min{val(Φ, T ), valmax(Ψ)} represents an upper
bound for the slope∆(T ∗(val(Φ, T ))) of the line segment containing T ∗(val(Φ, T )). HereO(m logn(m+n logn))
costs for the minimum cost circulation, Orlin (1988). Although not very practical, authors in (Burkard et al. 1993)
present a strongly polynomial time algorithm taking time O(m2 log3 n(m + n logn)) using the linear fractional pro-
gramming problem in Megiddo (1979), where the total time period has been expressed as quotient of two linear func-
tions of flow variables. Several computational tests and worse case comparisons are made for randomly generated
instances.

Lin and Jaillet (2015) proposed an improved algorithm for the s-d quickest flow problem considered in (Burkard
et al. 1993) by formulating it as a fractional programming problem (30-32).

T ∗ = min
Q0 +

∑
e∈A τe.Ψe

val(Ψ)
(30)

such that
∑
e∈Av

Ψe −
∑
e∈Bv

Ψe =

 val(Ψ) if v = s
−val(ψ) if v = d
0 otherwise

(31)

0 ≤ Ψe ≤ be, ∀e ∈ A (32)

A temporally repeated flow of any optimal static flow Ψ is an optimal quickest flow to transship the value Q0.
To minimize the ratio T =

Q0+
∑

e∈A τe·Ψe

val(Ψ) , the residual network N (Ψ), node potentials π (i.e., dual variables corre-
sponding to the flow conservation constraints) are introduced, and the reduced cost π(v)−π(u)+ τe is calculated for
each arc e = (u, v) ∈ N (Ψ). The overall time complexity of their algorithm is O(n3 log(nC)), where C denotes the
maximum travel time on arcs.
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Improving all of the approaches given in (Burkard et al. 1993 and Lin and Jaillet 2015), a strongly polynomial time
algorithm, making the use of a cancel-and-tighten algorithm, has been recently presented by Saho and Shigeno (2017)
that solves the single-source single-sink quickest flow problem in time O(nm2(logn)2).

A polynomial time algorithm depending on logT has been presented for the general quickest flow problem in
Hoppe and Tardos (1994, 2000) and Hoppe (1995). Their non-standard flow decomposition approach within time-
expanded graph allows simultaneous flows on different but not necessarily disjoint source-sink paths. They study the
multi-terminal quickest evacuation problem with predefined node-arc capacities and arc travel times.

For time period T and µ(A) =
∑

v∈A µ(v), let maxT bv(A) with A ⊆ S ∪ D, be the maximum flow value
that could be shifted from v ∈ A ∩ S to v ∈ D − A without taking account the needs of other terminals. Let
Nv = (V,A, b, τ, µ) be the extended network, where s (respectively, d) denotes the super source (respectively, sink)
connected to v ∈ A ∩ S (respectively, from v ∈ D −A).

Algorithm 2 Multi-terminal dynamic transshipment feasibility test

1. Solve MDF in Nv = (V,A, b, τ, µ) for maxT bv(A) with static minimum cost flow calculation.

2. Check the feasibility (i.e., maxT bv(A) ≥ µ(A) for any A ⊆ S ∪D) of the proposed QFP.

3. Find a violated set by minimizing the submodular function maxT bv(A)− µ(A) based on Grötschel et al. (1988).

WithO(α(mn)) as the computational cost required for Step 1, a trivial exponential timeO(2kα(mn)) algorithm
finds a violating set in Step 3. But authors in Hoppe and Tardos (2000) propose a strongly polynomial time algorithm
for Step 3 based on submodular function minimization oracle of Grötschel et al. (1988), and also present an algorithm
of complexityO(k2α(mn) log(nTBo)) based on Vaidya (1989), where k andBo denote the number of terminals and
the maximum arc capacity, respectively.

They also present a polynomial time algorithm by combining Algorithm 2 and binary search to find the minimum
time T for the quickest transhipment problem. With nT as an upper time step for reaching the first flow to a sink, their
binary search starts with the bound nT +µ(S). It requires (k2α(mn) log2(nBoToµ(S)) time, where the optimal time
T is bounded by nTo + µ(S). A trivial check requires (2kα(mn) log(nToµ(S)) time. They also present a strongly
polynomial time algorithm using the parametric search technique of Megiddo (1979) for the minimum transshipment
time T .

The dynamic transshipment problem is reduced in Hoppe and Tardos (2000) to an equivalent lex-max dynamic
flow problem in more complex graph using the already obtained time bound of the former. In this reconstructed
network, the terminals are connected with extra terminals with adjusted transit times and capacity functions to get
a parameterized dynamic transshipment problem. An algorithm for equivalence of solutions among these problems
generate a chain of tight subsets (i.e., maxT bv(A) = µ(A)) with modified terminal sets ordered by inclusion. After all,
a binary search technique has to be applied to determine the adjusted transit times on artificial arcs. Finally, Algorithm 2
terminates with its final feasibility check of the single lex-max problem. As a result, the dynamic transshipment problem
can be solved in polynomial time using binary search and also in strongly polynomial time using parametric search. The
time required for checking the feasibility of a dynamic transshipment problem and finding a violated set is denoted by
β.

Theorem 3.5 The dynamic transshipment problem can be solved in strongly polynomial time and also in time O(kβ log(nTBo))
time. Moreover, the quickest transshipment problem can be solved in O(kβ log(nToBoµ(S))) time, and also in strongly polynomial
time.

There are nice optimality properties between the universal maximal flows and minimum average and total evacu-
ation times. Theorem 3.6 gives a strong connection between the three optimization problems - the universal maximal
flow, minimum weighted sum and quickest flow problems, Jarvis and Ratliff (1982). Second is the minimum total
turnstile cost problem with increasing turnstile costs cd(vθ, ⋆) = θ, where v ∈ D and ⋆ = wθ+τ(v,w) is the super-sink
in N (T ), (Chalmet et al. 1982, Hamacher and Tjandra 2002, Hamacher and Tufecki 1987). Kisko and Francis (1985)
solved the problem of minimizing the average evacuation time

∑T
θ=1

∑
v∈D θ · Φe(θ) with e = (vθ, ⋆) satisfying the

flow conversation and capacity constraints.

Theorem 3.6 Consider the triple optimization problems as follows:

max
θ∗∑
θ=0

Φe(θ), ∀θ∗ ≤ T ; min
T∑

θ=0

cdΦe(θ); min{T | Φe(T
∗) = 0, ∀ T ∗ > T}.

Then, a feasible solution for either of the first two is also a feasible solution for the other two.
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3.2 Generalized Flow

Onaga (1966, 1967) presented the successive shortest path algorithm that solves the generalized maximum static flow
problem in pseudo-polynomial time. It starts with Ψ = 0 and the residual network N (Ψ). If there is no s − d path
in N (Ψ), the algorithm terminates. Otherwise, it augments flow along the s− d path with highest gain. The process
will be continued with the resulting Ψ flow and residual network N (Ψ). Moreover, if the network has no residual
flow generating cycle, then only, the obtained flow is a generalized maximum static flow. Gondran and Minoux (1984)
presented a generalized flow decomposition approach in which a generalized static s− d flow Ψ can be decomposed
into at mostm generalized flows Ψi, i = 1, . . . , k along s− d paths and cycles.

Lemma 3.7 Consider the decomposition of generalized flows Ψi with the value Ψ =
∑k

i=1 Ψi. Then each of these flows satisfies one
of the following structures.

1. A path from the source s to the sink d.

2. A flow-generating cycle connected to the sink d by a path.

3. A path from the source s to a flow-absorbing cycle.

4. A unit-gain cycle flow.

5. A flow-generating cycle connected to a flow-absorbing cycle by a path.

Fleischer and Wayne (2002) considered a two terminal lossy network without flow generating cycles in which
the product of gain factors exceeds one. A lossy network cannot have flow generating cycles and networks with no
flow generating cycles need not be lossy. However, the transformation of a network with no flow generating cycles
into an equivalent lossy networks has been made in O(mn) time. They presented the generalized max flow packing
algorithm that computes an ϵ-approximate generalized maximum static flow on two-terminal lossy network without
flow generating cycles for given ϵ > 0 in O(ϵ−2m(m+ nlogm)logm) time complexity.

By assuming ϵ = 1/2, the generalized max flow packing algorithm has been run repeatedly in residual network
hat computes 1/2-approximate generalized maximum static flow Ψ Goldberg et al. (1991). As in each iteration, at
least 1/2 of the remaining flow is possible, the optimality gap decreases geometrically to zero. After log(1/ϵ) iterations
an ϵ-approximation will be obtained, Fleischer and Wayne (2002). If, without loss of generality ϵ is assumed to be
sufficiently small, for example, say M−3m where M denotes the biggest integer used to represent any of the costs,
capacities or loss factors then, the ϵ-approximate flow can be efficiently rounded to an optimal flow Goldberg et al.
(1991).

Gross and Skutella (2012) and Gross (2014) introduced a generalized maximum dynamic flow (GMDF) model
where each arc contains both loss factors and transit times. They proved by reduction from PARTITION that there
is neither a polynomial time nor a polynomial time approximation algorithm on both series-parallel networks with
proportional losses and lossy networks with non- proportional losses and transit times, unless P = NP . However, on
two terminal lossy network with the loss rate per time unit identical on all arcs, a pseudo-polynomial time algorithm has
been presented that computes the (GMDF) using the (GMSF) algorithm of Onaga (1966, 1967) on generalized time
expanded network. The generalized time expanded network is similar to the time expanded network, however, each arc
has additional gain factor λ. As in the dynamic network flow, the relation as in Lemma 3.8 holds, (Gross and Skutella
2012, Gross 2014).

Lemma 3.8 There is a one-to-one correspondence between a generalized dynamic flow in original network and a generalized static flow in
generalized time expanded network.

In the generalized time expanded network, the successive shortest path algorithm ofOnaga (1966, 1967) solves the
(GMDF) problem on the original network. Gross and Skutella (2012) and Gross (2014) considered the lossy network
with the assumption that in each time unit the same percentage of the remaining flow value is lost and the lost value
is equivalent to λ ≡ 2c·τ for some constant c < 0. This is motivated by the problems in which evacuees cannot be
shifted totally due to unfortunate deaths. Their algorithm constructs the temporally repeated flow structure and applies
on generalized time expanded networks.

Theorem 3.9 The (GMDF) problem can be solved in O(max-flow · T ), where a maximum flow algorithm with a running time
O(nm) has been obtained in (Orlin 2013).

For the two terminal lossy network with unlimited supply and demand, the (GMDF) obtained by Gross and
Skutella (2012) and Gross (2014) satisfies the earliest arrival property if the holdover at intermediate nodes is not
allowed. Thus, the generalized earliest arrival flow problem is also solvable and it is solved with the same complexity as
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the (GMDF) problem. But for special cases, the running time can be further improved. A (GMSF) problem has been
solved in Krumke and Zeck (2013) in series parallel networks with a greedy-strategy that chooses always the highest
gain path in original network but not in residual network. This is sufficient for finding an optimal solution.

Moreover, Gross and Skutella (2012) and Gross (2014) also presented an approximate (GMDF) solution on
two terminal lossy network. They used an FPTAS which is obtained by terminating the (GMDF) algorithm after a
polynomial number of iterations. It approximates the maximum flow value and produces a solution that is at least as
good as an optimal exact solution. The error ϵ appears only logarithmical as log ϵ−1 in the runtime of the FPTAS.

Theorem 3.10 For given ϵ > 0, U = maxe∈E bE(e) and constant c < 0 on N , the approximate (GMDF) problem can be
solved in O(maxflow · (log ϵ−1 + logU + logT )) time complexity.

Stating other applications where the gain factors can be used to model physical changes such as leakage or theft,
that should be equally applicable to loss factors in evacuation, Végh (2018) presented a strongly polynomial time algo-
rithm for solving the generalized flow maximization problem using a continuous scaling technique.

3.3 Problems In Abstract Networks

An abstract network consists of an abstract path system formed by a set of elements that may be nodes or arcs. Let the
network N = (A,P, b, τ, c, S,D, T ) be a dynamic abstract network with capacity b : A→ R+, weight c : A→ R+

and transit time τ : A → Z+ on A. A static abstract network is obtained by discarding the time factor from dynamic
abstract network. Assume that P ⊆ 2A and every path P ∈ P has a linear order <P of the elements. A path system
in abstract network satisfies Property 1, known as the switching property.

Property 1 The paths P and Q cross at element e if e ∈ P ∩Q and if there exists a path R that only uses elements at the beginning
of P and at the end of Q (and vice versa). Mathematically, both sets {R ⊆ P | R ⊆ (P, e) ∪ (e,Q)} and
{R ⊆ P | R ⊆ (Q, e) ∪ (e, P )} are non-empty. The switching paths of P and Q are
P ×e Q ∈ {R ⊆ P | R ⊆ (P, e) ∪ (e,Q)} and Q×e P ∈ {R ⊆ P | R ⊆ (Q, e) ∪ (e, P )}, where
(P, e) = {p ∈ P : p ≤P e} and (e,Q) = {q ∈ Q : e ≤Q q}.

Based on the network flow model of Ford and Fulkerson (1956), Hoffman (1974) introduced the abstract flows
generalizing the concept of paths. For the static case, he showed that the generalized abstract maximum weighted flow
and the generalized abstract minimum weighted cut problems are primal and dual LP to each other. Moreover, weights
are supermodular and the abstract path system satisfies the switching property so that the abstract maximum flow is
totally dual integral with minimum cut. McCormick (1996) presented a polynomial algorithm to solve the abstract
maximum static flow problem with unit weight on each element. For the weighted case, Martens and McCormick
(2008) compute an abstract maximum weighted flow by using augmenting structure of decreasing total reward, where
the shortest path has the largest reward. Their algorithm has been applied to augment flow without removing on the
counting elements in the process of finding restricted abstract maximum flow.

LetΨ : P → R+ be the static flow on an abstract network. Themaximum static abstract flow problemmaximizes
the sum of flows on all paths satisfying the capacity and feasibility contractions, as in the formulation (33). In this
formulation, it is assumed that each path has unit weight.

max
∑
P∈P

Ψ(P ) (33)

such that
∑

P∈P:e∈P

Ψ(P ) ≤ be,∀ e ∈ A (34)

Ψ(P ) ≥ 0, P ∈ P (35)

If C is a cut set with an abstract minimum cut with value valmin(C) as a dual of the maximum abstract flow
problem, the objective function (36) wants a minimum capacity weight ze of every element e ∈ A that covers all paths.

min
∑
e∈A

beΩe (36)

such that
∑
e∈P

Ωe ≥ 1,∀ P ∈ P (37)

Ωe ≥ 0, ∀e ∈ A (38)
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The abstract flow over time problem is investigated with its mathematical formulation by Kappmeier et al. (2014).
Let a nonnegative function Φ : PT → R+ be the dynamic abstract flow to all temporal paths Pt ∈ PT , where Pt and
PT are, respectively,

Pt =

(e, θ) ∈ AT : e ∈ P, θ = t+
∑

p∈(P,e)

τA(p)

 ,

PT =

Pt : P ∈ P, t ∈ T , t+
∑
p∈P

τA(p) ≤ T

 .

Here, AT is a time expanded element set defined as AT = A × T which is obtained by copying A on each
time period. Moreover, the flow along path Pt enters element e at time t +

∑
p∈(P,e) τp and reaches the sink at time

t +
∑

e∈P τe. All the temporal paths should arrive to sink at latest at time T . Then, the abstract maximum dynamic
flow maximizes the objective function in (39) satisfying the capacity and non-negativity constraints.

max
∑

Pt∈PT

Φ(Pt) (39)

such that
∑

Pt∈PT
(e,θ)∈Pt

Φ(Pt) ≤ be,∀ e ∈ A, θ ∈ T (40)

Φ(Pt) ≥ 0, ∀ Pt ∈ PT (41)

Moreover, the value of an abstract maximum dynamic flow equals the capacity of minimum dynamic abstract cut
and vice versa as dynamic abstract cut bounds the maximum value of dynamic abstract flow as follows∑

Pt∈PT

Φ(Pt) ≤
∑

(e,θ)∈C

be, ∀e ∈ A, θ ∈ T . (42)

Here, C ⊆ AT represents an abstract dynamic cut set so that Pt ∩ C ̸= ∅ for each Pt ∈ PT . As in network flow
model, a solution of the abstract maximum dynamic flow problem is obtained using time expanded abstract network,
Kappmeier et al. (2014). They also solved the abstract maximum dynamic flow problem with a polynomial algorithm
by using the abstract time expanded network. The abstract time expanded network introduces the copies of each path
as a whole. However, the time expansion of an abstract network may not be an abstract network because it may violate
the switching property. To satisfy the switching property, the intermediate storage for all temporal paths is allowed that
does not influence the solution, i.e., the temporally repeated solution is optimal even if intermediate storage is allowed
in Matuschke (2014) and Kappmeier (2015). Moreover, the abstract lex-maximum flow and abstract earliest arrival flow
problems are investigated by Kappmeier (2015) with efficient solution algorithms.

3.4 Evacuations With Variable Attributes

3.4.1 Load-Dependent Transit Times

In order to deal flows over time with the (LDTT), we pose Assumption 1. The independence of flows on different arcs
weakens this model yielding only approximate solutions in reality.

Assumption 1 At each moment of time, the entire flow on an arc travels with uniform speed that depends only on the current load (the
amount of flow) of that arc.

For the load le and flow rateΨe on arc e, the relation le = Ψeτe(Ψe) holds for a static flow. With an assumption
that the function Ψe → Ψeτe(Ψe) is non-negative, strictly increasing and convex, we also denote the transit time as a
function of the load τ̂e(le). Satisfying the former relation by the flow rate and the load, we note that τe(Ψe) = τ̂e(le).
Thus the (LDTT) model relies on the fact that the speed of flow along an arc e is proportional to the inverse of current
transit time τ̂e(le(θ)) at any moment of time θ.

The flow over time problem with (LDTT) has been approximately solved in polynomial time by exploiting the
property of temporarily repeated solution of the corresponding average static flow rate Ψe = 1

T

∫ T

0
Φe(θ)dθ. The

authors in Köhler and Skutella (2005) proved Theorem 3.11. Moreover, they also proved that the problem of finding a
quickest flow over time with (LDTT) is stronglyNP-hard and there does not exist an FPTAS unless P = NP holds.
The reductions are based on the NP-complete PARTITION and SATISFIABILITY problems.
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max
∑

e∈Ain
d

Ψe −
∑

e∈Aout
d

Ψe (43)

such that
∑

e∈Ain
v

Ψe −
∑

e∈Aout
v

Ψe = 0,∀ v ∈ V \{s, d} (44)

0 ≤ Ψe ≤ be, ∀ e ∈ A (45)∑
e∈A

Ψeτe(Ψe) ≤ Q0 (46)

Theorem 3.11 Suppose that there exists a flow over time with (LDTT) that sendsQ0 units of s-d flow within time period T . Then a
flow over time satisfying the same demand within time horizon at least 2T exists in the class of temporally repeated flows. Also, this solution
can be computed polynomially within time (2 + ϵ)T for any given ϵ > 0.

On the other hand, if one is seeking in improving the time factor of 2, it has to compromise in decreasing the
amount of flowQ0. Notice that the use of temporarily repeated solution of the static flow problem (43-46) worsen the
flow over time solution that could be obtained theoretically.

3.4.2 Inflow-Dependent Transit Times

Authors in Köhler et al. (2002) study the quickest flow over time with an additional restriction on the transit time which
completely depends on the current rate of inflow into that arc at any point of time. With this, the arc wise entering flows
impose the pace of every unit of flow and this remains fixed throughout. Although these restrictions violate the first-
in-first-out (FIFO) property and do not capture the more realistic behavior of the flow over time with flow-dependent
times, the authors are successful to give approximate results with polynomial time algorithms comparable to the results
on quickest flows over time with (LDTT). In oder to model the (IFDTT) flow over time problem, Assumption 2 has
been made.

Assumption 2 At any moment of time, the transit time function on an arc is given as a non-negative, piecewise constant, non-decreasing
and left-continuous function of inflow rate.

Note that the functions can be restricted tohave only integral values as this can be easily relaxed to allow arbitrary
rational values by scaling the time in a proper way.

Theorem 3.12 (Köhler et al. 2002) Suppose that there exists a flow over time sending Q0 flow units from s to d within time T
for non-decreasing piecewise constant transit time functions. Then a temporarily repeated flow with (IFDTT) can be computed in strongly
polynomial time that sends the same amount of flow from s to d within time horizon at most 2T .

Moreover, any general non-negative, non-decreasing and left-continuous function can be approximated by a step
function within arbitrary precision, Köhler et al. (2002). This allows us to obtain a temporally repeated quickest flow
with left-continuous inflow-dependent transit time functions by a strongly polynomial time (2 + ϵ)-approximation
algorithm. That means, the same amount of flow that a flow over time can send within a certain time period in the
given network can also be obtained via temporally repeated flow within a time horizon at most (2+ ϵ) of the this time.
Moreover, the performance can be improved to 3

2 + ϵ if convexity is replaced by concavity in the transit time functions.
Furthermore, given all transit time functions to be convex, the quickest flow problem can be converted into a minimum
convex cost flow problem with transit times as the arc costs.

3.4.3 Flow Dependent Earliest Arrival Flows

Unlike Gale’s result on the existence of earliest arrival flows for constant transit times on arcs, earliest arrival flows do
not exists for (FDTT) flow over time problems even on very simply structured networks Baumann and Köhler (2007).
This result is valid even (FFTT) are restricted to (LDTT) or (IFDTT) functions. Obtaining an earliest arrival flow
with (FDTT) functions is computationally an NP-hard problem as its relaxed version where obtaining a maximum
flow at the end of time horizon only, i.e., the (MDFP), is already in this class. However, they introduced the closely
related version of this problem, the so-called α-earliest arrival flow problem. They presented a time approximation
algorithm to find this almost earliest arrival flow solution which required only α-times longer to send the maximum
flow to the sink for each point in time. The authors pointed out that the value approximation algorithms should also
be possible as in Hoppe and Tardos (1994) for the constant transit times on arcs. A proof of this theorem is based on
the approximation algorithms for the quickest flow solutions with (LDTT) and (IFDTT) as in ( Hall et al. 2003, Köhler
et al. 2002, Köhler and Skutella 2005).

Theorem 3.13 The α-approximation earliest arrival flow problem can be solved by 4c-algorithms, where c = 2 for the (IFDTT) and
(LDTT) flows over time models. Moreover, c = 1 + ϵ for the (IFDTT) flow over time model for any ϵ > 0.
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3.4.4 Time Dependent Attribute Solutions

The majority of the network flow research relay on a balanced configuration with small size discretization in predeter-
mined discrete time steps of the continuous time structure at the computational cost. The time dependent continuous
time flow models are compactly sketched here. Let the unit cost c(θ) and upper bound b(θ) on the rate of continuous
flowΦ(θ) be bounded measurable functions withm-components. Let a bounded measurable function ν : A×T → R
represent the rate of demand-supply vectors in each arc. If ϕ(θ) is the level of storage at time θ, a general continuous
network flow problem with cost minimization can be formulated as follows.

min ζ =

∫ T

θ=0

c(θ)Φ(θ)dθ (47)

such that for all points in time θ ∈ [0, T ],∫ θ

σ=0

MΦ(σ)dσ + ϕ(θ) +

∫ θ

σ=0

ν(σ)dσ = 0 (48)

Φ(θ) ≤ b(θ) (49)
Φ(θ), ϕ(θ) ≥ 0 (50)

where M denotes the node-arc incidence matrix. Given piecewise analytic functions ν(θ), b(θ) and c(θ) on the
neighborhood of [0, T ], there exists a piecewise analytic solution Φ(θ) of the problem (47-50) if its feasible region is
bounded and nonempty, Anderson et al. (1983). The above model can be extended to continuous dynamic network
flow problem (51-55) with travel times on arcs ( for instance (Anderson 1989, Anderson and Philpott 1994, Philpott
1990, Pullan 1997).

min ζ ′ =
∫ T

θ=0

∑
e∈A

ce(θ)Φe(θ)dθ (51)

such that for all points in time θ ∈ [0, T ] and e = (u, v) ∈ A,∫ θ

σ=0

[νv(σ) +
∑
e∈A

(Φe(σ − τe)− Φe−1(σ))]dσ + ϕv(0) = ϕv(θ) (52)

Φe(θ) ≤ be(θ) (53)
ϕv(θ) ≤ av(θ) (54)

Φe(θ), ϕv(θ) ≥ 0 (55)

Philpott (1990) formulated three evacuation problems, analogous versions to the triple optimization results of
discrete dynamic network, and proves their optimality relations. The max-flow min-cut result of (Anderson et al. 1982)
is extended to the case where each arc has a traversal time. Anderson et al. (1982) extended the discrete version of
maximizing the network flow problem with time-varying arc capacities and storage at the nodes to the continuous time
problem and presented a continuous version of Ford-Fulkerson labelling algorithm to solve the latter problem. The
corresponding duality theory and the convergence issues with computational challenges for this problem are discussed.
Anderson and Philpott (1989) developed a continuous-time network simplex algorithm and solved the minimum cost
network flow problem as an infinite dimensional linear program. Pullan (1993) and Philpott and Craddock (1995) look
at the continuous time evacuation problems using discretization approach. We refer to Hamacher and Tjandra (2002),
and Miller-Hooks and Patterson (2004) for the respective algorithms on time dependent (for storage and arc capacities,
and costs) dynamic network models with continuous time and for additional classical references on them. Most of
them deal with primal-dual relationships for continuous flow models.

Koch et al. (2011) consider two independent research directions, the discrete and continuous flow models, into
integrated one modeling the flow on each arc as a Borel measure. The arc capacities are also given by Borel measures
on the real line and flow storage at nodes is allowed. They extend the max-flow min-cut theorem for the Borel flows
and open many directions for the extensions of this model, for example into time/inflow/load dependent attributes.
The results they presented are of theoretical interest as the algorithmic procedures under the general assumptions are
highly complex and even nonterminating. For possible practicable algorithms, various assumptions, like no node storage
capability, have to be imposed.

Tjandra (2003) gives a pseudo-polynomial time algorithm in the time horizon and total supply at source nodes
if the supplies and capacities in the network are time dependent. Philpott and Mess (1992) find a continuous time
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least-cost path in a network with time dependent costs. The costs, travel times, stopping-starting penalties are all time-
dependent for their general model having practical limitations of the algorithm with respect to the termination. They
extend the result to finite-time algorithm, where cost functions are piecewise-linear and starting and stopping times are
constant, Philpott and Mess (1993).

A pseudo-polynomial time algorithm is proposed for solving the integral time dependent quickest flow problem
on time dependent dynamic network, where the node and arc capacities, arc travel times and supply at nodes vary over
time. However, the arc travel time τe(θ) entering an arc e remains constant during the time it travels through this arc
and holdover capacity is unlimited independent of time with unit travel time at nodes. This may allow violation of
the undesirable non FIFO property. It finds the paths for source-sink flows such that the completion time of the last
unit is minimum. Their algorithm also determines the paths that yield the minimum total time taken for completing
the shipment of all source-sink flows. This solution technique is also extended for the time dependent multi source
and general multi terminal quickest transshipment problems by converting the multi terminal networks to two-terminal
networks. The main idea of their algorithm is to use the successive shortest path algorithm for solving minimum
cost static network flow problem by improving flows on time dependent static residual network. If holdover of flows
at intermediate nodes is not allowed during certain intervals of time, then a more general version of the maximum
dynamic flow problem with uniform travel times but time dependent capacities on arcs have been dealt which requires
cycle flows for an optimal solution, Halpern (1979).

Klinz and Woeginger (1995) consider the minimum cost quickest flow problem where the objective is to find
source-sink paths with minimum cost such that the last unit of flow is reached to the destination in least time. The
problem isNP-even (harder than the even-odd partition problem) in case of two-terminal series-parallel networks with
unit capacities. Cai et al. (2001) provide a technique to solve the time varying (arc capacities, travel times and costs are all
time dependent) minimum cost flow problem that sends given amount of source-sink flow in minimum shipment total
cost within a given time horizon. A polynomial time algorithm is available for solving an infinite horizon minimum cost
dynamic flow problem that maximizes throughput, Orlin (1994). However, it does not take care of specified demand
and computing how a flow starts and stops.

Hamacher et al. (2006) generalized the classical shortest path problem to bicriteria shortest path problemwith time
dependent attributes. The latter problem is more interesting in evacuation modeling, where shortest paths represent
evacuation routes while these routes might change over time with respect to the importance to its length or reliability.
Chen and Miller-Hooks (2008) give a mixed integer programming formulation of building evacuation problem in time
dependent network (arc transit times and capacities and node supply are time dependent) with shared information
constraints (the evacuees’s do receive online common instructions) and presented a real-world numerical result. Their
objective is to determine the appropriate routes such that total evacuation time is the least.

4. CONTRAFLOWMODELS

During the evacuation process, evacuation planner discourage the movement of people towards the disastrous areas
from the safer places because of which the corresponding road lanes are unoccupied. However, due to heavy traffic
of emergency vehicles and evacuees on the streets, the lanes outwards from the sources become more congested.
The contraflow configuration is the technique of optimal use of these empty lanes. It increases the outbound road
capacities from the sources by reversing the direction of arcs satisfying the given constraints. Due to which the traffic
will be systematic and smooth by removing the traffic jams caused by not only different large scale natural and man-
made disasters but also busy office hours, special events and street demonstrations. Moreover the flow value will be
increased. The average evacuation time will be decreased and some lanes with excess capacities can be saved for an use
of emergency vehicles and logistic supports needed to move towards the sources. There are various operational research
models, heuristics, optimization and simulation techniques to deal the contraflow configuration. However, an efficient
and universally acceptable solution approach that meets the macroscopic and microscopic behavioral characteristics
is still lacking. A trade-off between computational costs and solution quality should be a compromise (Arulselvan
2009, Kim et al. 2008, Pyakurel 2016, Rebennack et al. 2010). Among the network flow problems, the contraflow
reconfigurations based models are most essential. It has been established that significant flow increase and evacuation
time savings promote the ideas greatly. The lane reversal strategy that supports not only to the evacuation planning but
also for the distribution of emergency logistics are quite relevant to the issues of disaster management.

4.1 Heuristics Approaches

The heuristic approaches and applications of lane reversal techniques can be found in various literature. In many terrible
disasters, authors from diverse fields of research have reported significant time saving possibilities and a need of effective
adaptation of contraflow techniques. Different contraflow mathematical models, for example, a mesoscopic model
based on the dynamic traffic assignment method, tabu search heuristic for very large spatial networks, microscopic
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traffic simulation models, integer programming formulation, etc., are proposed in literature. We refer to Kim et al.
2008 and Dhamala 2015) for the references and detail overviews of contraflow in practice.

The first contraflow algorithms, known as all-links and fastest-links are developed to support a smart traffic
evacuation management system established with the aim to make an efficient and rapid response to disasters by creating
dynamic evacuation plans based on incident location, scope and current traffic conditions, Hamza-Lup et al. (2004).
The all-links algorithm minimizes congestion by using all available streets visiting only once starting from the source.
The faster-links algorithm forces the traffic to fastest paths from the source to exit points constructed by an optimal
multicast tree. However, these algorithms do not care about the overall capacity of road so that these are not effective
if the number of evacuees, road capacity, specific sinks are fixed, or if evacuees are spread over many locations. From
several years, contraflow has been widely applied to evacuate regions of the southeastern USA under threat from
hurricanes. Litman (2006) not only identified the planning problems in hurricane Katrina and Rita but also criticized
the unplanned contraflow ordered and failure to use contraflow lanes. A significant improvement has been achieved in
flow and time immediately without the time or cost required to plan, design, and construct additional lanes, Wolshon
(2008).

Using graph and flow theory, the flip high flow edge heuristic solves a minimum cost flow problem in time ex-
panded network for time horizon T , Kim and Shekhar (2005). It records the flow history and flips the direction of
each edge in favor of the direction of larger flow. A suboptimal contraflow solution is obtained by exploiting the min-
imum cost solution on the modified graph without iteration. Moreover, the simulated annealing heuristic yields a local
minimum with evacuation time as the objective function, and random flipping based perturbations. The computational
difficulties of the evacuation networks are categorized as a function of overload degree, i.e., the ratio of the number of
traveling units to the bottleneck capacity without contraflow, Kim et al. (2008). For overload degree < 1, contraflow
configuration is not necessary but for > 1, an optimal contraflow reconfiguration can be achieved by microscopic
simulation, search based techniques or optimization methods obtaining an optimal solution. For the moderate sized
problem with medium overload degree, non-iterative heuristics based on a greedy approach are applicable for best ap-
proximate solutions in reasonable time. In this approach, the highly congested arcs obtained by using any evacuation
route planner are flipped as contraflow reconfiguration and the network is reevaluated by using the route planner in
the greedy approach. Notice that an evacuation route planner is used to generate flow history and evacuation time of
a given network. However, if the overload degree is large, there exists a bottleneck relief heuristic that starts by finding
a maximum flow with min-cut in the given network, and runs at mostm times, improving the maximum flow in each
iteration by flipping the arcs across the min-cut. With these heuristics, the evacuation time can be improved by 40
percent or more in experiments and case studies. However, the general problem of minimizing the evacuation time is
NP-hard.

Wang et al. (2010) introduced a multi-model evacuation problem in which contraflow model and repair of road
segments are simultaneously solved. The result shows that on the damaged transportation network, the evacuation
time has been reduced with more than 50% by constructing one new road and with 20% by re-planning the resource.
Considering the priority ordering of evacuee’s flow, a relaxed contraflow model including setup time for contraflow
operation has been investigated in Wang et al. (2013). Moreover, by ignoring the background traffic and performing
complete contraflow reconfiguration, Lv et al. (2010) gave the root choice opportunity for evacuees in contraflow
network model. It improves the evacuation efficiency and decrease evacuation time from 30 to 60%.

In real practice, the Monticello, Minnesota region was evacuated by using the lane based contraflow and crossing
elimination strategies simultaneously. The experiment was conducted with fix number of terminals and full lane reversal
of transportation network, Xie and Turnquist (2011). In the same region, a bi-level model was used to solve the
Monticello nuclear plant evacuation problem with contraflow at road segments and crossing elimination at intersection
jointly, Xie et al. (2010). The bi-level includes the lane-based network optimization and simulation models. A case study
was done for a super typhoon on an evacuation network using the integrated contraflow approach, Hua et al. (2014).
A multi-modal integrated contraflow model is solved for uncertain arrivals of evacuees in the region with low mobility
population that has little access to personal vehicles, unable to drive due to age, sickness, or any other reasons. The
integrated contraflow strategy has been based on the fact that the transit-based evacuees and the auto-based evacuees
will be evacuated to different destinations. The transit-based models are initiated with vehicle routine problem whereas
the integrated strategy contains non-contraflow to shorten the strategy setup time, full-lane contraflow to minimize the
evacuation network capacity and bus contraflow to realize the transit cycle operation. Similarly, recently, Zhao et al.
(2016) presented bi-level model integrating lane based reversal design and routing with intersection crossing conflict
elimination for an efficient evacuation by minimizing the total evacuation time to leave the evacuation zone.

4.2 Analytical Solutions

The recent interest in contraflow configurations is to develop its analytical solution techniques. It has not long history.
The contraflow plans were used depending on past evacuation experiences and there was a lack of satisfactory analytical
result. The theoretical developments of contraflow solutions can be found in (Arulselvan 2009, Rebennack et al. 2010,
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Pyakurel 2016, Pyakurel et al. 2017a).
Arulselvan (2009) and Rebennack et al. (2010) introduce the first analytical models and solution algorithms to the

contraflow configuration. They allowed the reversal of arcs at time zero, i.e., if we choose to reverse an arc, it remains
reversed for all time period. The capacities of two-way arcs are added to form new capacity but the transit time is
similar to the transit time without contraflow. The processing cost of contraflow configuration is negated. However,
the general contraflow evacuation problem by arc reversals is NP-hard (Kim et al. 2008, Rebennack et al. 2010).
Rebennack et al. (2010) adopt the maximum dynamic flow models of Ford and Fulkerson (1962) in the contraflow
approach and introduced the maximum dynamic contraflow problem (MDCFP) in discrete time. But the (MDCFP)
with arc reversals at time zero remains NP-hard in the strong sense even with two sources and one sink or vice versa
in multi-terminal network. When we choose arcs, we have to know if an arc has been reserved or not in every time.
This memory and decision of reversing the arc now or at a later time makes the problem NP-complete. The proofs
follow by reductions from the problems 3-SAT and PARTITION.

On two terminal network, Arulselvan (2009) and Rebennack et al. (2010) presented a polynomial time algorithm
to solve the (MDCFP) problem. The given network is converted into transformed network with arc reversals at time
zero and run the temporally repeated flow algorithm. The obtained flow is decomposed into paths and removable
cycles. Arc e′ ∈ A is reversed, if and only if the flow along arc e is greater than be or if there is a nonnegative flow
along arc e ̸∈ A.

Theorem 4.1 (Rebennack et al. 2010) The s-d (MDCFP) is solved in time O(h2(n,m) + h3(n,m)), where h2(n,m) =
O(n · m) and h3(n,m) = O(n2 · m3 · logn) are the time required for the flow decomposition and the maximum static flow
computation, respectively.

By computing the (MDCF) at every point in time from the very beginning, authors in (Dhamala and Pyakurel 2013,
Pyakurel and Dhamala 2014, Pyakurel and Dhamala 2015) introduced the earliest arrival contraflow model and solved
the earliest arrival contraflow problem (EACFP) in discrete time setting. This discrete solution has been transformed
into continuous time and presented a strongly polynomial algorithm in a particular network in Pyakurel and Dhamala
(2016). To the problem in two terminal general network, a pseudo-polynomial algorithm has been presented in Pyakurel
and Dhamala (2017b) (see also Khadka and Bhandari 2016).

Theorem 4.2 (Dhamala and Pyakurel 2013, Pyakurel and Dhamala 2014) The (EACFP) on s-d series parallel network is solved
in O(nm+mlogm) time with arc reversals at time zero.

With natural transformation, same solution can be computed in same complexity to the (EACFP), Pyakurel and
Dhamala (2016, 2017b). Moreover, in s-d general network, the (EACFP) is solved in pseudo-polynomial time with
arc reversals at any time in both discrete and continuous time, Pyakurel and Dhamala (2015, 2017b). A polynomial
approximation algorithm has been presented to the (EACFP) in s-d network that computes an (EACF) from s to d
within a factor of (1 + ϵ), for ϵ > 0 in time T if the direction of the arcs can be reversed for both discrete and
continuous time, Pyakurel and Dhamala (2016). The complexity is O(mϵ−1(m+ n logn) logU) time.

Based on the given priority orderings of terminals, finding a feasible maximum dynamic flow in given time horizon
T with arc reversals capability is the lex-maximum dynamic contraflow problem (LMDCFP). Authors in Pyakurel and
Dhamala (2015, 2017b) present polynomial algorithms to solve the (LMDCFP) on multi terminal network in which
more dangerous areas can be evacuated first than others. The first one gives the discrete solution and the latter one
gives continuous solution to the (LMDCFP).

Theorem 4.3 (Pyakurel andDhamala (2015, 2017b)) The (LMDCFP) is solved inO(δ×MCF (m,n)) time, whereMCF (m,n)
represents the time complexity O(m logn)(m+ n logn)) of the minimum cost flow problem in the residual network.

For given equal supplies and demands at sources and sinks, respectively, the problem of shifting all the supplies
from sources to sinks satisfying the demands, by sending maximum flow at each time point from the beginning with arc
reversals capability, is the earliest arrival transshipment contraflow problem (EATCFP) (Pyakurel and Dhamala 2017a,
Pyakurel et al. 2017b). The (EATCFP) is solved in multi-source or multi-sink networks with polynomial time algorithms
for both discrete and continuous times. The complexity depends upon the input plus output size of the problem. In
multi-sink network, the (EATCFP) is solved with zero transit time on each arc. However, in the multi-terminal network
with arbitrary transit times and zero transit time on each arc, approximation algorithms are designed in (Pyakurel and
Dhamala 2017a, Pyakurel et al. 2017a) that solves the problem in pseudo-polynomial and polynomial time complexity,
respectively.

To transship the given amount of flow from sources to sinks in minimum time, the quickest contraflow problem
(QCFP) is introduced in Arulselvan (2009) and Rebennack et al. (2010). They solved the s-d (QCFP) in strongly
polynomial time. Computing s− d paths, they first obtained an upper bound on the quickest time in time and applied
a binary search repeatedly to compute MDCF along the path until all supplies at the source are sent to the sink. They
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also proved that the multi-terminal (QCFP) is harder than 3-SAT and PARTITION. The both s-d (MDCFP) and s-
d (QCFP) are solved in continuous time using natural transformation and with same complexity as in discrete time,
Pyakurel and Dhamala (2016, 2017b). Moreover, authors in Pyakurel and Dhamala (2017b) introduce the quickest
transshipment contraflow problem and solve in polynomial time. Recently, the first minimum cost flow algorithm to
solve the s-d (QCFP) is presented in Pyakurel et al. (2017b) and verified its efficiency with experimental results. The
algorithm is strongly polynomial time and solvable in both discrete and continuous time. They presented a polynomial
time approximation algorithm to solve s-d (QCFP) with load-dependent transit time. The experiment they performed
approve significant improvement if implemented a contraflow reconfiguration evacuation plan.

Moreover, the (MDCFP) and (EACFP) is generalized on s-d lossy network in (Pyakurel at al 2014, Pyakurel 2016)
with an additional gain factor on each arc. They presented pseudo-polynomial time algorithm to solve both problems
with arc reversals at time zero. Their solution is in discrete time setting.

5. OTHER APPLICATIONS

Research on network design and management for emergency mitigation, preparedness, response and recovery plays
vital roles in today’s very complex disastrous community. Altay and Green (2006) outlined many diversified fields of
applications in disaster management operations.

Given a number of demands at risk nodes, Hanawa et al. (2017) interestingly formulated a variant of car and
pedestrian mixed movement multi terminal quickest evacuation as a mixed evacuation problem and illustrated a case
study of Japanese earthquake. When the number of terminals is bounded by Ko log2 n for some constant Ko, then
they make use of polynomial time algorithm presented by Hoppe and Tardos (2008) to solve this problem polynomially.
They proved that the integer version of mixed evacuation problem is NP-hard by reduction from disjoint paths with
different costs (Li et al. 1992).

Focusing on the logistics aspects of the problem, Anaya-Arenas et al. (2014) presented a systematic and up-to-date
survey of contributions on relief distribution networks in response to the disasters management. They draw attention of
the researchers to develop more complex but realistic models from theoretical as well as practical implications for both
network design and vehicle routine problems to be implemented in disaster preparedness, response and relief distri-
butions. Akter and Wamba (2017) focused on complex disaster network and highlighted the importance of availability
for big data for a better solution. Jin et al. (2015) proposed a mixed integer programming model from the prospective
of logistics supports in emergency with capacity restrictions. They carried out a case study with an objective of maxi-
mizing the survival of patients and minimizing the total cycle time and illustrated evidentes that the former objective is
more effective. Colson et al. (2007) give a list of applications including congestion management, network design and
management of hazardous materials in case of emergency. Kim and Lee (2015) investigate network design, capacity
planning and vehicle routing in reverse logistics that determines the locations, capacities, and the number and routes of
vehicles with an objective of minimizing the fixed opening costs for locations and transportation costs of the vehicles.

For the best allocation decision of the relief supplies, Yang et al. (2016) presented the model of reserve network by
estimating the associate cost, risk and utility. Reserve relief supplies before disaster has many benefits to the emergency
relief system such as offering supplies in the first time, reducing the inadequate risk of relief supplies and rescuing more
victims. Selecting four warehouses, the optimal allocation strategies has been obtained under the principles of equity
and effectiveness which should be obeyed in the network design for humanitarian assistance. Kalinowski et al. (2015)
presented two mixed integer programming formulations for an incremental network design problem and made many
numerical tests to compare them with several heuristics. The objective is to maximize the cumulative flow over the
entire planning horizon, where the network demands to add an arc in each time period of the planning phase. Li et al.
(2011) emphasize on an efficient plan and allocation of emergency response facilities that deliver effectively and timely
relief to people in risk. They revisited different optimization models and techniques including heuristics, simulation
and exact algorithms.

Hamacher et al. (2013 ) investigate the facility location-allocation models and solution techniques that are also very
supportive in supporting facilities maintaining again as much flow as possible without destroying too many source-sink
paths. Four exact algorithms are proposed on the top of best maximum flow algorithms to assign a single facility location
and the running times are compared. They show that the multi-facility location-allocation problem is polynomial time
reducible to 3-SAT, and thus proving that even no polynomial time approximation algorithm solves it unless P = NP
holds. Farahani (2018) investigated capacitated evacuation-location problem where the main objective is to determine
the most safe destinations in order to maximize the number of evacuees. They introduced a mixed integer programming
model to determine a single or multiple destinations and presented exact algorithms and heuristics in order to solve the
proposed problem. The algorithms are compared for various network structures and tested for their performances with
respect to the optimality gaps. Ng et al. (2010) combine both cooperative and noncooperative behavior of evacuees
during an evacuation, namely optimal shelter assignment with free choice of evacuees to reaching their shelters. Xiang
and Zhuan (2016) introduced a queueing network model to optimize the available medical resources with respect to
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the deteriorated victims’ health condition caused by large-scale disasters. Afterwards, they presented both analytical
solutions and numerical results for this model. They also proposed two resource allocation models with an objective
of minimizing the total expected death rate and total waiting time.

Stefanello et al. (2017) introduced the tollbooth problem that assign tolls to streets and roads with the objective
of inducing drivers to take alternative routes. They presented mathematical formulations for the problem that use
piecewise linear functions to approximate congestion cost. They also applied a biased random-key genetic algorithm
on a set of real-world instances and analyzed solutions by computing shortest paths according to two different weight
functions. With experimental results, they claimed that their models and algorithms give very high quality solutions.
As, users naturally take the minimum cost path, the toll setting can be used to better distribute the flow in the network
and consequently reduce traffic congestion. However the tollbooth problem, in general, is NP-hard.

Efficient and effective blood supply chain network in earthquakes is designed and analyzed solving multi-objective
optimization techniques in their mixed-integer linear programming formulation, Khalilpourazari and Khamseh (2017).
They used it to solve a real world problem with a case study. Gutjahr and Nolz (2016) examine different optimization
criteria as well as multi-criteria decision making approaches applied in the network of humanitarian crises. These multi-
criteria approaches seek to cover more than one objective functions which are very challenging but quite important
techniques for emergency network designs and management. Saadatseresht et al. (2009) investigated the evacuation
planning problems from the perspective of conflicting multi objectives where building blocks of greater population
should have higher priority and the overload of safe destinations has to be mentioned. They used the multi-objective
evolutionary algorithms and the geographical information system for solving them and also presented a case study for
evacuating 118 building blocks of total population 22,000 to the 7 safe destinations having capacity of 20,000 persons.

If some paths are blocked by incidence during evacuation process, Lim et al. (2016) investigated a model for
the alternative routes to clear the traffic. They presented a preprocessing algorithm to update the evacuation network
where real time traffic information, for example, incident time, location, severity of congestion, incident end time, are
known in advanced. Then, a multi-commodity network flow optimization model has been used to develop alternative
paths and corresponding flow rates. However, the model is a mixed integer nonlinear programming formulation. This
model has been relaxed to a linear formulation that gives the better computational results experimentally. Akbari and
Salman (2017) introduced a new arc routing problem to clearance the blocked roads after a disaster and reconnect the
post-disaster road network in a synchronized way considering necessary waiting times. They presented a mixed-integer
programming formulation to solve the problem in small size and relaxation based heuristic for the larger size. Both
approaches make use of randomly generated largest instances. Moreover, the optimality gap of the relaxation has been
bounded by the number of vehicles.

Notice that obtaining an optimum solution satisfying multiple necessary requirements for large-scale evacuation
planning and management in advanced society is a quite challenging optimization problem. We recommend the papers
listed in Torre (2017) for recent models and techniques of multiple criteria optimization approaches. Vogiatzis et al.
(2012) applied a clustering of nodes in an evacuation network to divide the problem into smaller and easier subproblems
and demonstrate numerical tests efficiently. They note that lane reversals are demanding techniques for better utilization
of a transportation network in emergency. Vogiatzis et al. (2013) proposed integer programming formulations of
evacuation plan for livestock caused by Fukushima Daiichi nuclear power plant accident because of Great East Japan
earthquake followed by a 23-foot tsunami. They presented two efficient algorithms based on augmented Lagrange
multiplier heuristic approach to find sub-optimal solutions, where the first network flow algorithm seeks to maximize
the transfer of livestock whereas the second vehicle routine algorithm tries to minimize the number of livestock carrying
vehicles. The authors target to minimize the evacuation time as well.

A book on ”dynamics of disasters - key concepts, models, algorithms and insights” edited by Kotsireas et al.
(2015) includes varieties of natural and man-made disasters. The attractive insights are made on the multi-disciplinary
theories, tools, techniques and methodologies for the disasters from mitigation and preparedness to response and re-
covery focusing also on infrastructure protection, resiliency, humanitarian logistic, supply chains, risk mitigation and
uncertain risks. They emphasized on the interest of inter-disciplinary research from many fields such as social, man-
agerial, government, business, medical, engineering and applied sciences. Duhamel et al. (2016) presented a non-linear
simpler resilience model for post-disaster operations that deals with decisions about locating facilities and distributing
supplies in order to improve the survival rate. They solved the problem by a decomposition approach using non-linear
solver. The papers edited in Kruhl (2018) address earthquakes with a special focus on Nepal earthquake in April 2015.
Dhamala et al. (2018) explain the usefulness of the operational research models and solution techniques for emergency
planning caused by natural or man made disasters.

Pyakurel et al. (2016) studied the transit-dependent network approach and illustrated a case study for an evac-
uation plan of a core part of Kathmandu Valley, the capital of Nepal. These models do have particular importance
when evacuees an unable to reach their destinations with private vehicles. Bish (2011) investigated the bus-based evac-
uation problem exploiting the matching properties of vehicle routine problem. In his approach a general mixed integer
programming problem is formulated for general multi-terminal split delivery evacuation planning model along with
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two general heuristics. With restrictions on split delivery constraint, Goerigk et al. (2013) used several schemes for a
branch and bound algorithm for two-terminal problem. To realize the uncertain arrival rate of evacuees, Goerigk et
al. (2014) presented a heuristic solution to robust bus evacuation model with delayed scenario information. Dhamala
and Adhikari (2018) extensively study various evacuation problems from prospective of transit vehicles focusing on the
need based people who are unable to use their own cars. Presenting varieties of models and solution strategies many
research directions are opened with significant number of literature survey.

6. CONCLUDING REMARKS

This article presents a systematic review of the main literature that were originally developed for solving network flow
problems but are now implementable in handling different evacuation planning problems. Among the large class of
problems and their model varieties, we selected the clusters of maximum flow, lexicographically maximum flow, quickest
flow, earliest arrival flow, generalized flow, abstract flow, dynamic traffic assignment and minimum cost flow problems.
The problem of contraflow reconfiguration is specially focused in most of these clusters. The researchers focused on
location and network design problems, and transportation and routing problems applicable to disaster preparedness
and response phases. Within this boundary, it is our trust that we were able to sufficiently gather and present the major
features of network optimization algorithms for evacuation planning problems.

The mathematical models and degrees of their difficulties significantly differ with respect to the dependencies on
network parameters (flow/time dependent attributes yield more accurate results reflecting closer to the real scenario
but paying too high computational costs). The studied single commodity (say cars) models are relatively easier than
the multi commodity (for example cars and buses as two commodities) models. In general, the latter problems and the
problem with multi terminal networks are almost NP-hard. Likewise, the models with additional costs imposed on
nodes/arcs/paths are also almostNP-hard. All such problems requiring polynomial time approximation schemes for
acceptable solutions in reasonable time. To deal the large scale problems where attributes are time/flow dependent,
special time expanded networks (fan/bow network and condensed network) have been introduced in order to achieve
approximate solutions. Certain quickest flow and earliest arrival flow problems are solved approximately with these
techniques, but there is a great potential that other classes of problems can also be modeled for acceptable solutions
within certain range of precision.

We also studied the abstract flowmodels where the same quality solution has to be obtained, provably reducing the
merging and crossing conflicts at intersections. In this approach, the contraflow reconfiguration is applied to revert the
whole path instead of the arcs piecewise in classical network flow models. The contraflow configuration is a technique
which significantly increases the flow value and decreases the evacuation time by increasing outbound capacities towards
the safe destinations to reduce traffic congestion in emergency period or rush hour traffic. Its heuristic solutions have
been extensively applied in traffic management from the past. We give a recent status of the analytical solutions and
also sketch the heuristic results. We also studied the dynamic flow model where flow conservation is not valid due to a
possible flow loss on the way (called lossy network flows). These problems are also NP-hard for which a number of
approximate solution techniques have been proposed.

On the way of our research, we listed some major applications, for example, flow models for transit dependent
population, issues on emergency logistic supports, multi-objective scenarios and facility location-allocation problems.
We surveyed the macroscopic models instead of microscopic one but a coupling of their approaches do have a great
benefit as a solution of one can be fed to the other for reducing the solution gaps. The multi-objective problems
are more life reflecting as it is a reality and the conflicting interests do occur in real-world. The system optimization
approaches (which we studied here) should also be incorporated with user optimum approaches for real implementation
of evacuation plans. The NP-hard transit dependent models, usually the mixed integer programming problems, have
rarely been considered through most of the evacuation regions rely on transit vehicles. In fact, the car and transit
based integrated mixed models would yield real scenarios but naturally yielding a higher computational complexity. We
illustrated the location-allocation flow models and lane reversal strategies that are very relevant in saving the unused
arcs for the placement of facilities with least lost on the flow value and least increase on evacuation times. The results
will equally be important for logistic supports in emergencies. However, these integrated flow-location problems are
harder than a single one itself.

A distribution in different classes of literature flow is illustrated in Table 1. This representative list covers most of
the current and major important classical references in evacuation planning problems. We have sketched the main ideas
of their results and analyzed the complexity and applicability they have presented therein. The insights into presented
models and solution strategies explore different challenges for the operational research community in addressing still
more complex models and possible solution approaches that would address more realistic problems. The research
questions are of both theoretical and practical interests. Incorporating the evacuees’ individual or group behavior in
more accurate models, clearly understanding the traffic dynamics, estimating the unpredictable and fuzzy environment,
and building up cooperative multi-objective or non-cooperative multi-level and integrated models is a big challenge in
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Evacuation model Reference citations
Maximum flow [7] [44] [46] [48] [50] [65] [66] [115] [96] [127]
Lex-max flow [44] [50] [69] [74] [75] [76] [113] [116]
Quickest flow [16] [20] [25] [26] [27] [43] [44] [63] [64] [115] [75] [74] [76] [78] [80]

[93] [97] [98] [106] [42] [112] [123] [125] [127] [147] [150] [155] [157]
Earliest arrival [12] [13] [14] [15] [43] [42] [41] [44] [49] [61] [115] [75] [80] [113] [116] [146] [163]
Generalized flow [45] [53] [55] [119] [120] [121]
Abstract flow [37] [48] [73] [84] [85] [109] [110] [111]
Traffic assignment [24] [22] [23] [28] [79] [81] [87] [114] [144]
Minimum cost [5] [8] [6] [21] [25] [26] [54] [67] [68] [69] [87] [94] [95] [99] [122] [127] [129] [130]
Contraflow [11] [36][70] [77] [91] [92] [107] [108] [134] [135] [136] [137] [138]

[139] [140] [141] [142] [145] [161] [162] [164] [166] [167] [170]
Reviews [2] [3] [4] [10] [31] [34] [33] [68] [100] [117] [125] [131] [169]
Applications [1] [3] [17] [38] [51] [52] [60] [66] [71] [82] [83] [89] [90]

[100] [104] [105] [143] [149] [154] [159] [160] [165] [168]

Table 1: A distribution of literature flow in different classes of evacuation planning problems. The numbers refer to
the item in the list of references.

this field. We aspect that this research opens multi directions for an advancement of the models and investigations of
new solution strategies.
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