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Abstract:The multicommodity network fl ow (MCNF) problem is an important and challenging topic in many schedul-
ing and routing applications. As a follow-up survey paper to the previous one that focus on the MCNF applications and
formulations, this paper first introduces the conventional MCNF solution methods such as price-directive, resource-
directive, and basis partitioning methods, then summarizes recent progress in applying approximation algorithms,
interior-point algorithms, quadratic programming algorithms, and heuristics to solve the linear or integral multicom-
modity network flow problems. Finally the computational performance of different solution methods in literature is
compared and directions for future research are suggested.
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1. INTRODUCTION

The multicommodity network flow (MCNF) problem seeks optimal flow assignment of different commodities to be
shipped between specified origins and destinations, where flows of different commodities compete for the same arc
capacities. It has very broad applications in the management of telecommunication, transportation, and logistics net-
works. Previous comprehensive survey papers on the solution methods and computational results for MCNF problems
were written more than three decades ago by Assad (1978; 1980), Ali et al. (1980), and Kennington (1978).

As a follow-up survey paper to the applications and formulations survey paper on multicommodity network
flow (MCNF) problem by Wang (2018), this paper tries to summarize MCNF solution methods that have appeared
in the literature, especially those which appeared after 1980, based on their design frameworks. In particular, we use
two categories to discuss these solution methods: the first category exploits conventional primal or dual frameworks
in Section 2, including the Basis partitioining methods, Resource-directive methods, Price-directive methods, Primal-dual methods,
as well as Methods for integral MCNF problems and Heuristics for linear MCNF solutions; the second catetory in Section 3
covers more methods after 1985, such as Approximation methods, Interior-point methods, Convex programming methods, and
their parallelization. Section 4 summarizes computational performance of different solution methods in literature.
Section 5 gives conclusions.

2. PRIMAL AND DUAL BASED MCNF SOLUTIONMETHODS

Due to the special block-angular structure of MCNF problems, many special solution methods have been suggested in
the literature. Basis partitioining methods partition the basis in a way such that computing the inverse of the basis is faster.
Resource-directive methods seek optimal capacity allocations for commodities. Price-directive methods try to find the optimal
penalty prices (dual variables) for violations of the bundle constraints. Primal-dual methods raise the dual objective while
maintaining complementary slackness conditions. The last two subsections discuss techniques towards integral MCNF
problems and good linear relaxed MCNF solutions.

2.1 Basis Partitioning Methods

The underlying idea of basis partitioining methods is to partition the basis so that the special network structure can
be maintained and exploited as much as possible to make the inversion of the basis more efficient. Hartman and
Lasdon (1972) propose a Generalized Upper Bounding (GUB) technique which is a specialized simplex method whose
only nongraphic operations involve the inversion of a working basis with dimension equal to the number of currently
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saturated arcs. Other basis partitioning methods based on GUB techniques have also been suggested by McCallum
(1977) and Maier (1972).

Grigoriadis and White (1972a; 1972b) observe that, in practice, the number of active bundle constraints in the
optimal solution are considerably smaller than the number of capacitated arcs. Therefore they partition the constraints
into two groups: current and secondary constraints. Using the dual simplex method with Rosen’s partition technique
(Rosen, 1964), they iteratively solve sequences of LPs that use only updated current constraints. These LPs do not
need to be solved to optimality. The algorithm only requires a basis change when dual feasibility is maintained and the
objective value decreases.

Kennington (1977) implements the primal partitioning methods of Saigal (1967) and Hartman and Lasdon (1972).
His implementation of basis partitioning methods are computationally inferior to resource-directive subgradient meth-
ods.

EMNET, developed by McBride (1985) and based on the factorization methods (variants of basis partition meth-
ods) of Graves andMcBride (1976), is designed to quickly solve LP problems with network structure and network prob-
lems with side constraints. Combined with other techniques such as resource-directive heuristics and price-directive
column generation, they conclude that basis partitioning methods are computationally efficient. In particular, McBride
and Mamer (1997) use a capacity allocation heuristic to produce a hot-start basis for EMNET which shortens the com-
putational time. McBride (1998b) uses a resource-directive decomposition heuristic to control the size of the working
inverse and dramatically reduce the solution time for MCNF problems with many side constraints. Mamer and McBride
(2000; 2001) also apply column generation techniques of DW decomposition to solve message routing problems and
find a dramatic reduction in the number of pivots needed. The combination of EMNET and column generation shows
a larger reduction in computation time than direct application of EMNET. A similar specialized simplex algorithm has
also been proposed by Detlefsen and Wallace (2001). Their paper addresses more details of the network interpretation
of basis inversion. Independent of the number of commodities, their working basis has dimension at most equal to
the number of arcs in the network, which seems to be suitable for telecommunication problems that often have a large
number of commodities.

Castro and Nabona (1996) implement an MCNF code named PPRN to solve min-cost MCNF problems which
have a linear or nonlinear objective function and additional linear side constraints. PPRN is based on a primal parti-
tioning method using Murtagh and Saunders’ (1978) strategy of dividing the variables into three sets: basic, nonbasic
and superbasic.

Farvolden et al. (1993) partition the basis of the master problem using the arc-path form in DW decomposition.
Their techniques isolate a very sparse and near-triangular working basis of much smaller dimension, and identify nine
possible types of simplex pivots that can be done by additive and network operations to greatly improve the efficiency.
Such techniques are later used to solve an MCNF problem with jump constraints (i.e., commodities can not be shipped
along more than a fixed number of arcs) (Maurras & Vaxès, 1997) and further refined by Hadjiat et al. (2000) so that
the dimension of the working basis is at most equal to the number of arcs in the network (almost half the size of the
working matrix of Farvolden et al., 1993).

2.2 Resource-Directive Methods

Suppose on each arc (i, j) we have assigned capacity rkij for each commodity k so that
∑
k∈K

rkij ≤ uij is satisfied. Then

the original problem is equivalent to the following resource allocation problem (RAP) that has a simple constraint structure
but complex objective function:

min
∑
k∈K

zk(rk) = z(r) (RAP)

s.t.
∑
k∈K

rkij ≤ uij ∀(i, j) ∈ A

0 ≤ rkij ≤ uij ∀(i, j) ∈ A, ∀k ∈ K

For each commodity k, zk(rk) can be obtained by solving the following single commodity min-cost network flow
subproblem.

min
∑

(i,j)∈A

ckijx
k
ij = zk(rk)

s.t.
∑

(i,j)∈A

xk
ij −

∑
(j,i)∈A

xk
ji = bki ∀i ∈ N

0 ≤ xk
ij ≤ rkij ∀(i, j) ∈ A
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It can be shown that the objective function z(r) is piecewise linear on the feasible set of the capacity allocation
vector r. There are several methods in the literature to solve the RAP such as tangential approximation (Geoffrion, 1970;
Geoffrion & Graves, 1974; Kennington, 1978), feasible directions (Kennington, 1978), and the subgradient method (Geof-
frion, 1970; Gratzer & Steiglitz, 1972; Grinold, 1972; Held, Wolfe, & Crowder, 1974; Kennington & Shalaby, 1977).
Shetty and Muthukrishnan (1990) give a parallel projection algorithm which parallelizes the procedure of projecting
new resource allocations in the resource-directive methods.

2.3 Price-Directive Methods

Price-directive methods are based on the idea that by associating the bundle constraints with ”correct” penalty functions
(dual prices, or Lagrangian multipliers), a hard MCNF problem can be decomposed into k easy SCNF problems.

2.3.1 Lagrangian Relaxation (LR)

Lagrangian relaxation dualizes the bundle constraints using a Lagrangian multiplier π ≥ 0 so that the remaining problem
can be decomposed into k smaller min-cost network flow problems. In particular,

min
∑
k∈K

ckxk +
∑
a∈A

πa(
∑
k∈K

xk
a − ua) = L(π)

s.t.
∑

(i,j)∈A

xk
ij −

∑
(j,i)∈A

xk
ji = bki ∀i ∈ N , ∀k ∈ K

x ≥ 0

The Lagrangian dual problem seeks an optimal π∗ for L∗ = max
π≥0

L(π). This is a nondifferentiable optimization problem

(NDO) having the format max{φ(y) : y ∈ Y } where φ is a concave nondifferentiable function and Y is a convex
nonempty subset of R|A|

+ .
Subgradient methods are common techniques for determining the Lagrangian multipliers. They are easy to im-

plement but have slow convergence rates. They usually do not have a good stopping criterion, and in practice usually
terminate when a predefined number of iterations or nonimproving steps is reached. Papers regarding subgradient
methods have been listed in Section 2.2. Chapter 16 and 17 of (Ahuja, Magnanti, & Orlin, 1993) also present illustrative
examples.

Bundle methods are designed to solve general NDO problems and thus are suitable for solving the Lagrangian dual
problems. In particular, let g(y′) denote a supergradient of φ at y′, that is, φ(y) ≤ φ(y′) + g(y − y′) for all y in Y .
Define the bundle to be a set β that contains all φ(yi) and g(yi) generated in previous iterations. The generic bundle
method starts with an initial y′ and β and searches for a tentative ascent direction d. It tentatively updates y′′ = y′+θd.
If the improvement φ(y′′) − φ(y′) is large enough, the solution y′ will move to y′′. Otherwise, it adds φ(y′′) and
g(y′′) to the bundle β so that next iteration may give a better tentative ascent direction.

In general, bundle methods converge faster and are more robust than subgradient methods. Frangioni’s Ph.D.
dissertation (Frangioni, 1997) is a rich resource for the bundle method and its application to solving MCNF problems.
Gendron et al. (1999) use the bundle method to solve a multicommodity capacitated fixed charge network design
problem. Cappanera and Frangioni (2003) give its parallelization together with discussion on other parallel price-
directive approaches.

Both the subgradient methods and bundle methods are dual based techniques, in which usually extra effort has to
be made to obtain a primal feasible solution. Next we will introduce methods that improve the primal feasible solution
and compute the Lagrangian multipliers by solving a LP in each iteration.

2.3.2 Dantzig-Wolfe Decomposition (DW)

Here we illustrate more details about the DW procedures using the arc-path form. The primal path formulation is as
follows:

min
∑
k∈K

∑
p∈Pk

PCc
pfp = Z∗

P (f, s) (P_PATH)

s.t.
∑
p∈Pk

fp = 1 ∀k ∈ K (1)

∑
k∈K

∑
p∈Pk

(Bkδpa)fp ≤ ua ∀a ∈ A (2)

fp ≥ 0 ∀p ∈ P k , ∀k ∈ K
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whose dual is

max
∑
k∈K

σk +
∑
a∈A

ua(−πa) = Z∗
D(π, σ) (D_PATH)

s.t. σk +
∑
a∈A

Bkδpa(−πa) ≤ PCc
p ∀p ∈ P k , ∀k ∈ K (3)

πa ≥ 0 ∀a ∈ A

σk : free ∀k ∈ K

where σk are the dual variables for the convexity constraint (1) and−πa are the dual variables for the bundle constraints
(2).

The complementary slackness (CS) conditions are:

(−πa)(
∑
k∈K

∑
p∈PK

(Bkδpa)fp − ua) = 0 ∀a ∈ A (CS.1)

σk(
∑

p∈PK

fp − 1) = 0 ∀k ∈ K (CS.2)

fp(PCc+π
p − σk) = 0 ∀p ∈ P k , ∀k ∈ K (CS.3)

where PCc+π
p :=

∑
a∈A

Bkδpa(ca + πa) and ca is the original cost of arc a. The reduced cost of path p is PCc
p −∑

a∈A

Bkδpa(−πa)− σk =
∑
a∈A

Bkδpa(ca + πa)− σk = PCc+π
p − σk .

Suppose a feasible but nonoptimal primal solution (f, s) is known. We construct the RMP which contains the
columns associated with positive f and s, solve the RMP to optimality, and obtain its optimal dual solution (σ∗,−π∗).
This optimal dual solution can be used to identify profitable columns (i.e. columns with reduced cost PCc+π∗

p −
σ∗
k < 0) and add them to construct a new RMP. The procedure for generating new columns is equivalent to solving k

subproblems. Each subproblem corresponds to a shortest path problem from sk to tk for a single commodity k. In
particular, using (cij + π∗

ij) as the new cost for each arc (i, j), if the length of the shortest path pk∗ for commodity

k, PCc+π∗

pk∗ =
∑

(i,j)∈A

Bkδp
k∗

ij (cij + π∗
ij), is shorter than σ∗

k , then we add the column corresponding to path pk∗ to

the RMP. The algorithm iteratively solves the RMP and generates new columns until no more columns have negative
reduced cost (which guarantees optimality). During the procedure, primal feasibility and complementary slackness are
maintained.

The DW algorithm stated above can also be viewed as a procedure to identify the optimal dual variables (σ∗,−π∗)
by solving sequences of smaller LP problems (RMP). Compared to LR, DW spends more time in solving the RMP, but
obtains better dual variables. In general, DW requires fewer iterations than LR to achieve optimality. Another advantage
of DW is that it always produces primal feasible solutions which can be used as upper bounds in minimization, while its
dual objective can be used as a lower bound. LR, on the other hand, usually only guarantees an optimal dual solution
and may require extra effort to obtain an optimal primal solution.

Jones et al. (1993) investigate the impact of formulation on Dantzig-Wolfe decomposition for the MCNF prob-
lem. Three formulations: origin-destination specific (ODS), destination specific (DS), and product specific (PS) are
compared in Table 1 where shortest path, shortest path tree, and min-cost network flow problems are the subproblems
for ODS, DS, and PS respectively.

subproblem∗ ODS ≺ DS ≺ PS
RMP size ODS > DS > PS
RMP sparsity∗∗ ODS ≻ DS ≻ PS
number of master iterations ODS < DS < PS
number of commodities ODS ≫ DS > PS
convergence rate ODS > DS > PS
*: A ≻ B means A is harder than B. **: A ≻ B means A is sparser than B.

Table 1: Comparison of three DW formulations

Although the ODS form has a larger RMP and more subproblems (due to more commodities), it has a sparser
RMP, easier subproblems, and better extreme points produced which contribute to faster convergence than other forms.
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Unlike the conventional dual-based subgradient methods, the volume algorithm of Barahona and Anbil (2000) is an
extension of the subgradient methods. It produces approximate primal solutions in DW procedures. The method is
similar to the subgradient method and the bundle method introduced in Section 2.3.1, and has the following steps:

1. Step 0 Given a feasible dual solution−π to the bundle constraint (2), we solve |K| subproblems. Each subprob-
lem has the following form:

min
∑

(i,j)∈A

(ckij + πij)x
k
ij = Z

k (Vol(k))

s.t.
∑

(i,j)∈A

xk
ij −

∑
(j,i)∈A

xk
ji = bki ∀i ∈ N

xk
ij ≥ 0 ∀(i, j) ∈ A

Suppose (Vol(k)) has optimal solution xk and optimal objective value Zk .

Set t = 1, x = [x1 . . . x|K|]T and Z =
|K|∑
k=1

Z
k −

∑
(i,j)∈A

uijπij .

2. Step 1: Compute vtij = uij −
∑
k∈K

xk
ij , and πt

ij = max{πij + θvtij , 0} for each arc (i, j) where the step length

θ = f UB−Z
∥vt∥2 , f is a parameter between 0 and 2, and UB is the upper bound on the objective for P_PATH

which can be computed by any primal feasible solution.
For each commodity k, we solve (Vol(k)) using the new πt

ij instead of πij in the objective function, and obtain
its optimal solution xkt and optimal objective value Zkt

Set xt = [x1t . . . x|K|t]T and Zt =
|K|∑
k=1

Zkt −
∑

(i,j)∈A

uijπ
t
ij .

Update x = ηxt + (1− η)x where η is a parameter between 0 and 1.
3. Step 2: if Zt > Z then update πij = πt

ij for each arc (i, j) and Z = Zt.
Let t = t+ 1, and go to Step 1.

The algorithm terminates when either ∥vt∥ becomes too small or

∣∣∣∣∣ ∑
(i,j)∈A

uijπij

∣∣∣∣∣ is smaller than some threshold

value.

Suppose Zt ≤ Z for all iterations tc ≤ t ≤ td. In these iterations, the volume algorithm uses the new xk
ij but the

old πij and Z to compute the new subgradients vtij . In such case, x = (1− η)td−tcxtc + (1− η)td−tc−1ηxtc+1 +

. . . + (1− η)ηxtd−tc−1 + ηxtd−tc . That is, x is a convex combination of {xtc , . . . , xtd} which is an approximation
to the optimal arc flow solution.

The basic idea is, given (Z,−π) where −π is a feasible dual variable to the bundle constraint and Z is computed
using −π, the volume algorithm moves in a neighborhood of (Z,−π) to estimate the volumes below the faces that
are active in the neighborhood; thus better primal solutions are estimated at each iteration. On the other hand, using
the conventional subgradient methods, the subgradient v is usually determined by only one active face, and no primal
solution can be computed.

The volume algorithm has been tested with success in solving some hard combinatorial problems such as crew
scheduling problems (Barahona & Anbil, 2002), large scale facility location problems (Barahona & Chudak, 1999, 2000),
and Steiner tree problems (Bahiense, Barahona, & Porto, 2000). In (Bahiense et al., 2000), the problem is formulated as a
non-simultaneousMCNF problem. It is believed that the volume algorithm is advantageous for solving set partitioning-
type problems including the MCNF problems. It will be interesting to learn how this new algorithm performs in solving
general MCNF problems. To the best of our knowledge, no such work has been done yet.

2.3.3 Key Variable Decomposition

Based on a primal partitioning method of Rosen (1964), Barnhart et al. (1995) give a column generation algorithm
which is especially suitable for problems with many commodities (OD pairs). In particular, they select a candidate path
called a key path, key(k), for each commodity k. After performing some column operations to eliminate key(k) for
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each k, they obtain the following CYCLE form:

min
∑
k∈K

∑
p∈Pk

CCc
pfp +

∑
a∈A

Mαa = Z∗
C(f, α) (CYCLE)

s.t.
∑
p∈Pk

fp = 1 ∀k ∈ K (4)

∑
k∈K

∑
p∈Pk

Bk(δpa − δkey(k)a )fp − αa ≤ ua −
∑
k∈K

(Bkδkey(k)a ) ∀a ∈ A (5)

fp ≥ 0 ∀p ∈ P k , ∀k ∈ K

αa ≥ 0 ∀a ∈ A

where αa is an artificial variable for each arc a with large cost M , and CCc
p = PCc

p − PCc
key(k) represents the

cost of several disjoint cycles obtained by the symmetric difference of path p and key(k). This CYCLE formulation
is essentially the same as the P_PATH formulation in Dantzig-Wolfe decomposition. The artificial variables with large
costs here are used to get an easy initial primal feasible solution for the algorithm.

When the number of commodities (OD pairs) is huge, both CYCLE and P_PATH will have many constraints,
which makes the RMP more difficult. To overcome this computational burden, Barnhart et al. exploit Rosen’s key
variable concept which relaxes the nonnegativity constraints for each key path (i.e., it allows fkey(k) to be negative).
The RMP can be solved by iteratively solving these easier problems RELAX(i), each of which contains only the bundle
constraints and the nonnegativity constraints for all variables except the key variables.

min
∑
k∈K

∑
p∈Pk

CCc,i
p f i

p +
∑
a∈A

Mαi
a = Z∗

CR(i)(f, α) (RELAX(i))

s.t.
∑
k∈K

∑
p∈Pk

Bk(δpa − δkey(k,i)a )f i
p − αi

a ≤ ua −
∑
k∈K

(Bkδkey(k,i)a ) ∀a ∈ A (6)

f i
p ≥ 0 ∀p ∈ P k \ key(k, i), ∀k ∈ K ; fkey(k,i) : free ∀k ∈ K

αi
a ≥ 0 ∀a ∈ A

After solving RELAX(i), the algorithmwill check the sign of key variables by calculating f i∗
key(k,i) = 1−

∑
p∈Pk\key(k,i)

f i∗
p .

For those key variables with negative signs, the algorithm will perform a key variable change operation which replaces the
current key variable with a new one. Among all the positive path variables, the one with the largest value is usually
chosen since intuitively that path is more likely to have positive flow in the optimal solution. This algorithm maintains
dual feasibility and complementary slackness while trying to achieve primal feasibility (which will be attained when all
key variables become nonnegative).

Like the subproblems of DW, the subproblems of RELAX(i) are shortest path problems for each commodity k.
Suppose in some iteration we solve the RMP of RELAX(i) and obtain the optimal dual solution associated with the
bundle constraint (6), denoted by−π∗. A shortest path pk∗ is generated if its reduced costPCc+π∗,i

pk∗ −PCc+π∗,i
key(k,i) < 0.

Barnhart et al. (1996; 2000) further use a simple cycle heuristic to generate more good columns to shorten the overall
computational time. In particular, for commodity k, the symmetric difference of shortest path pk∗ and key path
key(k, i) forms several simple cycles. Intuitively, these simple cycles have better potential to contain positive flows
since they contribute to both the shortest path pk∗ and the key path key(k, i). Each simple cycle corresponds to a
simple column in the RELAX(i) formulation. Suppose pk∗ and key(k, i) form ñ simple cycles. Instead of adding only
one column, they add all these ñ simple columns at once. Such heuristics do speed up the LP solution procedures.

2.3.4 Other Price-Directive Methods

The primal column generation techniques correspond to the dual cutting-plane generation schemes which increasingly
refine the polyhedral approximation of the epigraph of the Lagrangian L(π). Goffin et al. (1997) propose a specialized
analytic center cutting plane method (ACCPM) (Atkinson & Vaidya, 1995; J. Goffin, Haurie, & Vial, 1992) to solve the
nonlinear min-cost MCNF problems.

Using a piecewise continuous, smooth, convex and nonseparable linear-quadratic penalty (LQP) function to penal-
ize the overflow of bundle constraints for each arc, Pinar and Zenios (1992) design a parallel decomposition algorithm
which parallelizes the procedures of solving the nonlinear master problem and independent subproblems in the frame-
work of price-directive methods.

Schultz and Meyer (1991) give a price-directive interior-point method using a barrier function (see Section 3.2).
Many approximation algorithms are also based on price-directive techniques and will be discussed in Section 3.1. Section
1.3 of Grigoriadis and Khachiyan (1996b) cites previous price-directive methods that we omit in this section.
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2.4 Primal-Dual Methods (PD)

The primal-dual method is a dual-ascent LP solution method which starts with a feasible dual solution, and then iteratively
constructs a primal feasibility subproblem called the restricted primal problem (RPP) based on the complementary slackness
(CS) conditions. It uses the optimal dual solution of RPP to improve the current dual solution if primal infeasibility still
exists. The algorithm terminates when all primal infeasibility disappears.

Jewell (1958; 1966) proposes a PD algorithm to solve the min-cost MCNF problem. Given feasible dual variables,
he uses the CS conditions to construct a restricted network which can be viewed as |K| layers of single-commodity
networks plus some connecting arcs between layers representing the bundle constraints. The RPP becomes a max
MCNF problem. He uses a technique similar to the resource-directive methods which first identifies augmenting paths
inside each layer until the layer is saturated, and then solves a capacity reallocation problem between layers. His approach
requires enumeration of all paths and cycles, which is not efficient.

Barnhart and Sheffi (1988; 1993) present a network-based primal-dual heuristic (PDN) which solves a large-scale
MCNF problem that is impractical to solve using other exact solution methods. In each primal-dual iteration of PDN,
the RPP is solved by a network-based flow adjustment algorithm instead of using conventional LP methods. When the flow
adjustment algorithm experiences insufficient progress or cycling, the simplex method will be invoked to solve the RP.

Given a feasible dual solution, PDN iteratively identifies an admissible set Sk which contains arcs with zero
reduced cost in the node-arc form for each commodity k, searches for a flow assignment that satisfies the CS conditions
using the flow adjustment algorithm, and improves the current dual solution if the RPP is solved with positive primal
infeasibility. PDN terminates when either the RPP cannot be solved by the flow adjustment algorithm or optimality is
achieved. In the first case, if the simplex method is invoked but fails due to the huge size of RPP, Barnhart (1993) uses
a primal solution heuristic that generates feasible primal solutions from the known dual feasible solution.

Polak (1992) gives a Floyd-Warshall-like algorithm to determine the step length required to improve the dual
solution in the PD procedures of solvingMCNF problems. Recently, Wang (2003) integrates the column generation and
key variable decompositionmethodwith the primal-dual algorithms to solveMCNFproblems. Although he successfully
resolved several primal and dual degeneracy problems, the computational results show that primal-dual algorithms are
not as efficient as the conventional DW methods.

2.5 Methods for Integral MCNF Problems

Most MCNF algorithms introduced in the literature are fractional solution methods. Adding the integrality constraints
makes the MCNF problems much harder.

Much research has been done regarding the characterization of integral MCNF problems. For example, Evans
et al. (1977) have given a necessary and sufficient condition for unimodularity in some classes of MCNF problems.
Evansmakes the transformation from someMCNF problems to their equivalent uncapacitated SCNF problems (Evans,
1976, 1978a, 1978c), and proposes a specialized simplex algorithm (Evans, 1978b) and heuristics (Evans, 1981, 1983)
for certain MCNF problems. Truemper and Soun (Soun & Truemper, 1980; Truemper, 1977; Truemper & Soun,
1979) further investigate the topic and obtain additional results about unimodularity and total unimodularity for general
MCNF problems. Other research about the characteristics of quater-integral, half-integral and integral solutions of
MCNF problems can be found in (Kazanov, 1994, 1997; Lomonosov, 1985; Schrijver, 1991). A comprehensive survey
in the maximal integer multiflow and minimal multicut problems can be found in (Costa, Létocart, & Roupin, 2005).

Aggarwal et al. (1995) propose a resource-directive heuristic which first determines an initial feasible integral
capacity allocation for each commodity on each arc, and then performs parametric analysis by varying the right-hand-
side and using the corresponding dual variables to solve knapsack-type problems which determine better allocation for
the next iteration. Their methods produce good integral feasible solutions but may require many LP computations for
the parametric analysis, and thus may not be suitable for large problems.

The general integral MCNF algorithms are usually based on LP-based branch-and-bound schemes such as branch-
and-cut (Bienstock, Chopra, Günlük, & Tsai, 1998; Brunetta, Conforti, & Fischetti, 2000) or branch-and-price (Alvelos
& Valério de Carvalho, 2000; Barnhart et al., 1996, 2000). In branch-and-cut, cuts (if possible, facet-inducing ones)
are dynamically generated throughout the branch-and-bound search tree to cut off fractional solutions. On the other
hand, branch-and-price (Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998; Vance, Barnhart, Johnson, &
Nemhauser, 1994) generates variables that are used in conjunction with column generation to strengthen the LP re-
laxation and resolve the symmetry effect due to formulations with few variables. Barnhart et al. (1996; 2000) apply
branch-and-price-and-cut which generates both variables and cuts during the branch-and-bound procedures to solve bi-
nary MCNF problems in which integral flow must be shipped along one path for each commodity (OD pair). Alvelos
and Carvalho (2000) propose another branch-and-price algorithm to solve the general integral MCNF problems which
allows integral flow to be shipped along several paths for each commodity (OD pair).
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2.6 Heuristics for Feasible LP Solutions

Occasionally, there are problems that need fast and good feasible primal or dual solutions. Barnhart (1993) proposes
a dual-ascent heuristic to quickly generate a good feasible dual solution based on the CS conditions (see Section 2.3.2)
Suppose σ∗ is the optimal dual variable for (1) and−π∗ is the optimal dual variable for the bundle constraint (2). Then,
(CS.3) implies that the optimal flow should be assigned along shortest paths using ca+π∗

a as the new arc length for arc
a, and (CS.1) implies that π∗

a > 0 when arc a is saturated and π∗
a = 0 when a is under-capacitated. Thus Barnhart’s

heuristic increases πa when a shortest path demand exceeds its capacity ua for arc a, and decreases πa (πa > 0) when
a shortest path demand is less than ua.

The same paper also gives a primal solution generator based on the observation from (CS.1) that in the optimal
solution an arc with a positive dual price should be saturated. So, the heuristic will try to send flow along the shortest
path that contains arcs with positive dual prices first, and then along the arcs with zero dual prices. In general, this
primal solution generator does not guarantee a feasible primal solution, but it works well in all of their tests.

3. OTHER MCNF SOLUTIONMETHODS

In this Section, we summarize those MCNF solution methods with frameworks more popular after 1985, which covers
Approximation methods, interior-point methods, and convex programming methods.

3.1 Approximation Methods

Given a desired accuracy ϵ > 0, an ϵ-optimal solution is a solution within (1 + ϵ) (for minimization problems, or
(1−ϵ) for maximization problems) of the optimal one. A family of algorithms is called a fully polynomial time approximation
scheme (FPTAS) when it computes an ϵ-optimal solution in time polynomial in the size of the problem input and ϵ−1.

Shahrokhi and Matula (1990) present the first combinatorial FPTAS for a special case of the max-concurrent flow
problem that has arbitrary demands and uniform capacities. The idea is to start with a flow satisfying the demands
but not the bundle constraints, and then iteratively reroute flow to approach optimality. They also use an exponential
function of the arc flow as the ”length” of the arc to represent its congestion, so that their algorithm will iteratively
reroute flow from longer paths (more congestion) to shorter paths (less congestion). Using different ways for measuring
the congestion on arcs and a faster randomized method for choosing flow paths, Klein et al. (1994) further improve
the theoretical running time.

Leighton et al. (1995) use the same randomized technique of (Klein et al., 1994) but a different rerouting scheme
to solve a max-concurrent flow problem that has nonuniform integer capacities. Instead of only rerouting a single
path of flow as in (Klein et al., 1994; Shahrokhi & Matula, 1990), they solve a min-cost flow problem which takes
more time but reroutes more flows and makes greater progress at each iteration. Goldberg (1992) and Grigoriadis and
Khachiyan (1994) independently use different randomized techniques to reduce the dependence of the randomized
algorithmic running time of (Leighton et al., 1995) from a factor of ϵ−3 to a factor of ϵ−2. Radzik (1995) achieves the
same complexity using a deterministic approximation algorithm.

Most of the approximation algorithms mentioned above are designed for max MCNF or max-concurrent flow
problems, which can be viewed as packing LPs. In particular, let P̂ k denote the polytope of all feasible flows for
commodity k. Then, the max MCNF problem can be viewed as packing feasible paths from the polytope

∪
k

P̂ k subject

to the bundle constraints. Similarly, the min-cost MCNF problem can be viewed as packing paths subject to bundle
and budget constraints. It can be solved by iterations of a separation problem that determines the optimal budget using
bisection search (Plotkin, Shmoys, & Tardos, 1995).

Recently, Grigoriadis and Khachiyan (1994; 1995a), Plotkin et al. (1995), Garg and Könemann (1998), Könemann
(1998) and Young (1995; 2001) have investigated approximation methods for solving packing and covering problems,
especially on applications in the MCNF fields. These algorithms are based on Lagrangian relaxation and can be viewed
as randomized potential reduction methods (M. Grigoriadis & Khachiyan, 1994, 1995a). For example, given a current
flow f1, (Plotkin et al., 1995) computes an optimal flow f∗

1 (or (M. Grigoriadis & Khachiyan, 1994) computes an
approximately optimal flow) that uses a ”penalty” potential function as the arc length to represent the violation of bundle
constraints, and updates the flow f2 = (1−σ)f1+σf∗

1 using some predefined constant σ so that the total ”potential”
in the next iteration will be reduced. The length for each arc is usually an exponential function (M. Grigoriadis &
Khachiyan, 1994, 1995a; Plotkin et al., 1995; Young, 1995) or a logarithmic function (M. Grigoriadis & Khachiyan,
1996a) measuring the congestion (i.e., violation of bundle constraints). While (M. Grigoriadis & Khachiyan, 1994;
Plotkin et al., 1995) improve the potential by a fixed amount and reroute flows at each iteration, (Young, 1995) gives
an ”oblivious” rounding algorithm which builds the flow from scratch without any flow rerouting operations. The
running time of (Plotkin et al., 1995) and (Young, 1995) depend on the the maximum possible ”overflow” of the
bundle constraints for points in the polytope

∪
k

P̂ k , denoted as the width of the problem.
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Karger and Plotkin (1995) combine the approximate packing techniques of (Plotkin et al., 1995) and the flow
rerouting order of (Radzik, 1995) to give a better deterministic approximation algorithm to solve min-cost MCNF
problems. They develop new techniques for solving the ”packing with budget” problems. Such techniques can be
used to solve problems with multiple cost measures on the arc flows. Its direct implementation is slow, but a fast
practical implementation is proposed by Oldham et al. (Goldberg, Oldham, Plotkin, & Stein, 1998; Oldham, 1999)
using techniques from (M. Grigoriadis & Khachiyan, 1996a; Karger & Plotkin, 1995; Plotkin et al., 1995) to fine-tune
many algorithmic parameters.

Garg and Könemann (1998) and Könemann (1998) propose a simple combinatorial approximation algorithm
similar to Young’s (1995), which has the most improvement at each iteration using shortest path computations. Fleis-
cher (2000) improves the algorithms of (Garg & Könemann, 1998) and gives approximation algorithms that have the
best running time for solving the max MCNF, max-concurrent flow and min-cost MCNF problems. Karakostas (2002)
further modifies the algorithms of (Garg & Könemann, 1998) and (Fleischer, 2000) by virtually eliminating the depen-
dence of the max-concurrent flow on k, and matches the running time of (Fleischer, 2000) for solving the max MCNF
problem. While most of these algorithms deal with pure packing or pure covering problems, Young (2001) adapts
the techniques of (Fleischer, 2000; Garg & Könemann, 1998; Könemann, 1998; Luby & Nisan, 1993) to solve mixed
packing and covering problems in time independent of the width of the problem.

Grigoriadis and Khachiyan (1995a) use a 2-phase exponential-function reduction method to solve general block-
angular optimization problems. Both phases are resource-sharing problems. The first phase is to obtain a feasible
solution interior to the polytope

∪
k

P̂ k . The second phase uses a modified exponential potential function to optimize

on both bundle and flow conservation constraints.
Awerbuch and Leighton (1993; 1994) give deterministic approximation algorithms which use local-control tech-

niques similar to the preflow-push algorithm of Goldberg and Tarjan (1988; 1990). Unlike previous approximation
algorithms that usually relax the bundle constraints and then determine shortest paths or augmenting paths to push
flow towards sinks, their algorithms relax the flow conservation constraints and use an ”edge-balancing” technique
which tries to send a commodity across an arc (u, v) if node u has more congestion than node v. Based on these
edge-balancing methods (Awerbuch & Leighton, 1993, 1994) (denoted as first-order algorithms), Muthukrishnan and Suel
(1998) propose a second-order distributed flow algorithm which decides the amount of flow to be sent along an arc by a com-
bination of the flow sent on the same arc in previous iteration and the flow determined using the first-order algorithms.
Their experiments show a significant improvement in running time compared to the first-order algorithms. Kamath
et al. (Kamath, Palmon, & Plotkin, 1995; Palmon, 2001) generalize the algorithm of (Awerbuch & Leighton, 1994) to
solve min-cost MCNF problems, but their algorithm is inferior to (Karger & Plotkin, 1995).

Schneur and Orlin (1991; 1998) present a penalty-based approximation algorithm that solves the min-cost MCNF
problems as a sequence of a finite number of scaling phases. In each phase, |K| SCNF problems are solved, one
for each commodity. Besides the original linear flow cost ckijxk

ij , they assign a quadratic penalty term ρe2ij for each
arc (i, j) where eij = max{

∑
k∈K

xk
ij − uij , 0} represents the overflow (or excess) on arc (i, j). Thus each SCNF

problem becomes a nonlinear min-cost network flow problem which is solved by a negative cycle canceling algorithm.
In particular, at each scaling phase their algorithm iteratively sends exactly δ units of flow along negative δ-cycles which
are defined as a cycle that allows flow of δ units. In the end of a scaling phase, the flow x is (δ, ρ)-optimal which
means there exists no negative cycle that allows flow of δ units. By using new δ (usually δ

2 ) and ρ (usually Rρ where
1 < R < 2) in the next scaling phase, the algorithm can be shown to terminate in finite number of scaling phases.

Bienstock (1999) solves network design problems and other MCNF test problems (from Goldberg et al., 1998) by
an approximate algorithm based on (M. Grigoriadis & Khachiyan, 1995a; Plotkin et al., 1995) with new lower bounding
techniques. Instead of using specialized codes such as shortest path or min-cost network flow programs, he uses
CPLEX 6.5 to solve the subproblems. In his book (Bienstock, 2002), he reviews many exponential potential function
based approximation algorithms and discusses detailed issues regarding empirical speedups for algorithms based on
this framework.

When applied to solve fractional packing problems or generalized packing problems of min-max form, many
approximation methods in this Section can be viewed as Frank-Wolfe method (Frank & Wolfe, 1956). Klein and Young
(1999) prove a lower bound of iterations which depends on Ω(ϵ−2) for Frank-Wolfe type methods. Recently the upper
bound on the number of iterations of the gradient schemes has been improved from the dependence on ϵ ofO(ϵ−2) to
O(ϵ−1) in (Nemirovski, 2005; Nesterov, 2005a, 2005b). These techniques have been further employed to give improved
PTAS for solving fractional packing problems (see Bienstock & Iyengar, 2004) and LP relaxations of combinatorial
optimization problems (see Chudak & Eleutério, 2005) such as the uncapacitated facility location problem, scheduling
problem, and set covering problem. These techniques are all applicable to the MCNF problem.

The following summarizes the current fastest FPTAS :
1. max MCNF problems: (Fleischer, 2000)
2. max-concurrent flow problems: (Fleischer, 2000) (when graph is sparse, or |K| is large), (Karakostas, 2002),
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(Leighton et al., 1995) and (Radzik, 1995)
3. min-cost concurrent MCNF problems: (Fleischer, 2000) (when |K| > |A|

|N | ), (Karakostas, 2002), (M. Grigoriadis
& Khachiyan, 1996a)

3.2 Interior-Point Methods

Kapoor and Vaidya (1996) speed up Karmarkar’s algorithm (Karmarkar, 1984) for solving MCNF problems. Using spe-
cial computing and inversion techniques for certain matrices, Vaidya’s path-following interior-point algorithm (Vaidya,
1989) achieves one of the current fastest running times for obtaining exact MCNF solutions. Murrary (1992) also gives
a specialized MCNF algorithm based on the algorithm of Monteiro and Adler (1989).

Putting the flow imbalance as a quadratic term (equal to 0 if and only if flow conservation is maintained) in the
objective function, Kamath and Palmon (1995; 2001) present an interior-point based FPTAS that solves a quadratic pro-
gramming (QP) min-cost MCNF problem subject to only the bundle and nonnegativity constraints. With a sufficiently
small ϵ, their algorithm can compute an exact solution using the rounding algorithm of Ye (1994).

While these algorithms introduced above have good theoretical time bounds, they are considered to be practically
unattractive. We now introduce some practical interior-point MCNF algorithms.

Schultz and Meyer (1991) develop a decomposition method based on solving logarithmic barrier functions. Their
algorithm involves three phases: relaxed phase, feasibility phase, and refine phase. After obtaining a solution of the
relaxed problem (i.e., relaxing the bundle constraints), the feasibility phase tries to obtain a feasible interior point which
will be refined to optimality in the refine phase. Both the feasibility and refine phases find an approximate solution
of the barrier problem using a generalization of the Frank-Wolfe method which does a multi-dimensional search rather
than a line search and is more easily parallelized. Instead of using a complex coordinator (Schultz & Meyer, 1991) to
determine step lengths in the search directions, Meyer and Zakeri (1999; 1995) further improve this procedure using
multiple simple coordinators that take more advantage of parallelism.

General interior-point methods for LP usually need to solve a symmetric system of linear equations. In many
cases, the Cholesky factorization still creates a dense submatrix even if the best fill-in minimization heuristics are applied.
To speed up the factorization by taking advantage of the MCNF structure, basis partitioning techniques are used by
Choi and Goldfarb (1990) and Castro (2000b) in their primal-dual interior-point algorithms. To efficiently solve the
dense linear system, Choi and Goldfarb (1990) suggests parallel and vector processing while Castro (2000b) applies a
preconditioned conjugate gradient (PCG) method. Parallel implementation on primal-dual interior-point methods using PCG
techniques can be found in Castro and Frangioni (2001) and Yamakawa et al. (1996).

A specialized dual affine-scaling method (DAS) for solving an undirected min-cost MCNF problem has been im-
plemented by Chardaire and Lisser (2002a; 2002b). Starting with a feasible dual interior point, the algorithm iteratively
searches for an improving direction by solving a symmetric linear system (similar to Castro, 2000b; Choi & Goldfarb,
1990) that approaches the optimal dual solution. Using the same partitioning techniques of (Castro, 2000b; Choi &
Goldfarb, 1990), they solve the linear system without any special techniques. The same authors also implement a
specialized analytic center cutting plane method (ACCPM) (J. Goffin et al., 1992), a cutting plane method previously
introduced in Section 2.3.4 which can be viewed as an interior-point method since it computes the central point of a
polytope in each iteration.

3.3 Convex Programming Methods

Besides methods that solve the linear MCNF problems, here we introduce some nonlinear convex programming tech-
niques in the literature (De Leone, Meyer, & Kontogiorgis, 1994 in Section 3.3.2 and Kallio & Ruszczyński, 1994 in
Section 3.3.3 are for LPs). Most of them are related to augmented Lagrangian methods which find a saddle point of
a smooth min-max function obtained by augmenting the Lagrangian with quadratic terms of both primal and dual
variables.

3.3.1 Proximal Point Methods

Based on their previous work (Ibaraki, Fujishima, & Ibaraki, 1992), Ibaraki and Fukushima (1994) apply a primal-dual
proximal point method to solve convex MCNF problems. The method identifies an approximate saddle point of the
augmented Lagrangian at each iteration and guarantees that these points converge to the unique Kuhn-Tucker point of
the problem. Similar methods are also developed by Chifflet et al. (1994) and Mahey et al. (1998).

3.3.2 Alternating Direction Methods (ADI)

De Leone et al. (1994) propose three variants of alternating direction methods (ADI) (Kontogiorgis, 1995) which may
be viewed as block Gauss-Seidel variants of augmented Lagrangian approaches that take advantage of block-angular
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structure and parallelization. These methods take alternating steps in both the primal and the dual space to achieve
optimality. In particular, ADI is designed to solve the following problem:

min G1(x) + G2(z)
s.t. Cx+ b = Dz

(ADI)

For example, let x be the flow vector, z be the proximal vector that reflects the consumption of the shared capacity, and
p be the associated dual variables. The resource proximization method (RP_ADI) uses the following settings: G1(x) :=∑
k∈K

∑
(i,j)∈A

ckijx
k
ij ; G2(z) := 0 if

∑
k∈K

zkij ≤ uij ∀(i, j) ∈ A, or G2(z) := ∞, otherwise; C := I|A||K|; D :=

I|A||K|; b := 0 and Λ is a diagonal penalty matrix whose kth diagonal entry is Λk ∈ (0,∞). Define the augmented
Lagrangian

Lk
Λ = min

Ñxk=bk

0≤xk
ij≤uij

∑
(i,j)∈A

((ckij + pkij)x
k
ij +

1

2
Λk(x

k
ij − zkij)

2)

where Ñ is the node-arc incidence matrix. Starting with a suitable dual variable p0 ≥ 0 and an initial capacity allocation
z0 satisfying

∑
k∈K

zk0 = u, RP_ADI iteratively computes the minimizer xk∗ of Lk
Λ for each commodity k, updates

multiplier p, adjusts the capacity allocation r, and updates the penalty matrix Λ of Lk
Λ until the termination criterion is

met. Although RP_ADI is guaranteed to achieve the optimal objective value, primal feasibility may not be satisfied.
They also propose two other methods, the activity and resource proximization method (ARP_ADI) and the activity

proximation method (AP_ADI). Their computational results show that AP_ADI and RP_ADI run significantly faster
than ARP_ADI, and all of them are faster than the general-purpose LP solver MINOS 5.4 (Murtagh & Saunders,
1992). A similar method is also developed by Eckstein and Fukushima (1994).

3.3.3 Methods of Games

Kallio and Ruszczyńsky (1994) view the solution procedure to a LP as a nonzero-sum game with two players. In par-
ticular, the primal players minimize the augmented Lagrangian function for the primal problem and the dual players
maximize the augmented Lagrangian function for the dual problem. Each player optimizes his own objective by as-
suming the other’s choice is fixed. They propose a parallel method where processors carry out under-relaxed Jacobi
steps for the players. Based on the same idea of (Kallio & Ruszczyński, 1994),

Approximation algorithms for solving a game as proposed in (Freund & Schapire, 1999) and (M. Grigoriadis &
Khachiyan, 1995b) can also be applied to solve MCNF problems. They are closely related with the approximation
algorithms introduced in Section 3.1.

Ouorou (2000) solves monotropic programming problems (Rockafellar, 1984) which minimize a separable convex objec-
tive function subject to linear constraints. He solves convex min-cost MCNF problems using a block-wise Gauss-Seidel
method to find an equilibrium of the game in a primal-dual algorithmic framework. These techniques are similar to the
alternating direction method discussed previously.

3.3.4 Other Convex and Nonlinear Programming Methods

Nagamochi et al. (1990) use the relaxation method of Bertsekas (1985; 1987), a specialized PD algorithm, to solve
strictly convex MCNF problems.

Lin and Lin (1997) solve quadratic MCNF problems by a projected Jacobi method. They introduce a new dual pro-
jected pseudo-quasi-Newton (DPPQN) method to solve the quadratic subproblems induced in the projected Jacobi method.
The DPPQN method computes a fixed-dimension sparse approximate Hessian matrix, which overcomes the diffi-
cult computation of an indefinite-dimension dense Hessian matrix that arises in the conventional Lagrangian Newton
method.

Ouorou and Mahey (2000) use a minimum mean cycle cancelling based algorithm (Goldberg & Tarjan, 1989) to
solve an MCNF problem with a nonlinear separable convex cost function. More techniques about solving nonlinear
convex MCNF problems are introduced in Chapter 8 and Chapter 9 of (Bertsekas, 1998). For survey on algorithms for
nonlinear convex MCNF problems, see Ouorou et al. (2000).

4. SUMMARY ON PREVIOUS COMPUTATIONAL EXPERIMENTS

Previous surveys (Ali et al., 1980; Assad, 1978, 1980; Kennington, 1978) suggest that the price-directive methods (DW)
outperform the resource-directive methods, which are in turn superior to the basis-partitioning methods. A brief
summary of the computational experiments done before 1990 can also be found in Farvolden et al. (1993).

There are some popular MCNF test problems used by many researches for evaluating efficiency of their algo-
rithms. For example, the Mnetgen family (mnet) created by Ali and Kennington (1977), and the PDS family (PDS)
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from Carolan et al. (1990) which models a patient distribution system where decisions have to be made in evacuat-
ing patients away from a place of military conflict, are commonly tested. The size of the PDS family depends on the
planning horizon since it is a time-space network.

Chardaire and Lisser (2002b) implement four algorithms to solve undirected min-cost MCNF problems up to size
|N | = 119, |A| = 302, |K| = 7021 : (1) a simplex method using the basis-partitioning technique from (Kennington &
Helgason, 1980), (2) a dual affine scaling method (DAS), (3) DWwhose master problem is solved by a basis partitioning
technique, and (4) an analytic center cutting plane method (ACCPM) (J. Goffin et al., 1992). They compare these four
methods with CPLEX 4.0. The results show that DW is the most efficient implementation, DAS is the slowest in
general, the basis partitioning method performs better than the DAS for smaller cases, and CPLEX 4.0 performs well
for smaller cases but worse for larger cases. Similar undirected message routing problems up to |N | = 100, |A| = 699,
|K| = 1244 are solved by McBride and Mamer (2001) who compare (1) EMNET (see Section 2.1), (2) EMNET using
shortest path pricing, and (3) CPLEX 6.5. Their results show that EMNET using shortest path pricing improves the
generic EMNET, which in turn is much faster than CPLEX 6.5. A similar conclusion is also drawn in another paper
by the same authors (Mamer & McBride, 2000) which tests more MCNF problems such as PDS, mnet, dmx and JLF
(which are all available at the website maintained by Frangioni1).

McBride (1998a) summarizes the computational performance of several MCNF algorithms (on different plat-
forms), including (1) decomposition methods (Pinar & Zenios, 1992; Zenios, Pinar, & Dembo, 1995),(Schultz &Meyer,
1991), (2) interior point methods (Carolan et al., 1990),(I. Lustig & Rothberg, 1996),(Marsten, Subramanian, Saltzman,
Lustig, & Shanno, 1990), (3) a primal simplex method with advanced basis (McBride & Mamer, 1997), and (4) a simplex
method using basis-partitioning technique (EMNET) (McBride, 1985), on specific test problem sets such as KEN and
PDS from the NETLIB library. He concludes that the basis-partitioning approach is efficient, especially in postpro-
cessing which is often required in practice. However, the interior-point approaches can take more advantage of multiple
processors operating in parallel.

Castro (2000b) shows that his specialized interior-point method, IPM, is faster than CPLEX 4.0, which in turn
is much faster than PPRN (Castro & Nabona, 1996). Castro (2000a) discusses the empirical running times of some
recent algorithms that have appeared in the last decade, compared with CPLEX 6.5. In basis-partition codes, EMNET
(McBride, 1998b) performs similarly to CPLEX 6.5 but better than PPRN (Castro & Nabona, 1996) for PDS test
problems. In price-directive codes, bundle methods (Frangioni & Gallo, 1999) perform similarly to CPLEX 6.5.

Solving the QP test problems from the mnet and PDS families with size up to 500,000 variables and 180,000
constraints, Castro (2001) concludes that IPM (Castro, 2000b, 2001) performs up to 10 times faster than the CPLEX
6.5 barrier solver. Both IPM and the CPLEX 6.5 barrier solver are much faster than PPRN (Castro & Nabona, 1996),
which in turn is much faster than ACCPM (J.-L. Goffin et al., 1997).

Despite their excellent theoretical running times, only few approximation algorithms have been implemented for
practical use. (M. Grigoriadis & Khachiyan, 1995a), (Goldberg et al., 1998; Oldham, 1999), and (Bienstock, 1999) have
reported their computational experiments. MCMCF, the approximation code in (Goldberg et al., 1998; Oldham, 1999),
is shown to be a fewmagnitudes faster than CPLEX 4.0.9 (dual simplexmethod) and PPRN (Castro&Nabona, 1996) on
problems generated by RMFGEN, MULTIGRID, and TRIPARTITE generators (see Goldberg et al., 1998; Oldham,
1999). These three problem generators are also used in (Bienstock, 1999). The book of Bienstock (2002) includes
computational experiments which show the superiority of using the exponential penalty methodology to approximately
solve the problems with block-angular structure such as MCNF problems. He also observes that the CPLEX’s barrier
code is far superior to the dual simplex method in his computational testing. Albrecht (2000; 2001) has modified and
implemented the approximation algorithms of (Garg & Könemann, 1998) and (Fleischer, 2000) to solve the linear
programming relaxation of the VLSI global routing problem. His approach is applicable in practice even for large
chips, and his computational results show for the first time that these approximation algorithms give good results in
practice.

Schneur and Orlin (1998) compare their scaling algorithm (SAM.M) with other codes DW, PDN, and PPLP (DW
and PDN are from (Barnhart, 1988), PPLP is from (Farvolden et al., 1993). Their experiments show that PPLP and
SAM.M are faster than DW and PDN on problems up to |N | = 85, |A| = 204, |K| = 18.

Farvolden et al. (1993) compare their basis-partitioining method, PPLP, with MINOS and OB1 (R. Lustig
I.J.and Marsten & Shanno, 1991) on large-scale LTL networks and show that PPLP outperforms the others by a large
factor.

In (Barnhart, 1988; Barnhart & Sheffi, 1993), Barnhart compares her algorithm PDN to conventional DW de-
composition and two primal-dual (PD) algorithms. It is shown that PDN is more advantageous for large-scale MCNF
problems. In particular, her heuristics can produce good solutions for some freight assignment problems which the
other LP-based methods (DW, PD) can not solve. Barnhart (1993) also develops heuristics which show promising
performance in obtaining a fast and good solution compared to OB1 and OSL (Druckerman, Silverman, & Viaropulos,
1991).

1http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html
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Barnhart et al. (1995) experiment with their PATH and CYCLE-RELAX algorithms (they use the formulation
(P_PATH) and (RELAX(i)) as introduced in Section 2.3.3) on message routing problems which contain many OD
commodities. The CYCLE-RELAX algorithm ismuch faster thanOB1 andOSL on solving problems up to |N | = 324,
|A| = 1019, |K| = 150. When compared with their PATH algorithm, which is the conventional DW decomposition
using column generation, the CYCLE-RELAX algorithm also displays faster running times on problems up to |N | =
500, |A| = 1300, |K| = 5850. In their later papers (Barnhart et al., 1996, 2000), they solve binary MCNF problems
up to |N | = 50, |A| = 130, |K| = 585. Their simple cycle heuristic that generates all the simple cycles from the
symmetric difference between the shortest path and key path has shown to be very effective. In particular, the time to
solve the LPs and the number of iterations of generating columns have been reduced by an average of 40% and 45%
respectively, but the total number of columns generated is not increased. This means the simple cycle heuristic helps
to generate good columns in fewer iterations, which shortens the overall computational time. However, according
to (Wang, 2003), when integrating the cycle heuristic with the primal-dual algorithm to solve the MCNF problems,
the running time does improve but is still slower than the one using primal simplex method with DW decomposition
technique.

The recent computational results show the trend of using basis partitioning or price-directed methods to solve
the MCNF problems.

5. CONCLUSIONS

To help the audience to graspmore recent developments inMCNF solutionmethods, we survey over 200 references and
summarize most of the MCNF solution methods in the literature. Besides the primal-dual methods, basis-partitioning
methods, resource-directive methods, and price-directive methods that appeared in previous survey literature, we intro-
duce interior-point methods, convex-programming methods, and recent progress in polynomial-time approximation
methods for solving the linear MCNF problem. Techniques for solving the integral MCNF problem and heuristics to
get a fast feasible MCNF solution are also covered in this paper. Finally we summarize the computational performance
for several MCNF algorithms.

Recent research also suggests that some basis-partitioining (see McBride & Mamer, 2001) and price-directive (see
Barnhart et al., 1995; Frangioni & Gallo, 1999) methods are efficient for solving linear MCNF problems, whereas
interior-point methods (see Castro, 2000b, 2001) has success in solving quadratic MCNF problems. The progress in
both the theoretical and computational sides of approximation algorithms during the last two decades has been exciting.
We suggest the book of Bienstock (2002) for more details.
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