
International Journal of Operations Research Vol. 16, No. 2, 37-44 (2019)

An Improved Differential Evolution Algorithm for Permutation Flow Shop
Scheduling Problem

Rudi Nurdiansyah1*, Ong Andre Wahju Rijanto2, Budi Santosa3, and Stefanus Eko Wiratno3

1Industrial Engineering, Universitas Negeri Malang,
Jalan Semarang 5, Malang, Indonesia 65145

2Department of Industrial Engineering, Universitas Wijaya Putra,
Jalan Raya Benowo 1-3, Surabaya, Indonesia 60195

3Department of Industrial Engineering, Institut Teknologi Sepuluh Nopember,
Jalan Raya ITS, Keputih, Surabaya, Indonesia 60111

Abstract: The permutation flow shop scheduling problem (PFSP) widely arise in many industrial manufacturing sys-
tems. The optimal schedule for this problem is very important for a competitive position. Many methods are developed
to generate more effective and efficient scheduling. An improved differential evolution (DE) algorithm is proposed
to solve PFSP with the objective of minimizing makespan and total flowtime. Several developments are proposed to
improve the DE’s performance. We control the value of DE’s parameter using adaptive parameters to increase the
variety of the population. The crossover operator is modified to decide whether the individuals are mutated or not.
Then, we employ local search to increase the quality solution of DE. The proposed algorithm is called iDEAMCO and
tested using well-known problems in literature. The average relative errors of iDEAMCO in terms of makespan, total
flowtime, and multi objectives are 0.618, 0.128, and 0.472, respectively, which outperform HAMC, GA, and MOACSA.
Keyword — Permutation flow shop, Multi objective, Meta-heuristics

1. INTRODUCTION

The improvements of the scheduling may take significant benefits in the production planning and manufacturing sys-
tems for a competitive position such as reducing the processing time and increasing the production efficiency and
profits (Li & Yin, 2013; Lin, Gao, Li, & Zhang, 2015). One of the typical scheduling problems is the permutation
flow shop scheduling problem (PFSP) that exists in modern industries such as food and glass industries. PFSP is a
combinatorial optimization problem and has been extensively investigated by many researchers. In PFSP, a group of
m machines processes a set of n jobs. Each of the n jobs is processed on m machines in the same order. One machine
processes at most one job at a time and each job is processed on at most one machine at a time. The processing of
each job is without pre-emption (Hejazi & Saghafian, 2005). The common objective of PFSP is to minimize the total
completion time i.e. makespan.

Most studies on PFSP focus on the minimizing of makespan. In fact, there is another objective such as minimizing
total flowtime which is also an essential objective to reduce the production cost (Yagmahan & Yenisey, 2010). While the
minimizing of makespan leads to total production run utilization, the minimizing of total flowtime makes the stability
of resources consumption, rapid turn-around of jobs and minimizing the work-in-process inventory (Yagmahan &
Yenisey, 2010). Therefore, this research considers two objectives simultaneously i.e. the minimizing of makespan and
total flowtime in order to reduce the production cost.

Qiu and Wang (2010) classify the methods to solve PFSP into three categories i.e. the precisions methods, con-
structive methods, and meta-heuristic algorithms. The precision methods such as enumeration method, cutting plane,
and branch and bound require a high computation complexity. They are only suitable for a small scale of PFSPs.
The constructive methods including Palmer Method (Palmer, 1965), Campbell-Dudek-Smith (CDS) method (Camp-
bell, Dudek, & Smith, 1970), Johnson method (Garey, Johnson, & Sethi, 1976), Nawaz-Enscore-Ham (NEH) method
(Nawaz, Jr, & Ham, 1983), Gupta method (Gupta, Shanthikumar, & Szwarc, 1987), Rajendran (RA) method (Gan-
gadharan & Rajendran, 1993) can quickly obtain the solutions but their solutions are only local optimal, not global

*Corresponding author’s e-mail: rudi.nurdiansyah.ft@um.ac.id

http://doi.org/10.6886/IJOR.201906_16(2).0002



38 Nurdiansyah, Rijanto, Santosa, and Wiratno: An Improved Differential Evolution Algorithm for Permutation Flow Shop Scheduling Problem

IJOR Vol. 16, No. 2, 37-44 (2019)

optimal (Lin et al., 2015). The meta-heuristic algorithms are proposed by researchers in recent years to solve PFSP
since they have better solutions than other categories. For example genetic algorithm (GA) (Reeves, 1995; Zhang, Li, &
Wang, 2009); simulated annealing (SA) algorithms (Osman & Potts, 1989; Seyed-Alagheband, Davoudpour, Doulabi,
& Khatibi, 2009); ant colony optimization (ACO) algorithm (Yagmahan & Yenisey, 2010; Ying & Liao, 2004); artificial
bee colony (ABC) algorithm (Tasgetiren, Pan, Suganthan, & Chen, 2011); tabu search (TS) algorithm (Grabowski &
Wodecki, 2004); particle swarm optimization (PSO) algorithms (Tasgetiren, Liang, Sevkli, & Gencyilmaz, 2007); and
artificial immune systems (Gao & Liu, 2007).

One of meta-heuristic algorithms that become an effective global optimization method is the Differential Evo-
lution (DE) algorithm. Besides having good performance for solving a variety of optimization problems, the special
qualities of DE are the simplicity of the concept, easy implementation, and fast converging (Das, Mullick, & Sugan-
than, 2016; Storn & Price, 1997). Pan, Tasgetiren, and Liang (2008); Tasgetiren, Liang, Sevkli, and Gencyilmaz (2004);
Qian et al. (2008); and Mingyong and Erbao (2010) have proven that DE has the capability to solve a combinatorial
optimization problem and obtain a better performance than other algorithms.

DE has four main steps i.e. initialization, mutation, crossover, and selection. DE iteratively evaluates the function
evaluations of the problem using mutation, crossover, and selection to improve the obtained solution during the search.
In the initialization, the target population is generated. Next, the target population is mutated by a mutant factor to
form the mutant population. In forming the mutant population, there is a scaling factor (F) that controls the growth
rate of the mutant population. Furthermore, the crossover operator combines the mutant population with the target
population to generate the experimental population. The crossover operator in combining the mutant population with
the target population depends on a crossover rate (Cr). The selection operator compares the fitness value function
between the experimental population and the target population. In the end, the best individuals become a member of
the next generation. These procedures are repeated until the stopping criterion is reached.

It is noticed that the performance of DE depends on the settings of its parameters i.e. the scaling factor F and
crossover rate Cr (J. Liu, 2002; Mingyong & Erbao, 2010; Qian et al., 2008; Tvrdík, 2007). Zaharie (2002); Tvrdík
(2007); Thangaraj, Pant, and Abraham (2009); and Mingyong and Erbao (2010) control both parameters using a certain
formula so that in every generation, the value ofF andCr is iteratively changed to increase the variety of the population.
This procedure is called adaptive parameters. Furthermore, to enhance the quality solution of DE, Noman and Iba
(2008); Sauer and Coelho (2008); Pan et al. (2008); and Zamuda, Brest, Boskovic, and Zumer (2009) combine DE with
local search procedure. Noman and Iba (2008) have proven that DE combined with local search procedure has a better
solution than original DE.

This study develops the DE algorithm using adaptive parameters to increase the variety of the population and
combine DE with local search to improve the quality solution of the found solution in every iteration. Moreover, the
crossover operator is modified to simplify the procedure of DE. The original DE combines the mutant population and
target population to generate the experimental population. In this study, the crossover operator selects the individuals
in the target population to be mutated. Therefore, the crossover operator is performed before the mutation step.

The contribution of this research is that a new variant of DE, named iDEAMCO, improved DE with adaptive
parameter and modified crossover operator, is proposed to solve the multi objectives PFSP. We test the proposed al-
gorithm using well-known problems in literature and compare its performance with the HAMC algorithm proposed
by Ravindran, Selvakumar, Sivaraman, and Haq (2005), GA and MOACSA (multi objectives ant colony system algo-
rithm) proposed by Yagmahan and Yenisey (2010). The experimental results demonstrate that iDEAMCO has a better
performance than HAMC, GA, and MOACSA with respect to makespan, total flowtime, and multi objectives.

The rest of the paper is organized as follows. Section 2 describes the mathematical model. Section 3 introduces
the proposed algorithm, called iDEAMCO. Section 4 illustrates the computational experiments. Section 5 concludes
and suggests future research.

2. PROBLEM FORMULATION

The multi objectives PFSP consists of the scheduling of n jobs with given processing time on m machines. The as-
sumptions of PFSP are m machines process n jobs in the same sequence, each machine processes only one job at
any time, one job can be processed only on one machine at any time, and no pre-emption during processing each job
(Y. F. Liu & Liu, 2013). We use the following notations:
n the number of jobs
m the number of machines
S an arbitrary sequence of n jobs
πj the job processing sequence of job j

1813­713X Copyright © 2019 ORSTW



39

P (j, k) the processing time of job j on machine k
C(πj , k) the completion time of job j on machine k
w1 weight associated with makespan (0 ≤ w1 ≤ 1)
w2 weight associated with flowtime (0 ≤ w2 ≤ 1)
M(S) the makespan criterion of S
F (S) the total flowtime criterion of S
TMF (S) multi objective function

The mathematical model of this problem is as follows (Y. F. Liu & Liu, 2013):
Decision variants: π = {π1, π2, · · · , πn}
Subject to:

C(π1, 1) = P (1, 1)

C(πj , 1) = C(πj−1, 1) + P (j, 1), j = 2, 3, · · · , n
C(π1, k) = C(π1, k − 1) + P (1, k), k = 2, 3, · · · ,m
C(πj , k) = max(C(πj−1, k), C(πj , k − 1)) + P (j, k), j = 2, 3, · · · , n; k = 2, 3, · · · ,m (1)

Our two objectives are as follows:
(1) Minimizing makespan: M(S) = minCmax = C(πj ,m).

(2) Minimizing total flowtime: F (S) = minTFT =
n∑
j

C(πj ,m).

The weighted combination of makespan and total flowtime of S:

TFT (S) = w1 ·M(S) + w2 · F (S) (2)

3. PROPOSED ALGORITHM

In this section, the proposed algorithm, called iDEAMCO, is introduced and explained. DE is firstly used by Storn and
Price (1997) to solve the Chebychev polynomial fitting problem and proven to be effective. Different from the original
DE, several improvements are used in this study to improve the performance of DE. First, we adapt the scaling factor
F and crossover rate Cr by calculating both parameters with a certain formula in every iteration so that the value of
both parameters is iteratively changed to improve the variance of the population. Second, to simplify the procedure
of DE, we modify the crossover operator to be the operation to choose which individuals in the target population to
be mutated so that the crossover operator is performed before mutation. Third, we combine DE with local search
procedure to avoid our algorithm being trapped in the local optimal. The steps of iDEAMCO to solve PFSP are as
follows:

3.1 Initialization

Before performing the initialization, it is necessary to determine the upper bound (ub) and lower bound (lb). The
number of population is denoted by NP . For the initial generation g = 0, a population of NP random individuals is
initialized by the following equation:

Xj,i,g0 = lbj,i + rand(0, 1)(ubj,i − lbj,i), j = 1, 2, · · · , n; i = 1, 2, · · · ,m (3)

where i is the index of an individual Xi, rand(0, 1) is a random number between 0 and 1. This step generates
continuous numbers.

3.2 Crossover

The original DE uses the crossover operator to combine the target population and mutant population to create the
experimental population. In this study, the crossover operator is used to choose which individuals in the target pop-
ulation to be mutated. In this step, random numbers are generated. If the random number is equal or less than the
crossover rate Cr , then this individual is chosen to be mutated in the mutation step. Otherwise, this population is not
chosen to be mutated. The formula used to calculate the crossover rate in every iteration is as follows (Mingyong &
Erbao, 2010):

Cr = Cr min+G
Cr max−Cr min
MAXGEN

(4)

Cr min and Cr max are the minimum and the maximum value of crossover rate Cr , respectively. G is the current
iteration, while MAXGEN is the maximum number of iterations. As stated by Mingyong and Erbao (2010), this
formula is used to improve the variance of the population and avoid DE being trapped in the local optimal.

1813­713X Copyright © 2019 ORSTW



40 Nurdiansyah, Rijanto, Santosa, and Wiratno: An Improved Differential Evolution Algorithm for Permutation Flow Shop Scheduling Problem

IJOR Vol. 16, No. 2, 37-44 (2019)

3.3 Mutation

This step mutates the populations chosen by the crossover operator. The mutation is done by adding the difference of
two individuals (taken randomly) to a third individual by:

Vi,g = Xr1,g + F (Xr2,g −Xr3,g) (5)

where r1, r2, and r3 are chosen from the current population. The scaling factor F ∈ (0, 1) is to control the rate of
population growth. In this step, the scaling factor F iteratively changes using the following equation (Tvrdík, 2007):

F =


max

(
F min, 1−

∣∣∣ f max
f min

∣∣∣) , if
∣∣∣ f max
f min

∣∣∣ < 1

max
(
F min, 1−

∣∣∣ f min
f max

∣∣∣) , otherwise
(6)

where f min and f max are the minimum and maximum fitness value of the population, respectively. F min is the input
parameter to ensure F ∈ (F min, 1). This formula illustrates a diverse and intensive search to achieve global optimal
solution (Tvrdík, 2007).

3.4 Insert-Based Local Search

In this study, we use insert-based local search to improve the quality solution of iDEAMCO. Tasgetiren et al. (2004)
state that insert-based local search has a more efficient and thorough search than other neighborhoods search such
as interchange and swap with the same computational efforts. The procedure of the insert-based local search is given as
follows: choose randomly two jobs in a job permutation πj . Denote these two jobs, say u and v. Insert the job u to
the position of job v. Then, evaluate the objective function. This procedure is terminated if the current best objective
function is not improved.

3.5 Selection

If Vi,g has a smaller objective function than Xi,g , then Vi,g replaces Xi,g in the next generation. Otherwise, Xi,g

remains in the population.

Xi,g+1 =

{
Vi,g, if f(Vi,g) ≤ f(Xi,g)

Xi,g, otherwise.
(7)

3.6 Stopping Criterion

The stopping criterion of the algorithm is the maximum number of iterations.
The pseudocode of iDEAMCO for PFSP is presented in Algorithm 1. After the population is initialized, convert

each individual defined by the continuous numbers to the job permutation using SPV (Smallest PositionValue). Evaluate
each individual by computing the objective function using (2). At the beginning of the optimization loop, convert the
job permutation back to the individualXj,i. Perform crossover to choose the individual required to be mutated. Here,
we calculate the crossover rate Cr using (4). Then, mutate the individual chosen by the crossover operator using (5).
(6) computes the scaling factor F in this iteration. Apply insert-based local search by choosing two jobs in the position,
say u and v, and insert the job u to v. Perform selection and update the population. Go back to the crossover. Perform
crossover, mutation, selection, and local search procedure iteratively until the stopping criterion is reached. At the end
of the iteration, the best objective function is obtained.

1813­713X Copyright © 2019 ORSTW



41

Algorithm 1: iDEAMCO for PFSP
Step 1 : Input number of population NP , F min and Cr min, Cr max, number of iteration gmax. Set

S = ∅ and let the initial lb = −1, ub = 1.
Step 2 : Population initialization. Generate

Xj,i,0 = lb(Xj,i) + random(0, 1)(ub(Xj,i)−lb(Xj,i)), j = 1, · · · , n for i = 1, · · · ,m.
Step 3 : Convert individual Xj,i to a job permutation πi according to the SPV rule. Evaluate every

individual πi using TMF (S)’s formula.
Step 4 : Let g = 1.
Step 5 : Convert πi back to Xj,i

Perform DE’s Crossover and Mutation.
If random(0, 1) ≤ Cr , then

Randomly select r1, r2, r3 ∈ (1, · · · ,m), where r1 ̸= r2 ̸= r3 ̸= i.
Let Vj,i(g) = Xr1,j,i + F (Xr2,j,i −Xr3,j,i)

Else Vj,i(g) = Xj,i(g)
End if

Step 6 : Apply insert-based local search
Step 6.1: Convert individual Vi,g to a job permutation πi0 .
Step 6.2: Set loop = 1;

Do
Randomly select u and v, where u ̸= v;
πi1 = Insert(πi0 , u, v);
If f(πi1) < (πi0), then πi0 = πi1 ;
Else go to Step 6.3
End if
loop++;

Step 6.3: If f(πi1) > (πi0), then πi0 remains the same;
Step 7 : Perform Selection. If πi0 ≤ πi, then πi = πi0 . Else, πi = πi.
Step 8 : Update S.
Step 9 : Let g = g + 1. If g < gmax, then go to Step 5.
Step 10 : Output S and its objective value.

4. COMPUTATIONAL EXPERIMENTS

In this section, the results of computational experiments are presented to evaluate the performance of iDEAMCO.
The proposed algorithm is tested on 28 benchmark problems with 20 jobs and the number of machines varying from
5 to 20 given by Taillard (1993). The computer programs of the proposed algorithm are developed in Matlab 7.8 and
implemented on Intel Core Duo 1.66 GHz system with 1024 MB DDR-2 RAM. The performance of iDEAMCO
is compared with HAMC algorithms (HAMC1, HAMC2, HAMC3), GA, and MOACSA. The parameters setting of
iDEAMCO in this study are defined as follows: the number of populations = 100; Cr min = 0.3; Cr max = 0.9;
F min = 0.5; and number of iterations = 1000. The steps of GA are initialization, evaluation, selection, crossover,
mutation, elitist strategy, and stopping criterion with the parameters setting are as follows: population size = 20;
initialization = randomly generated; number of iterations = 60; crossover rate = 0.8; mutation rate = 0.2; crossover
operator = Goldberg’s partially mapped crossover (MPX) operator; mutation operator = shift change.

Every test is repeated with 10 runs for each instance and the best solution is selected. Hence, there are 280 runs
in total. The weight of makespan and total flowtime is the same i.e. w1 = w2 = 0.5 for multi objectives. The relative
error (RE) in total objective value for schedule S generated by any algorithms is given as follows:

RE(S) = w1 ·
(
M(S)−min(M(S))

min(M(S))

)
+ w2 ·

(
F (S)−min(F (S))

min(F (S))

)
(8)

The average relative errors obtained by makespan, total flowtime, and multi objectives are presented in Figure
1-3, respectively. The average relative error is obtained from the sum of the relative errors of every problem divided
by the number of the problem i.e. 28. HAMC1, HAMC2, and HAMC3 express HAMC algorithm. GA, MOACSA,
and iDEAMCO express genetic algorithm, multi objectives ant colony system algorithm, and the proposed method,
respectively. The vertical axis in Figure 1-3 shows the average relative error.

1813­713X Copyright © 2019 ORSTW



42 Nurdiansyah, Rijanto, Santosa, and Wiratno: An Improved Differential Evolution Algorithm for Permutation Flow Shop Scheduling Problem

IJOR Vol. 16, No. 2, 37-44 (2019)

Figure 1: Average relative error in makespan

Figure 2: Average relative error in total flowtime

Figure 3: Average relative error in multi objectives

The results show that iDEAMCO outperforms HAMC1, HAMC2, HAMC3, GA, and MOACSA in makespan,
total flowtime, and multi objectives. The average relative errors of iDEAMCO with respect to the makespan, total
flowtime, and multi objectives are 0.618, 0.128, and 0.472, respectively. These results are better than other methods
and illustrate that iDEAMCO is able to improve the quality solution of the DE algorithm.

5. CONCLUSION AND FUTURE RESEARCH

In this paper, iDEAMCO is proposed to solve multi objectives permutation flow shop scheduling problem with
makespan and total flowtime criteria. iDEAMCO is based on the development of the DE algorithm. There are several

1813­713X Copyright © 2019 ORSTW



43

improvements to the DE algorithm in this study. First, adaptive parameters of scaling factor F and crossover rate Cr

are applied to increase the variance of the population. Second, the crossover operator is modified to simplify DE’s pro-
cedure. The last, an insert-based local search as a neighborhood search is employed to avoid our proposed algorithm
being trapped in local optimal. Experimental results and comparisons demonstrate the effectiveness of iDEAMCO.
The results of this research indicate that iDEAMCO has a better performance than HAMC1, HAMC2, HAMC3, GA,
and MOACSA in makespan, total flowtime, and multi objectives. The contribution of this study is that a new variant of
DE, namely iDEAMCO, outperforms other state-of-the-art algorithms from the literature for solving multi objectives
PFSP. In our future work, we will analyze the convergence property of iDEAMCO, develop effective DE for other
kinds of scheduling problems such as job shop scheduling, flexible manufacturing, open shop scheduling, etc. and
incorporate a suitable way into DE to propose powerful algorithms for stochastic scheduling problems.

REFERENCES

Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970). A Heuristic Algorithm for the n Job, m Machine Sequencing
Problem. Management Science, 16(10), 630-637.

Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential evolution - An updated survey. Swarm
and Evolutionary Computation, 27, 1-30.

Gangadharan, R., & Rajendran, C. (1993). Heuristic algorithms for scheduling in the no-wait flowshop. International
Journal of Production Economics, 32(3), 285-290.

Gao, H., & Liu, X. (2007). Improved Artificial Immune Algorithm and its application on the Permutation Flow Shop
Sequencing Problems. Information Technology Journal , 6(6), 929-933.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of
Operations Research, 1(2), 117-129.

Grabowski, J., & Wodecki, M. (2004). A very fast tabu search algorithm for the permutation flow shop problem with
makespan criterion. Computers & Operations Research, 31(11), 1891-1909.

Gupta, J. N., Shanthikumar, J. G., & Szwarc, W. (1987). Generating improved dominance conditions for the flowshop
problem. Computers & operations research, 14(1), 41-45.

Hejazi, S. R., & Saghafian, S. (2005). Flowshop-scheduling problems with makespan criterion: a review. International
Journal of Production Research, 43(14), 2895-2929.

Li, X., & Yin, M. (2013). A hybrid cuckoo search via Lévy flights for the permutation flow shop scheduling problem.
International Journal of Production Research, 51(16), 4732–4754.

Lin, Q., Gao, L., Li, X., & Zhang, C. (2015). A hybrid backtracking search algorithm for permutation flow-shop
scheduling problem. Computers & Industrial Engineering, 85, 437-446.

Liu, J. (2002). On setting the control parameter of the differential evolution method. In Proceedings of the 8th international
conference on soft computing (mendel 2002) (p. 11-18).

Liu, Y. F., & Liu, S. Y. (2013). A hybrid discrete artificial bee colony algorithm for permutation flowshop scheduling
problem. Applied Soft Computing, 13(3), 1459-1463.

Mingyong, L., & Erbao, C. (2010). An improved differential evolution algorithm for vehicle routing problem with
simultaneous pickups and deliveries and time windows. Engineering Applications of Artificial Intelligence, 23(2), 188-195.

Nawaz, M., Jr, E. E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing
problem. Omega, 11(1), 91-95.

Noman, N., & Iba, H. (2008). Accelerating differential evolution using an adaptive local search. IEEE Transactions on
Evolutionary Computation, 12(1), 107-125.

Osman, I. H., & Potts, C. N. (1989). Simulated annealing for permutation flow-shop scheduling. Omega, 17(6), 551-557.
Palmer, D. S. (1965). Sequencing Jobs Through a Multi-Stage Process in the Minimum Total Time—A Quick Method

of Obtaining a Near Optimum. Journal of the Operational Research Society, 16(1), 101-107.
Pan, Q. K., Tasgetiren, M. F., & Liang, Y. C. (2008). A discrete differential evolution algorithm for the permutation

flowshop scheduling problem. Computers & Industrial Engineering, 55(4), 795-816.
Qian, B., Wang, L., Hu, R., Wang, W.-L., Huang, D.-X., & Wang, X. (2008). A hybrid differential evolution method for

permutation flow-shop scheduling. The International Journal of Advanced Manufacturing Technology, 38(7-8), 757-777.
Qiu, C. H., & Wang, C. (2010). An immune particle swarm optimization algorithm for solving permutation flowshop

problem. Key Engineering Materials, 419-420, 133-136.
Ravindran, D., Selvakumar, S. J., Sivaraman, R., & Haq, A. N. (2005). Flow shop scheduling with multiple objective

of minimizing makespan and total flow time. The international journal of advanced manufacturing technology, 25(9-10),
1007-1012.

Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers & operations research, 22(1), 5-13.
Sauer, J. G., & Coelho, L. S. (2008). Discrete Differential Evolution with local search to solve the Traveling Salesman

Problem: Fundamentals and case studies. In 2008 7th ieee international conference on cybernetic intelligent systems (p. 1-6).

1813­713X Copyright © 2019 ORSTW



44 Nurdiansyah, Rijanto, Santosa, and Wiratno: An Improved Differential Evolution Algorithm for Permutation Flow Shop Scheduling Problem

IJOR Vol. 16, No. 2, 37-44 (2019)

Seyed-Alagheband, S. A., Davoudpour, H., Doulabi, S. H. H., & Khatibi, M. (2009). Using a modified simulated
annealing algorithm to minimize makespan in a permutation flow-shop scheduling problem with job deterioration.
In Proceedings of the world congress on engineering and computer science 2009 vol ii (p. 20-22).

Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for global Optimization over
Continuous Spaces. Journal of Global Optimization, 11(4), 341-359.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285.
Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2004). Differential evolution algorithm for permutation

flowshop sequencing problem with makespan criterion. In Proceedings of the 4th international symposium on intelligent
manufacturing systems (ims 2004).

Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm optimization algorithm for
makespan and total flowtime minimization in the permutation flowshop sequencing problem. European Journal of
Operational Research, 177(3), 1930-1947.

Tasgetiren, M. F., Pan, Q.-K., Suganthan, P. N., & Chen, A. H.-L. (2011). A discrete artificial bee colony algorithm for
the total flowtime minimization in permutation flow shops. Information Sciences, 181(16), 3459-3475.

Thangaraj, R., Pant, M., & Abraham, A. (2009). A simple adaptive differential evolution algorithm. In 2009 world
congress on nature & biologically inspired computing (nabic) (p. 457-462).

Tvrdík, J. (2007). Differential evolution with competitive setting of control parameters. Task Quarterly, 11(1-2), 169-179.
Yagmahan, B., & Yenisey, M. M. (2010). A multi-objective ant colony system algorithm for flow shop scheduling

problem. Expert Systems with Applications, 37(2), 1361-1368.
Ying, K. C., & Liao, C. J. (2004). An ant colony system for permutation flow-shop sequencing. Computers & Operations

Research, 31(5), 791-801.
Zaharie, D. (2002). Critical values for the control parameters of differential evolution algorithms. In Proceedings of mendel

2002, 8th international mendel conference on soft computing (p. 62-67).
Zamuda, A., Brest, J., Boskovic, B., & Zumer, V. (2009). Differential evolution with self-adaptation and local search

for constrained multiobjective optimization. In 2009 ieee congress on evolutionary computation (p. 195-202).
Zhang, Y., Li, X., & Wang, Q. (2009). Hybrid genetic algorithm for permutation flowshop scheduling problems with

total flowtime minimization. European Journal of Operational Research, 196(3), 869-876.

1813­713X Copyright © 2019 ORSTW


	Introduction
	PROBLEM FORMULATION
	PROPOSED ALGORITHM
	Initialization
	Crossover
	Mutation
	Insert-Based Local Search
	Selection
	Stopping Criterion

	COMPUTATIONAL EXPERIMENTS
	CONCLUSION AND FUTURE RESEARCH

