
International Journal of Operations Research Vol. 15, No. 3, 89-100 (2018)

ℓ1-norm Based Major Component Detection and Analysis for
Asymmetric Radial Data

Qi An, Shu-Cherng Fang, Shan Jiang*, John E. Lavery

Department of Industrial and Systems Engineering, North Carolina State University, USA

Received June 2018; Revised August 2018; Accepted August 2018

Abstract: ℓ1-norm based major component detection and analysis (ℓ1 MCDA) is a state-of-the-art tool based exclu-
sively on ℓ1-norm to identify the major components of a multivariate data set with irregularly positioned “spokes” and
“clutters”. In this paper, we develop an algorithmic framework of ℓ1 MCDA for treating radial data clouds without
the assumption of symmetry. This two-phase algorithm first locates the central point of the data by a pre-selection
procedure to screen out candidate points with sufficient data points in the vicinity followed by solving an ℓ1-norm dis-
crete minimization problem. It then calculates the major directions and median radii in those directions via a two-level
median fitting process. Extensive computational experiments have been conducted on n-dimensional data sets of var-
ious configurations randomly generated from light-tailed and heavy-tailed distributions with possibly artificial outliers
to support the accuracy and robustness of the proposed method.
Keyword — Principal component analysis, ℓ1-norm, multivariate statistics

1. INTRODUCTION

Radial data sets are multivariate data consisting of clusters of data points with different values but equal or similar ratios
between variables (Massart et al., 2001). In the graphical representation of a radial data set, we often observe clusters
of data points radiating from a center that are positioned with many irregular “spokes”. A “spoke” usually refers to a
group of data points that show a linear structure and extend much further out in a certain direction from a particular
point. The simplest radial data set appears as a “V-shape” where a “V-symmetry” is visually perceivable. The spokes
may come from a heavy-tailed or contaminated distributions, resulting in a radial data set with high levels of noise or
“clutters” (patterned outliers). It is important to note that not always a symmetry can be observed when recognizing a
radial structure in the data, i.e., the spokes may not be symmetrically positioned.

Data of this kind can be originated from the chemical analysis of ceramic samples, ancient proteinaceous pictorial
ligands from mural paintings on cultural heritages, or the dilution of pollution from the emission point along a river
course (Aruga, 2003). Other rather common sources that give data of radial nature include biomedical research, web
search, geospatial activities, and airborne optical imaging (Luo et al., 2013).

It is meaningful to identify the spokes and clutters as part of knowledge mining in a multidimensional data set. In
the context of urban terrain data, the radiating spokes correspond to the roads or fences with an intersection, while the
clutters represent obstructions between the sensing mechanisms (Luo et al., 2013). Detection of roofs, walls, grounds
is required for the full 3D building reconstruction. A data analysis method is in need to extract accurate spokes out of
a data cloud with high noise and many outliers so some budget friendly techniques, like airborne imaging technique in
urban planning, can be applied. Another motivation for finding existing major components of a point cloud is from
recognizing data patterns for further compressing, for example, in cancer research that analyzes a patient’s molecular
profile to diagnose diseases (Rodriguez et al., 1997).

The asymmetric nature may pose a significant challenge for detecting the spokes and clutters in radial data, due
to the major difficulty in identifying the center of the radial structure. Other problems also occur when multiple
components are present in the radial data. In many cases, major components needs to be recovered without knowing
the exact number of spokes. But if the spokes are very close to each other, they tend to interfere with the recovering of
one another. Furthermore, high dimensionality of data can cause a great deal of computational burden for numerical
implementations. Our proposed data analysis method intends to get around these difficulties.

Principal component analysis (PCA) is the most widely used statistical tool for identifying the major direction
and spreads of a data set, particularly for statistically distributed data in mutually orthogonal directions (Jolliffe, 2002).
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Standard PCA is based on the ℓ2-norm and second order statistics, assuming no or extremely few outliers for a light-
tailed distribution. But it is the usual case that a data cloud may follow a heavy-tailed distribution, or contain a significant
number of outliers if not obtained under benign laboratory conditions, which often puts the validity of standard PCA in
jeopardy. Ideally, an effective multivariate PCA procedure is needed that deals with the outliers and heavy tails present
in a data set. A number of approaches to robustifying PCA have been explored in the literature (Candès et al., 2011;
Choulakian, 2006; Croux et al., 2013).

Some robust PCAs that partially involve the ℓ1-norm have been proposed in a growing tendency towards exploit-
ing ℓ1-norm features, as in signal and image processing (Gribonval and Nielsen, 2006), compressive sensing (Chartrand,
2007), shape-preserving geometric modeling (Jin et al., 2010; Nie et al., 2017; Wang et al., 2014). Croux and Ruiz-Gazen
(2005) derived a robust PCA method that adopts the influence function of the projection-pursuit based estimator for
principal components. Brooks et al. (2013) proposed a PCA procedure based on an efficient calculation of the opti-
mal solution of the ℓ1-norm best-fit hyperplane problem. It was implemented on the dataset sampled from Laplace
distribution, a heavy-tailed distribution. The use of ℓ1-norm in PCA methods prevails because ℓ1-norm is a robust
measure that can prevent the PCAs from easily being disturbed by the outliers. But the ℓ1-norm is partially applied in
most of these robust PCAs assuming the sparsity of principal components or errors, which leaves these reformulated
PCAs inapplicable when the principal components and errors are not sparse. Besides, it still requires the orthogonal
assumption of principal components but renders untreated the data sets with multiple irregularly positioned spokes.

Recently, Tian et al. (2013) designed an ℓ1-norm based major component detection and analysis (ℓ1 MCDA) method
specifically for 2D data with two or more irregularly positioned spokes. Radial data set is one situation that can be
addressed by ℓ1MCDA. This reformulation of the PCA approach is based not just in part but exclusively on ℓ1-norm, in
relation to the L1 spline technique for shape preservation of highly irregular data. It does not required orthogonality of
the major components to be imposed. Deng et al. (2014) further extended ℓ1 MCDA to recovering major components
for higher dimensional data of a similar structure. They numerically validate the effectiveness of ℓ1-norm for dealing
with data following a heavy-tailed distribution or containing a significant number of outliers.

Existing ℓ1 MCDA explicitly requires that the data come from a symmetric statistical distribution (or from several
distributions irregularly superimposed). It could not be directly applicable for an asymmetric radial data cloud, partly
due to the difficulty in estimating the central point in the data set. For a symmetric data set, the central point is estimated
by either an ℓ2-norm based multidimensional average in standard PCA methods or an ℓ1-norm based coordinate-wise
median in the ℓ1 MCDA method. But these estimates may not be justifiable for a radial data cloud displaying not
symmetrically positioned spokes.

This paper is to extend the ℓ1 MCDA method for handling asymmetric radial data clouds. We proposed the
ℓ1-norm based central point analysis (ℓ1 CPA) in a preliminary paper (An et al., 2018) for identifying a central point
in an asymmetric radial data set. In this paper, we continue the investigation and introduce an algorithmic framework
to locate an appropriate central point for the data set and recover its major directions and spreads. The first step of
central point estimation accounts for preselecting a set of central point candidates and identifying the exact central
point among the candidates by solving an ℓ1-norm constrained discrete optimization model. The second step involves
a fundamental reformulation of PCA framework, designed to accommodate handling a data set from an asymmetric
heavy-tailed distribution. In contrast to the early ℓ1 MCDA, this scheme avoids translating the data points into angular
coordinates. Otherwise the applicability of ℓ1 MCDA is subject to the appropriateness of higher-dimensional angular
coordinate definition. In the rest of this paper, Section 2 explicitly proposes the extended ℓ1 MCDA method for
asymmetric radial data set. Section 3 provides extensive numerical experiments in support of the effectiveness of the
proposed ℓ1 MCDAmethod for handling various asymmetric radial data clouds possibly with heavy tails and patterned
artificial outliers. Conclusion is given in Section 4.

2. EXTENDED ℓ1 MCDA METHOD FOR ASYMMETRIC RADIAL DATA CLOUDS

In this section, we revisit our preliminary result on estimating a central point for asymmetric radial data and then
present a complete algorithmic framework of ℓ1 MCDA for detecting the major directions and spreads of the spokes.
Throughout the paper, consider a radial data cloud {x̄m}Mm=1 in the n-dimensional real space with x̄m ∈ Rn, m =
1, . . . ,M . The ℓ1 MCDA is divided into two steps:

1. Calculate the central point of data and subtract it out of the data.
2. Calculate the major directions of the shifted point cloud and the spreads of the point cloud along these major
directions.
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2.1 Calculation of the central point

The central point x̂ ∈ Rn is typically defined as minimizing the sum of its distances to all points in the given data cloud,
i.e.,

x̂ = arg min
x∈Rn

M∑
m=1

dp(x, x̄
m), (1)

where dp(·, ·) is an ℓp-norm distance function for some p ≥ 1. In standard PCA, the central point is obtained by
using the ℓ2-norm based distance function d2(·, ·), which leads to the multidimensional average of the data set. Some
literature on Robust PCAs (Crou et al., 2013; Fritz et al., 2012) use the distance function d2(·, ·) for calculating a
central point termed ”L1-median”. These central point estimates might sometimes be flawed, especially for data sets
containing heavy tails or outliers. The reason could be that ℓ2-normmay considerably exaggerate the influence of heavy
tails or outliers, or, that some heavy-tailed distributions even do not have a meaningful average.

In view of this, existing ℓ1 MCDA uses the ℓ1-norm based distance function d1(·, ·) to compute coordinate-wise
median as the central point estimate. One advantage of adopting the ℓ1-norm is that it always exists for any data set,
even for those assuming heavy-tailed distributions. Considering that ℓ1-norm is more resistant to outliers than ℓ2-norm,
its robustness is another advantage. The central point estimate induced by ℓ2-norm would adjust for the errors caused
by a few outliers at the expense of deviating from the normal data points. But still, the multidimensional median may
not be guaranteed to be appropriate for estimating a central point in an asymmetric data set. For example, a data cloud
representing a corner, the central point should be the vertex of the “V”. Yet a multidimensional median might be inside
the cornered formed by the two meeting edges of “V”. It might make sense to calculate multidimensional average or
the coordinate-wise median for a symmetric data set, since the expected central point estimate is exactly where the
symmetry happens. But for an asymmetric data set, like a V-shaped one, whether there exists a specific point around
which the spokes are symmetrically positioned becomes questionable. In this situation, both the multidimensional
average and the coordinate-wise median may result in a point far from the ideal center. It is necessary to propose an
appropriate central point estimation method for principal component analysis of an asymmetric data set.

Instead, we characterize a central point with two desirable characteristics: (i) the total distance from a “central
point” to all the data points is expected to be minimal; (ii) a “central point” should be close to where the spokes intersect
and extend from. The first characteristic has long been recognized for conventional PCA methods. Since the ℓ1-norm
based distance function comes suitable for handling heavy tails and outliers, we keep using it. The second characteristic
is specifically introduced for data with multiple irregularly positioned spokes, for example, a V-shape radial data set. A
“central point” representing the corner is expected to include sufficiently many data points of the cloud in a relatively
small vicinity, or, in other words, the central point should be able to include a good size (high percentage) of data points
of the cloud in a minimal vicinity (small neighborhood).

To accommodate the two distinct characteristics of a desired central point, it takes two procedures to estimate a
central point for an asymmetric radial data cloud. Procedure I is to prescreen possible candidates fitting characteristic
(ii) by locating points that may include a given percentage of data points of the cloud in a smallest neighborhood. A set
of candidates may be obtained by varying the given percentage at different quantiles. Procedure II is to choose among
the set of candidates the one fitting characteristic (i), i.e., the one with the smallest ℓ1-norm based total distance to all
the data points.

Step I: Preselect candidates of central point
The first step is to prescreen a set of central point candidates that should include sufficiently many data points in

a minimal vicinity. In the process of generating such candidates, a range of predetermined quantiles are used to control
the percentage of data points that are expected to be included in a small neighborhood. For simple implementation,
we prescreen the candidate points in a coordinate-wise manner. More specifically, along each dimension we find the
coordinates that require the smallest neighborhood in terms of the ℓ1-norm based distance to include a given percent-
age of data points. Gathering all possible combinations of coordinates leads to a finite set of candidates for the central
point. The corresponding algorithm for identifying candidates for the central point of the data cloud {x̄m}Mm=1 is as
follows:

Algorithm A

Input: Parameters n,M, J ; Data set {x̄m}Mm=1 with x̄m ∈ Rn,m = 1, . . . ,M ; Quantile set {pj%}Jj=1 with
pj ∈ (0, 100), j = 1, . . . , J .

Initialize: Candidate point sets C = ∅. Coordinate index i = 1.
1. Sequence the data points x̄1, . . . , x̄M in an ascending/descending order based on the value of the i-th
coordinate x̄m

i ,m = 1, . . . ,M . Create coordinate set Ci = ∅
2. For each j = 1, . . . , J , let Nj = ⌈pj%M⌉ denote the number of data points to be included in a
neighborhood, where ⌈·⌉ is the ceiling function. Calculate rm=max{x̄m

i − x̄
m−△Nj

i , x̄
m+△Nj

i − x̄m
i }
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for each integer m ∈ (△Nj ,M −△Nj ] , where △Nj = ⌈Nj

2 ⌉. Find all indices m∗ such that m∗ =

arg min
△Nj<m≤M−△Nj

rm, and let Ci → Ci ∪ x̄m∗

i .

3. Update i → i+ 1; If i ≤ n, return to Step 1; otherwise, terminate the algorithm.
Output: The candidate point set C = C1 × . . .× Cn = {x ∈ Rn : xi ∈ Ci, i = 1, . . . , n}.

Note that in item 2, along the i-th dimension, the coordinate x̄m
i requires a neighborhood with the minimal radius

rm to include at least pj

2 % of coordinates {x̄m
i }Mm=1 on its left and at least

pj

2 % on its right. The coordinate x̄m∗

i

characterized by requiring a neighborhood of the least radius is then calculated and added to the set Ci. With all prede-
termined percentages pj%, j = 1, . . . , J , being traversed, the set Ci is chosen as a subset of the i-th coordinate values
of all data points and comprises a class of possible i-th coordinate values for a central point candidate.

Step II: Determine central point
In the second phase, we select among all candidate points the one that minimizes the total ℓ1-norm distance to all

data points of the cloud {x̄m}Mm=1. Specifically, we need to solve an optimization problem that minimizes the measure∑M
m=1 d1(x, x̄

m) under the restriction of x ∈ C , where d1(x, x̄m) =∥ x− x̄m ∥1 is the ℓ1-norm distance between
x and x̄m form = 1, . . . ,M . ForC = C1× . . .×Cn, the problem can be explicitly written as the following ℓ1-norm
constrained discrete optimization program (P):

min
M∑

m=1

rm

s.t. ∥x− x̄m∥1 ≤ rm, m = 1, . . . ,M,

xi ∈ Ci, i = 1, . . . , n,

rm ∈ R+, m = 1, . . . ,M.

Denote Ci = {cij | j = 1, ..., |Ci|} for i = 1, . . . , n. As Ci gets bigger in size, directly solving an exact
solution to (P) comes with an unbearable computational complexity. We then reformulated (P) as a 0-1 mixed integer
linear programming (MILP) program, which can be subsequently treated using commercial MILP solvers (e.g., CPLEX,
Gurobi) for fast computation. State-of-the-art linearization method are considered here.

Problem (P) can be reformulated into (MILP) program as below.

min
M∑

m=1

rm (2)

s.t.
n∑

i=1

tmi ≤ rm, m = 1, . . . ,M, (3)

xi − x̄m
i ≤ tmi , m = 1, . . . ,M, i = 1, . . . , n, (4)

− xi + x̄m
i ≤ tmi , m = 1, . . . ,M, i = 1, . . . , n, (5)

|Ci|∑
j=1

ciju
i
j = xi, i = 1, . . . , n, (6)

|Ci|∑
j=1

ui
j = 1, i = 1, . . . , n, (7)

∑
j∈Gi

l

ui
j = λi

l, i = 1, . . . , n, l = 1, . . . , ⌈log2|Ci|⌉, (8)

xi ∈ R, rm, tmi ∈ R+, i = 1, . . . , n, m = 1, . . . ,M, (9)

ui
j ≥ 0, λi

l ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , |Ci|, l = 1, . . . , ⌈log2|Ci|⌉. (10)

For purpose of illustrating complexity of the program (MILP), assume in each coordinate set Ci there exists one
unique coordinate value that correspond to each percentage pj%, j = 1, . . . , J , i.e., |Ci| = J for i = 1, . . . , n, without
loss of generality. The reformulation model (MILP) requires n continuous variables of xi,M nonnegative continuous
variables of rm, nM nonnegative continuous variables of tmi , nJ [0, 1]-bounded continuous variables of ui

j , n⌈log2 J⌉
binary variables of λi

l ,M + 2nM linear inequality constraints, and 2n+ n⌈log2 J⌉ linear equality constraints.
Solving for an optimal solution x∗ ∈ Rn of program (MILP), we obtain a desired central point chosen from the

candidate setC for the asymmetric radial data cloud {x̄m}Mm=1. We then subtract the central point out from any of the
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data points. This way, the whole data set is repositioned to be centering at the origin of the space. To avoid notation
abuse, we still denote the modified data cloud as {x̄m}Mm=1.

An et al. (2018) performed extensive numerical studies to support the effectiveness of ℓ1-norm based central
point analysis (ℓ1 CPA) by comparing against the multidimensional average and the coordinate-wise median. They
showed that ℓ1 CPA is suitable in providing a correct central point for an asymmetric radial data set demonstrating
great robustness.

Having estimated a central point x̄0, it is then subtracted from each data point in the data sample {x̄m}Mm=1.
This way, the data sample is repositioned to be centering around the origin.

2.2 Calculation of the major directions and median length

The “major directions” are the directions along which the spokes spread. The “median length” measures how far the
spoke spreads along each direction. Assume fθ(r) is the probability density function of the distance between a data
point lying in the direction θ and the origin. The median of fθ(r) is defined to be the median length of the spoke in the
direction θ. Or, the value of median length r∗(θ) is such that

∫ r∗(θ)

0
fθ(r)dr = 0.5. A direction θ̂ is a major direction

if r∗(θ) is a local maximum in the angular space θ.
Our goal is to estimate the major directions and the median length for each spoke in an asymmetric radial data set

which might contain heavy tails or outliers. To deemphasize the impact of outliers, we follow the current framework
that reformulates PCA approach based exclusively on the ℓ1-norm.

It is estimated by a two-level median of sample points over a small angular neighborhood. The algorithm for
calculating the major directions and median radii in those directions is as follows:

Algorithm B

Input: Data set {x̄m}Mm=1 with x̄m ∈ Rn,m = 1, . . . ,M .
1. For each x̄m = (x̄m

1 , . . . , x̄m
n ),m = 1, . . . ,M , calculate its length

r̄m =
√
(x̄m

1 )2 + · · ·+ (x̄m
n )2, (11)

and corresponding direction vector θ̄m = (θ̄m1 , θ̄m2 , . . . , θ̄mn ) with

θ̄mi =
x̄m
i

r̄m
, i = 1, . . . , n. (12)

2. Randomly choose a m̄ ∈ {1, . . . ,M} with the direction θ̄m̄ to start. Create a visited set Q = {m̄}.
3. Apply the k-nearest-neighbors (k-NN) method (Friedman et al., 1977) with an appropriate p0 ∈ (0, 1)
to find a neighbor N m̄ with k = p0 ∗M elements (directions) that are nearest to θ̄m̄ in a given angular
measure (ℓ1-norm or ℓ2-norm).

4. For each direction θ̄m̄i ∈ N m̄, i = 1, . . . , k, apply the k-NNmethod to determine a neighborN m̄i with
k (p0 ∗M ) elements (directions) that are nearest to θ̄m̄i . For each direction θ̄m̄ij ∈ N m̄i , j = 1, . . . , k,
apply the k-NN method to determine a neighbor N m̄ij with k (p0 ∗M ) elements (directions) that are
nearest to θ̄m̄ij . Calculate the median r̃m̄ij of the lengths {r̄m | θ̄m ∈ N m̄ij } and then the median
r̂m̄i of the lengths {r̃m̄ij | θ̄m̄ij ∈ N m̄i}.

5. Determine the maximum of the median lengths r̂m̄i , i = 1, . . . , k. Let i∗ = argmaxi=1,...,k{r̂m̄i}. If
the maximum is achieved at m̄i∗ ∈ Q, go to Step 6. Otherwise, update Q → Q ∪ {m̄i∗}, m̄ = m̄i∗ ,
and return to Step 3.

6. Apply the k-NN method to determine a neighbor N with ⌈k
2 ⌉ elements (directions) that are nearest to

the local maximal direction identified in Step 5.
Output: The median of θ̄m in N is the estimated major direction of the data cloud. The median of the lengths

{r̄m | θ̄m ∈ N} is the estimated median length for that major direction.

Note that a well-known fact indicates there is no explicit formula to determine the optimum value of k (in our
case, p0 ∗M ) for applying the k-NN method. Trail and error is needed to find the appropriate value of p0 in practice.

The above procedure will terminate since, in the worst case, it traverses all directions θ̄m in a finite data set. This
procedure outputs one major direction of a spoke for an input data set. To find all major directions, one can choose
different starting point for multiple implementations of this algorithm. One way is to randomly find a direction that is
orthogonal to the major directions obtained so far and selects the data point nearest to this direction as the new starting
point.

Algorithm B calculates two-level medians in order to develop a scalable procedure for high dimensional data
sets. There are other approaches, like fitting quadratic surfaces in the ℓ1-norm to the data in the neighborhoods [16].
The neighbors required in Algorithm B are calculated by the k-nearest-neighbors (k-NN) method. One can try other
methods for finding neighbors. The weakness of quadratic fitting approach is the fact that it may not be linearly scalable
as the dimension increases, when both the size of the local neighborhood and the computing time increase quadratically.
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3. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments to examine the effectiveness of our proposed ℓ1 MCDA. We first
test ℓ1 MCDA on various types of radial data clouds with or without heavy tails and outliers, and then investigate the
ability of ℓ1 MCDA to recover major spokes from asymmetric radial data sets in high dimensional space.

All computational experiments are conducted using MATLAB R2016a on a PC equipped with the Intel Core
i7-2600 CPU, 8 GB RAM and Windows 7 (64 bit) operating system. Mixed integer programming problems are solved
by Gurobi (7.0.1) using the MIP Solver.

We use different types of asymmetric radial data clouds to examine the effectiveness of ℓ1MCDA. The asymmetric
radial data cloud may contain one spoke or multiple irregularly positioned spokes. The asymmetry feature presents
a significant challenge for the state-of-the art robust PCA methods. The data clouds are sampled from Gaussian
distribution (light-tailed) or Student t distribution with 1 degree of freedom (heavy-tailed). Clustered outliers may be
included in the asymmetric radial data clouds to test the robustness of ℓ1 MCDA. Overall, we randomly generate the
following different types of asymmetric radial data clouds.

– One-spoke radial Gaussian-based distribution with or without artificial outliers;
– One-spoke radial Student t-based distribution with or without artificial outliers;
– Two-spoke (V-shaped) radial Gaussian-based distribution with or without artificial outliers;
– Two-spoke (V-shaped) radial Student t-based distribution with or without artificial outliers;
– Four-spoke radial Gaussian-based distribution with or without artificial outliers;
– Four-spoke radial Student t-based distribution with or without artificial outliers.

To generate these types of data clouds, we start with a symmetric data sample {x̄m}Mm=1 with x̄m ∈ Rn,
m = 1, . . . ,M , from multivariate Gaussian and Student t distributions which can be obtained using the MATLAB
mvnrnd and mvtrnd modules, respectively. The symmetric data sample is designed with a mean vector (0, · · · , 0)T and
a covariance/correlation matrix

θ(n) =


1 b . . . b
b 1 . . . b
...

...
. . .

...
b b . . . 1


n×n

,

where 0 < b < 1 is a given parameter defined as b = K2−1
n−1+K2 . The constant K > 0 is the ratio of the longest

major direction’s length to that of each other major direction in the symmetric data, which is also the ratio of the
maximum eigenvalue of θ(n) to the minimal eigenvalue of θ(n) . In our numerical experiment, we set K = 10. The
generated data set is symmetric around the origin with two spokes in the opposite directions of ( 1√

n
, · · · , 1√

n
)T and

(− 1√
n
, · · · ,− 1√

n
)T , respectively. Next, we generate different types of asymmetric radial data sets in the following

manner.

– One-spoke radial data set is one radial data spoke emanating from the origin along the direction of ( 1√
n
, · · · , 1√

n
)T ,

created by taking (|x̄m
1 |, |x̄m

2 |, . . . , |x̄m
n |) for each x̄m = (x̄m

1 , x̄m
2 , . . . , x̄m

n ) in the symmetric data sample. Fig-
ure 1(a) displays an example of an one-spoke radial data cloud with 8000 3D data points generated from Student t
distribution. Since a Studnet-t-distribution based data cloud contains a percentage of heavy tails, there are many
points outside the plot range.

– V-shaped data set is one obtained through overlying two separate one-spoke radial data clouds. Each of the two
spokes is originally one radial data spoke along the major direction ( 1√

n
, · · · , 1√

n
)T , then rotated to another

randomly generated major direction and multiplied by a factor, 1.0 and 1.5, respectively. Figure 2(a) shows an
example of a 3D V-shaped data cloud with 8000 Student t-distributed data points in each spoke.

– Four-spoke asymmetric radial data set emanates from the origin and spreads out along four irregularly positioned
major directions. It is created by overlying four one-spoke radial data samples rotated to different randomly
generated directions. The four spokes are then multiplied by a factor, 1.0, 1.5, 0.6, 3.0, respectively. Note that
the four spokes are not orthogonal to each other. Figure 3(a) shows an example of a 3D radial data cloud with
four Student-t based spokes each containing 8000 points.

In all of the above asymmetric radial sets, each spoke radiates from the origin so the data center is always the
origin. To create a general asymmetric radial data set, we add an arbitrary x0 to each data point in any given sample.
The position x0 then becomes the theoretical center for that data sample.

We generate random data sets from both Gaussian and Student t distributions. Considering the data set generated
from Student t distribution contains a number of heavy tails while one generated from Gaussian distribution does not,
these two distributions represented a significant contrast of challenge for ℓ1 MCDA .
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Each type of data cloud may contain a percentage of outliers. We generate artificial outliers from a uniform
distribution on a simplex in Rn in a way that each spoke corresponds to one simplex. The n vertices of a simplex are
randomly chosen at the intersection of the ball x2

1 + x2
2 + · · ·+ x2

n = 15002 with a hyperplane α1x1 +α2x2 + · · ·+
αnxn = 1000. The normal vector (α1, α2, . . . , αn)

T ∈ Rn of the simplex is one that has 45◦ angle with the major
direction of the spoke. In Figures 1(b), 2(b), 3(b), we report examples of Student t-based one-spoke, V-shaped, and
four-spoke radial data sets with 10% additional artificial outliers, respectively.
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Fig. 1:One-spoke radial data set and outliers
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Fig. 2:V-shape radial data set and outliers

For each type of data cloud, we implement ℓ1 MCDA on 30 randomly generated data asymmetric radial sets,
without and with 10% additional artificial outliers, respectively.

The theoretical values of the major directions are predetermined and the theoretical value of the median lengths
is calculated from numerical integration. To measure the accuracy of our estimation, we calculate the average for the
absolute difference between the output major directions and the theoretical major directions (i.e., “av. abs_err of angle”
in all Tables) as well as the average for the relative difference between the output median length and the theoretical
median length (i.e., “av. rel_err of length” in all Tables).

In this setting, standard PCA, any of Croux and Ruiz-Gzen’s projection-pursuit and Ke and Kanada’s ℓ1 factoriza-
tion outputs one single major direction estimate not yielding any meaningful information about the real major directions
for an asymmetric radial data set. But ℓ1 MCDA is successful in locating multiple major directions and estimate their
spreads with accuracy comparable to the theoretical values.

Tables 1-2 summarize the computational results for Gaussian-based and Student t-based one-spoke, V-shaped,
and four-spoke radial data sets, resulting from implementation of ℓ1 MCDA with local neighborhood of 2%, 1%, 0.5%
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Fig. 3:Four-spoke radial data set with random spokes and outliers

of total points. Tables 1-2 both indicate that, as the number of spokes increase, the overall accuracy of ℓ1 MCDA
relatively decreases but no so much that ℓ1 MCDA performs effectively in estimating the major directions and spreads.

This decrease in accuracy is due to the fact that if the multiple randomly generalized spokes are not located
separately enough, they might interfere with each other. Comparison of Tables 1-2 indicates that when dealing with
data containing heavy tails, ℓ1 MCDA, despite becoming less accurate, is still able to provide proper estimates.

Table 1: Results of ℓ1 MCDA on Gaussian-based radial data sets

# of k-NN=40(0.5%) k-NN=80(1%) k-NN=160(2%)
spokes av. abs_err av. rel_err av. abs_err av. rel_err av. abs_err av. rel_err

of angle of length of angle of length of angle of length

1 0.0365 0.0681 0.0206 0.0246 0.0152 0.0191
2 0.0581 0.1196 0.0254 0.0648 0.0157 0.0380
4 0.0618 0.1512 0.0272 0.0950 0.0169 0.0605

Table 2: Results of ℓ1 MCDA on Student t-based radial data sets

# of k-NN=40(0.5%) k-NN=80(1%) k-NN=160(2%)
spokes av. abs_err av. rel_err av. abs_err av. rel_err av. abs_err av. rel_err

of angle of length of angle of length of angle of length

1 0.0784 0.1758 0.0438 0.1301 0.0269 0.0738
2 0.1021 0.3658 0.0546 0.1511 0.0370 0.0819
4 0.1652 0.3833 0.0688 0.1684 0.0468 0.1065

We can also observe that ℓ1 MCDA obtains better estimates by using a relatively large neighbor in our case. The
choice of neighbor size is one important implementation detail. In our numerical experiments, ℓ1 MCDA obtains good
accuracy by using a small neighbor size (up to 2% of the size of given data) for the test cases. Estimates of major
directions and spreads obtained by ℓ1 MCDA become more accurate as the neighbor size increases.

Tables 3-4 present the computational results for Gaussian-based and Student t-based one-spoke, V-shaped, and
four-spoke radial data sets with 10% outliers. Though the existence of outliers slightly compromises the overall accuracy,
ℓ1MCDAdelivers estimates of major directions and spreads for data containing outliers with high quality. This supports
the robustness of ℓ1MCDA. In this case, a too small neighbor size may not be desirable for obtaining accurate estimates.
Overall, ℓ1 MCDA provides an effective tool to deal with asymmetric radial data set that standard and robust PCAs
cannot handle.

Next, we test the performance of ℓ1 MCDA for handling asymmetric radial data set in a high dimensional space.
We generate nD radial data sets with four fixed spokes of varying dimension n = 3, ..., 10, by superimposing four one-
spoke radial samples that have been rotated to the directions ( 1√

n
, 1√

n
, ..., 1√

n
)T , (1, 0, 0, ..., 0)T , (0, 1, 0, ..., 0)T ,

and (0, 0, 1, ..., 0)T , respectively. One-spoke samples, either Gaussian-based or Student t-based, are rotated in ℓ2-
norm after multiplying by a factor (1.0, 1.5, 0.6, 3.0, respectively). To account for the robustness testing, we conduct
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experiments on the nD four-spoke radial data sample possibly containing 10% artificial outliers. Figures 4(a) and 4(b)
show an example of the 3D Student t-based four-spoke radial data without and with outliers, respectively.

Table 3: Results of ℓ1 MCDA on Gaussian-based radial data sets (with 10% outliers)

# of k-NN=40(0.5%) k-NN=80(1%) k-NN=160(2%)
spokes av. abs_err av. rel_err av. abs_err av. rel_err av. abs_err av. rel_err

of angle of length of angle of length of angle of length

1 0.0874 0.1114 0.0650 0.0513 0.0491 0.0305
2 0.1199 0.1826 0.0837 0.0713 0.0721 0.0386
4 0.1301 0.3147 0.0939 0.1246 0.0958 0.0854

Table 4: Results of ℓ1 MCDA on Student t-based radial data sets (with 10% outliers)

# of k-NN=40(0.5%) k-NN=80(1%) k-NN=160(2%)
spokes av. abs_err av. rel_err av. abs_err av. rel_err av. abs_err av. rel_err

of angle of length of angle of length of angle of length

1 0.1522 0.1819 0.1288 0.1403 0.0979 0.0966
2 0.1732 0.3950 0.1342 0.1638 0.1070 0.1014
4 0.1869 0.4729 0.1456 0.1879 0.1129 0.1115
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Fig. 4:Four-spoke radial data set with fixed spokes and outliers

For each n, we implement ℓ1 MCDA on 30 randomly generated data sets. Tables 5-6 provides the computational
results for Gaussian-based and Student-t based four-spoke radial data sets with local neighborhood of 2%, 1%, 0.5%
of total points. Tables 7-8 gives the result from implementation of ℓ1 MCDA on data sets with 10% outliers. Tables
5-8 indicate that ℓ1 MCDA is a suitable tool to estimate major spokes and spreads for an asymmetric radial data set in
a high dimensional space. As the dimension of data space increases, the performance of ℓ1 MCDA decreases in terms
of accuracy. Overall, our result confirm that ℓ1 MCDA works to deliver major direction and spread estimates in high
dimensional spaces.

A closer look at Tables 5-6 reveals that the performance of ℓ1 MCDA suffers from the existence of heavy tails
slightly in estimating major direction, but mostly in estimating spread. We observe that ℓ1MCDA obtains more accurate
estimates by using a relatively small neighbor down to 0.5% in most cases for Gaussian-based data, or using a relatively
large neighbor up to 2% for Student t-based data.

Tables 7-8 indicate though existence of outliers might compromise the accuracy, ℓ1 MCDA can estimate major
directions and spreads for data containing a percentage of outliers if choosing an appropriate neighbor size. This attests
to the robustness of ℓ1 MCDA in a high dimensional space. In our case, the performance of ℓ1 MCDA increases in
accuracy as we choose a relatively small neighbor.
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Table 5: Results of ℓ1 MCDA on four-spoke Gaussian-based high-dimensional radial data sets

n k-NN=40(0.5%) k-NN=80(1%) k-NN=160(2%)
av. abs_err av. rel_err av. abs_err av. rel_err av. abs_err av. rel_err
of angle of length of angle of length of angle of length

4 0.0290 0.0462 0.0204 0.0323 0.0147 0.0314
5 0.0293 0.0384 0.0213 0.0438 0.0159 0.0693
6 0.0281 0.0571 0.0234 0.0872 0.0190 0.1236
7 0.0322 0.0938 0.0261 0.1282 0.0215 0.1638
8 0.0349 0.1265 0.0281 0.1730 0.0233 0.2059
9 0.0364 0.1676 0.0306 0.1946 0.0262 0.2344
10 0.0410 0.1993 0.0342 0.2370 0.0259 0.2656

Table 6: Results of ℓ1 MCDA on four-spoke Student t-based high-dimensional radial data sets

n k-NN=40(0.5%) k-NN=80(1%) k-NN=160(2%)
av. abs_err av. rel_err av. abs_err av. rel_err av. abs_err av. rel_err
of angle of length of angle of length of angle of length

4 0.0566 0.1686 0.0374 0.1537 0.0308 0.0571
5 0.0535 0.2512 0.0422 0.1903 0.0310 0.1236
6 0.0597 0.3047 0.0458 0.2297 0.0373 0.1891
7 0.0562 0.3758 0.0477 0.3133 0.0396 0.2196
8 0.0595 0.4134 0.0513 0.3774 0.0399 0.2621
9 0.0637 0.4993 0.0484 0.4334 0.0403 0.3248
10 0.0631 0.5456 0.0524 0.4915 0.0406 0.3655

Table 7: Results of ℓ1 MCDA on four-spoke Gaussian-based high-dimensional radial data sets (with 10% outliers)

n k-NN=40(0.5%) k-NN=80(1%) k-NN=160(2%)
av. abs_err av. rel_err av. abs_err av. rel_err av. abs_err av. rel_err
of angle of length of angle of length of angle of length

4 0.0625 0.0512 0.0564 0.0745 0.0764 0.0925
5 0.0718 0.0561 0.0773 0.0625 0.1054 0.0883
6 0.0883 0.0779 0.0920 0.1043 0.1133 0.1356
7 0.1052 0.1095 0.1093 0.2052 0.1385 0.2289
8 0.1273 0.1423 0.1329 0.2296 0.1543 0.2525
9 0.1354 0.2036 0.1463 0.2583 0.1638 0.2723
10 0.1532 0.2826 0.1693 0.3125 0.1853 0.3329

Table 8: Results of ℓ1 MCDA on four-spoke Student t-based high-dimensional radial data sets (with 10% outliers)

n k-NN=40(0.5%) k-NN=80(1%) k-NN=160(2%)
av. abs_err av. rel_err av. abs_err av. rel_err av. abs_err av. rel_err
of angle of length of angle of length of angle of length

4 0.0902 0.2050 0.0912 0.2623 0.1121 0.3325
5 0.1083 0.2843 0.0958 0.3023 0.1293 0.3976
6 0.1042 0.2969 0.1234 0.3749 0.1343 0.5382
7 0.1395 0.3738 0.1495 0.4583 0.1564 0.6752
8 0.1639 0.4820 0.1894 0.6323 0.2034 0.7372
9 0.1776 0.5723 0.2004 0.7784 0.2432 0.8393
10 0.2488 0.7293 0.2595 0.8592 0.2854 0.9034

4. CONCLUSION

As continuation of principal component analysis (PCA), we have developed a complete algorithmic framework of ℓ1
major component detection analysis (ℓ1 MCDA) for treating multivariate data of radial structure with multiple asym-
metrically positioned spokes. The extended ℓ1 MCDA method consists of locating the central point from which each
spoke diverges and calculating the major directions and median lengths for those directions. Our ℓ1 MCDA method
does not require the assumption of major components being orthogonal or sparse and features the exclusive use of ℓ1
norm. It is also designed for allowing implementation in a high-dimensional space. In contrast to the early ℓ1 MCDA,
this ℓ1 MCDA procedure avoids translating the data points into angular coordinates, otherwise the applicability of ℓ1
MCDA is subject to the appropriateness of higher-dimensional angular coordination definition. Extensive numerical
experiments have been conducted to show its remarkable capability of detecting major components for asymmetric ra-
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dial data and its robustness. They also corroborate that ℓ1 MCDA can provide as a practice tool in recovering complex
spoke structures from large-scale data clouds in a high dimensional space.

The ℓ1 MCDA provides the foundation for identification of data structure and further compression, with the
guideline of exclusive use of ℓ1 operations. It can serve as a robust tool in terrain modeling, geometric modeling, image
analysis, information mining and general pattern recognition. For future research and development, one direction is to
design a major component detection algorithm with better scalability or one that can be implemented on the parallel
and distributed computers in a way that the applicability of ℓ1 MCDA can be extended to data of high dimensions (104
to 106). It would also be interesting to ponder the question of how the ℓ1 MCDA can be extended to deal with missing
data.
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