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Abstract:In light of growing environmental concerns, many countries have developed schemes of carbon tax. Ac-
cordingly, carriers have to minimize the impact of carbon tax on their profits, and one of the feasible solutions is to
reduce emissions through operations. On the other hand, in recent years, multi-temperature joint delivery (MTJD) has
become an important issue for carriers. This paper aims to investigate how to optimize delivery schedules considering
operations and emission costs due to carbon tax for multi-temperature logistics. Based on prior research, this paper
integrates a model to determine a dispatching time for each order in the MTJD system by minimizing a carrier’s total
spending, which consists of delivery cost and emission cost due to carbon tax. Furthermore, we compare the results
obtained with and without carbon tax. The comparisons include cost structures, distribution patterns, and emissions in
the two cases. The results show that carbon tax can lessen the effect of fuel consumption on operation cost, and carriers
should deliver high density middle temperature ranges food at periods without traffic congestion. Food belonging to
the same temperature range should have more centralized distribution when carbon tax exists than the case without
emission cost.
Keyword — Green logistics, Multi-temperature joint delivery, Food transportation, Mathematical Programming,
Scheduling

1. INTRODUCTION

In light of growing environmental concerns, governments around the world face pressure to reduce greenhouse gas
(GHG) emissions. For this reason, many countries develop schemes of carbon taxes or Emission Trading Systems (ETS)
to push industries to lower emissions from their businesses. There are about 40 national jurisdictions and over 20 cities,
states, and regions that are putting a price on carbon (Kossoy et al., 2015). In Taiwan, Executive Yuan is planning a
policy related to carbon tax. On the other hand, road freight transportation is a major contributor to carbon emissions
(Demir, Bektaş, & Laporte, 2014). Accordingly, carriers have to investigate how to minimize the impact of carbon tax
on their profits. One feasible solution to reduce emissions is to optimize operations while considering emission costs.
Hence, many studies (e.g. Bektaş, Ehmke, Psaraftis, & Puchinger, 2019; Bouchery & Fransoo, 2015; Holguín-Veras et
al., 2018; Tang, Wang, Yan, & Hao, 2015; Ugarte, Golden, & Dooley, 2016; Yang, Guo, & Ma, 2016; Zhou & Zhang,
2017) explore the relationship between freight operations and emissions, and then point out that decreasing delivery
frequency can reduce greenhouse gas emissions. However, most prior research focus on general logistics, and little
research discuss the impact of carbon tax on multi-temperature food joint distribution.

Multi-temperature joint distribution (MTJD) has become one of the most important issues for carriers in recent
years. The MTJD technique can deliver foods stored at different temperature ranges by a single regular vehicle with
replaceable cold accumulators and standardized cold insulated boxes to maintain precise temperatures (Hsu, Chen, &
Wu, 2013). Such a technique provides flexibility to adjust shipping volumes of different temperature ranges in the same
vehicle. On the other hand, the MTJD system generates greenhouse gases from not only fuel but also electric power
consumption and refrigerant leakage, which are not involved in general logistics. This paper aims to investigate how to
optimize scheduling of multi-temperature joint distribution considering service level, delivery costs, and emission costs
due to carbon tax.
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In the MTJD system, for any given time period, delivery schedule affects distributed weight and volume. Further-
more, distribution patterns vary with time and influence total costs for carriers and emissions from the logistics system.
On the other hand, delivery scheduling is restricted by time windows for each order and capacities of fleet, vehicles,
and cold boxes for each temperature range. These issues result in complexity for green logistics scheduling for the
MTJD, and few studies discussed all issues mentioned above simultaneously. A lot of research investigate cold chain
operations, but some of them do not discuss the effects of carbon tax on operations (e.g. Ali, Nagalingam, & Gurd,
2018; M. Chen, Lu, & Liu, 2018; Hsiao, Chen, & Chin, 2017; Hsiao, Chen, Lu, & Chin, 2018). On the other hand, some
research explores cold chain with a consideration for emissions but do not explore the difference among various tem-
perature ranges (e.g. Accorsi, Gallo, & Manzini, 2017; Hariga, As’ad, & Shamayleh, 2017; Stellingwerf, Kanellopoulos,
Vorst, & Bloemhof, 2018; Stellingwerf, Laporte, Cruijssen, Kanellopoulos, & Bloemhof, 2018). For example, Hsu and
Chen (2014) investigated optimal scheduling for the MTJD without considering emissions. W. Chen and Hsu (2015)
estimated emissions from the MTJD system without exploring how to optimize scheduling while taking into account
carbon tax. Based on prior research, this paper integrates a mathematical programming model to determine delivery
schedule in the MTJD system under carbon tax levying, fleet size limit, time-dependent shipping demand, and vari-
ous traffic conditions. This paper uses a carrier’s total spending for delivering multi-temperature food as the objective
function to be minimized by departure time from terminal for each order. The total cost of a carrier includes delivery
cost and emission cost due to carbon tax in the MTJD system. Furthermore, this paper compares cost structures,
distribution patterns, and emissions in cases with and without carbon tax.

Furthermore, some studies investigate cold chain operations taking into account the effects of greenhouse gas
emissions. Hariga et al. (2017) presented integrated economic and environmental models for a multi-stage cold supply
chain under carbon tax regulation to determine the optimal lot sizing and shipping quantities. Stellingwerf, Kanellopou-
los, et al. (2018) assessed benefits of cooperation in temperature-controlled transportation by applying an Inventory
Routing Problem (IRP) and comparing different forms of cooperation. Stellingwerf, Kanellopoulos, et al. (2018) pro-
posed an extension of the Load-Dependent Vehicle Routing Problem (LDVRP) model to optimize routing decisions
and to account for refrigeration emissions in temperature-controlled transportation systems. Their results showed
taking the emissions caused by refrigeration into account improves the estimation of emissions related to temperature-
controlled transportation. However, the above studies did not discuss multi-temperature joint distribution and the
tradeoff among various temperature ranges.

In the area of multi-temperature joint distribution, several studies explored efficiencies of the MTJD when com-
pared with traditional multi-vehicle distribution (TMVD). Kuo and Chen (2010) presented an MTJD-based model
according to the requirements of the food chain and the operations of a carrier in Taiwan. Hsu and Liu (2011) con-
structed a model to determine multi-temperature logistics techniques and food handling volume required to maximize
cost-efficiency in a hierarchical hub-and-spoke network. Hsu et al. (2013) formulated mathematical models to optimize
delivery cycles for jointly delivering multi-temperature food using TMVD and MTJD systems. Hsu and Chen (2014)
optimized fleet size for a multi-temperature food carrier, then determined vehicle loads and departure times from the
terminal for each order. W. Chen and Hsu (2015) estimated greenhouse gas emissions from TMVD and MTJD systems
by formulatingmathematical models. M. Chen et al. (2018) formulated an integer programmingmodel for consolidation
problem for fresh agricultural products in a multi-temperature joint distribution (MTJD) system that was developed
to resolve the challenge of timely delivery of small and diverse shipments in food cold chains. Although these studies
explore operations of MTJD, and some of them estimate emissions from the MTJD, the effects of carbon tax on the
MTJD system were not investigated.

In sum, there is still a lack of research that explores how to optimize scheduling for the MTJD taking into account
carbon tax and tradeoff among various temperature ranges. To fill the gap, this paper integrates the delivery scheduling
model and emissions estimation functions, which were formulated by Hsu and Chen (2014) and W. Chen and Hsu
(2015), respectively. In those two studies, Hsu and Chen (2014) formulated a delivery scheduling model with a high level
of accuracy to analyze the MTJD system but did not consider cost of emissions. W. Chen and Hsu (2015) constructed
functions to estimate emissions in the MTJD system under time-dependent demand and traffic conditions but they did
not explore how emission costs due to carbon tax affects carriers’ costs and decisions. In this paper, we integrate the
delivery scheduling model with the emission estimation functions. Thus, the optimal delivery time for each order in
the MTJD system, which takes into account carbon tax, can be analyzed. This paper compares the difference between
cases with and without carbon emission tax, in terms of cost structures, distribution patterns, and emissions for multi-
temperature food, under time-dependent shipping demand. Furthermore, this paper discusses the tradeoff among
distributions of different temperature ranges food when they are jointly distributed by the same vehicle.

This paper is organized as follows. Section 2 describes the integrated model for optimizing scheduling of multi-
temperature joint distribution with a consideration for carbon tax. Section 3 provides a numerical example to illustrate
the application of the model. Finally, conclusions are summarized in Section 4.
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2. MODEL FORMULATION

This section presents a mathematical programming model for determining the optimal departure time from a terminal
for each order of multi-temperature food. We refer to Hsu and Chen (2014) to formulate the delivery cost functions
and constraints then use W. Chen and Hsu (2015) to compute emissions from the MTJD system. Although Hsu
and Chen (2014) formulated a model to optimize delivery schedules for multi-temperature food, they did not discuss
the environmental impact of MTJD. As for W. Chen and Hsu (2015), even though emissions from the MTJD were
estimated, they did not explore optimal operations for MTJD considering emission costs due to carbon tax. Because of
these shortcomings, this paper further integrates the two cited studies, with the concept that carbon tax levying results
in emission costs for carriers. The model assumption, decision variables, objective function, and constraints of the
proposed model are described as follows.

2.1 Model Assumption

The proposed logistics system delivers food stored at different temperature ranges. This logistics system is comprised of
a carrier and a large number of consignees. The object carrier owns a distribution center and delivers multi-temperature
food to consignees. In this system, consignees are retailers in urban areas, and the consignee is also the shipper for
each order. We focus on the transport process from terminal to retailers and consider costs and emissions that are
influenced by delivery scheduling.

2.2 Decision variables

This paper aims to optimize delivery scheduling while considering carbon tax. Therefore, the decision variable in the
proposed model is departure time from terminal for each order of multi-temperature food. Let ysijt denote departure
time from terminal for food i ordered by consignee j at time t. Thus, the objective function and constraints in the
proposed model are determined by the decision variables, ysijt, ∀i, j, t. The subscripts of decision variables present the
attributes of orders. The attributes include codes of food (i), consignee (j), and ordering time (t). In order to calculate
shipping volume and weight for each temperature range food at each period, we set a binary variable, θmijt. If departure
time from terminal for food i ordered by consignee j at time t is m, θmijt = 1; otherwise, θmijt = 0. Therefore, the
value of θmijt depends on ysijt. Although both ysijt and θmijt can express the decision variables of the proposed model,
they are used for distinct situations. The former presents the distribution moment of a specific order, and the latter is
set for summing up all shipping volume or weight of a specific temperature range at a specific period.

In the MTJD system, there are many critical items which depend on departure time from terminal for each order.
First, shipping volume of temperature range r that carrier dispatch at periodm is determined by orders whose departure
time are periodm with storage temperature range r. Second, number of cold boxes used for temperature range r food
at periodm can be calculated by dividing shipping volume of temperature range r food at periodm by capacity of cold
box. Furthermore, number of vehicles used at period m can be computed by dividing total volume of cold boxes by
capacity of vehicle. Finally, number of consignees the carrier serves at each period is certainly related to departure time
from terminal for each order.

Moreover, shipping volume and cold box usage for each temperature range, vehicle usage, and number of con-
signees the carrier serves at each period are critical for the costs which are taken into account in this paper. First,
warehousing cost depends on how much time that food stay at terminal, and it is determined by arrival and departure
time of food at and from terminal, respectively. Second, penalty cost relies on whether food is delivered to consignee
within its time window, and delivery time is highly related to departure time from terminal certainly. Third, transporta-
tion cost contains costs resulted from vehicle dispatching, vehicle load, routing distance, and cold box usage. In the
MTJD system, vehicle dispatching and cold box usage depends on shipping volume for each temperature range food
at each period, and vehicle load relies on weight of orders. Furthermore, shipping volume and weight at specific period
can be calculated by summing up volume and weight of orders whose departure time from terminal are the same period,
respectively. As for routing distance, it can be estimated by number of consignees that carrier serves, and it depends
on the decision variable as discussed in the previous paragraph. Fourth, electric power cost depends on vehicle routing
time and cold box usage. Vehicle routing time can be estimated by routing distance and road speed. However, routing
distance and cold box usage rely on the decision variables as mentioned earlier in this paragraph.

In the MTJD system, the sources of emissions include fuel consumption, electric power consumption, and re-
frigerant leakage. Fuel consumption depends on routing distance and vehicle load; electric power consumption and
refrigerant leakage both can be estimated by vehicle routing time and cold box usage. As discussed earlier, vehicle rout-
ing distance and time, vehicle load, and cold box usage all rely on the decision variables of the proposed model. Since
emission cost due to carbon tax is based on emissions from the MTJD system, it depends on the decision variables,
departure time from terminal of each order of multi-temperature food, too. Based on above discussion, these critical
items can be expressed as Eqs. (1)-(6).
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Qm,r =
∑
i

∑
j

∑
t

θijtAi,rqijtVi (1)

Nm,r = Qm,r/β (2)

am = e
∑
r

Nm,r/χ (3)

nm =
∑
j

max(θijt,∀i, t) (4)

Dm = Qm/nm (5)
n̄m = χ/Dm (6)

where

• Qm,r : total shipping volume of temperature range r food that carrier distributes at periodm

• θmijt : a binary variable, if departure time from terminal for food i ordered by consignee j at time t ism , θmijt = 1
; otherwise, θmijt = 0

• Ai,r : a binary variable, if food i is stored at temperature range r, Ai,r = 1; otherwise, Ai,r = 0

• qijt : amount of food i ordered by consignee j at time t

• Vi : volume of unit food i

• Nm,r : number of cold boxes used for temperature range r at periodm

• β : capacity of a cold box

• am : number of vehicles used at periodm

• e : volume of a cold box

• χ : vehicle capacity

• nm : number of consignees that carrier serves at periodm

• Dm : average shipping volume for each shipper at periodm

• n̄m : average number of consignees served by the same vehicle at periodm

Eq. (1) sums up temperature range r food which is dispatched at period m. Eq. (2) calculates number of cold
box used for temperature range r food at period m. Eq. (3) computes number of vehicles used at period m. Eq. (4)
counts number of consignees carrier serves at period m. Eq. (5) and Eq. (6) estimate average shipping volume for
each shipper and average number of consignees served by the same vehicle at periodm, respectively.

2.3 Objective function

We assume the object carrier is seeking to minimize cost. The objective function is formulated by delivery cost and
emission cost due to carbon tax in the MTJD system, which are denoted as Cdelivery and Cemission, respectively.
Thus, the objective in the proposed model for determining departure time of each order from the terminal is given as
Eq. (7), and the calculations of Cdelivery and Cemission are described in Sections 2.3.1 and 2.3.2, respectively.

obj = min(Cdelivery + Cemission) (7)

2.3.1 Delivery cost

This paper follows Hsu and Chen (2014) to divide the entire study duration into many small periods and takes into
account four types of costs that compose the delivery cost for a carrier who uses the MTJD technique. These four
costs are warehousing, transportation, electric power, and penalty costs. We refer to the equations formulated by Hsu
and Chen (2014) with essential revisions in accord with emission estimations. The formulations for these four costs
are illustrated as follows.
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First, warehousing cost is for food storage in the terminal before distribution. Therefore, it includes costs for
storage space and temperature control, which depend on time. According to Hsu and Chen (2014), warehousing costs
in the MTJD system, CInv , can be computed as Eq. (8).

CInv =
∑
i

∑
j

∑
t

qijtBi(y
s
ijt − yfijt) (8)

where

• qijt : mount of food i ordered by consignee j at time t

• Bi : warehousing cost of unit food i per unit time

• ysijt : departure time from terminal of food i ordered by consignee j at time t

• yfijt : arrival time at terminal of food i ordered by consignee j at time t

Second, for transportation cost, Hsu and Chen (2014) computed it according to shipping volume but did not
consider the influence of payload in terms of weight. However, payload has significant impact on fuel consumption
rate, which is the major emission source in the MTJD system. Therefore, we refer to the payload function in W. Chen
and Hsu (2015) to calculate fuel consumption in the MTJD system. Thus, transportation cost in the MTJD system,
CTra, can be revised as

CTra =
∑
m

{
amf +

[
2E(△)n̄m

nm
+ knm/

√
σ

]
ΓmomO +

∑
r

δNm,r

}
(9)

where

• am : number of vehicles used at periodm

• f : fixed cost for dispatching a vehicle

• E(△) : expected distance from terminal to consignees

• n̄m : average number of consignees served by the same vehicle at periodm

• nm : number of consignees the carrier serves at periodm

• k : constant; k ≈ 0.57 when distance is calculated by Euclidean Metric (straight-line distance between two
points), and k ≈ 0.82 if distance is computed as Manhattan Metric (sum of the absolute differences of two
points’ Cartesian coordinates)

• σ : number of consignees per unit area

• Γm : average vehicle payload factor at period m that measures deviation of a vehicle’s fuel consumption rate
from an average value based on payload

• om : fuel consumption rate (km/L) of a vehicle under average vehicle payload and speed vm, which is road speed
at periodm

• O : cost per unit fuel consumption

• δ : loading/uploading cost for a cold box at periodm

• Nm,r : number of cold boxes used for temperature range r at periodm

In Eq. (9), am, nm, nm, Nm,r can be substituted by the right hand sides of Eq. (3), (6), (4), (2), respectively.
Therefore, Eq. (9) can be expressed through the decision variables, θmijt.

Third, electric power cost results from temperature control during transport process. In the MTJD system, cold
accumulators are used in cold boxes for transit, and they consume electric power that results in cost. Therefore, electric
power cost depends on number of cold boxes and usage time. According to Hsu and Chen (2014), electric power cost
in the MTJD system, CEne, can be calculated as

CEne =
∑
m

∑
r

{
ϕrNm,r

[
2E(△)n̄m

nm
+ knm/

√
σ

]
/vm

}
(10)

where
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• ϕ : electric power cost for a temperature range cold box per unit time

• Nm,r : number of cold boxes used for temperature range at period

• E(∆) : expected distance from terminal to consignees

• nm : average number of consignees served by the same vehicle at period

• nm : number of consignees the carrier serves at period

• k : constant; k ≈ 0.57 when distance is calculated by Euclidean Metric (straight-line distance between two
points), and k ≈ 0.82 if distance is computed as Manhattan Metric (sum of the absolute differences of two
points’ Cartesian coordinates)

• δ : number of consignees per unit area

• vm : road speed at periodm

In Eq. (10), Nm,r , nm, nm can be substituted by the right hand sides of Eq. (2), (6), (4), respectively. Therefore,
Eq. (10) can be expressed through the decision variables, θmijt.

Finally, penalty cost is compensation for consignees’ losses due to violating delivery time windows. According to
Hsu and Chen (2014), penalty cost in the MTJD system, CPen, can be expressed as

CPen =
∑
m

∑
i

∑
j

θmijtbijtqijtPihi

[
λ(ysijt + ρm − sijt)

]ξi (11)

where

• θmijt : a binary variable, if departure time from terminal for food i ordered by consignee j at time t ism, θmijt = 1;
otherwise, θmijt = 0.

• bijt : a binary variable, if food i ordered by consignee j at time t could not be delivered within soft time window,
bijt = 1; otherwise, bijt = 0.

• qijt : amount of food i ordered by consignee j at time t

• Pi : value of food i

• hi : ratio of penalty to value of food i for consignee j

• λ : a parameter that is set 0 for delay being less than one period; otherwise, λ = 1

• ysijt : departure time from terminal of food ordered by consignee j at time t

• ρm : average vehicle travel time from terminal to consignees at periodm

• sijt : upper bound of time window for food i ordered by consignee j at time t

• ξi : a parameter of food i, ξi > 1

2.3.2 Emission cost

Emission cost is determined by greenhouse gases generated from the MTJD system and carbon tax for unit emission.
Let T represent carbon tax for unit emission. Then, total emission cost in the MTJD system, CEmission, can be
expressed as

CEmission = T (GOil +GEle +GRef ) (12)

where GOil, GEle, and GRef denote emissions from fuel consumption, electric power consumption, and refrigerant
leakage, respectively. The relationship between delivery scheduling and each source of emissions in the MTJD system
is illustrated as follows.

First, the main source of emissions in the MTJD system is fuel consumption, and greenhouse gases are generated
during vehicle routing time. According to W. Chen and Hsu (2015), emissions from fuel consumption in the MTJD
system, GOil, can be calculated as

GOil =
∑
m

dmΓmomαOil (13)

where
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• dm : total vehicle travel distance at periodm

• Γm : average vehicle payload factor at period m that measures deviation of a vehicle’s fuel consumption rate
from an average value based on payload

• om : fuel consumption rate (km/L) of a vehicle under average vehicle payload and speed vm, which is road speed
at periodm

• αOil : emission factor of unit oil consumption

Following Hsu and Chen (2014), this paper uses continuous approximation (Daganzo, 1999) to estimate routing
distance at each period. Thus, total vehicle travel distance at periodm, dm, in Eq. (15) can be expressed as

dm =

[
2E(△)n̄m

nm
+ knm/

√
σ

]
(14)

where

• E(∆) : expected distance from terminal to consignees

• nm : average number of consignees served by the same vehicle at periodm

• nm : number of consignees the carrier serves at periodm

• k : constant; k ≈ 0.57 when distance is calculated by Euclidean Metric (straight-line distance between two
points), and k ≈ 0.82 if distance is computed as Manhattan Metric (sum of the absolute differences of two
points’ Cartesian coordinates)

• σ : number of consignees per unit area

Eq. (13), the emissions from fuel consumption in the MTJD system, GOil, can be re-written as Eq. (15) by using Eq.
(14).

GOil =
∑
m

{[
2E(△)n̄m

nm
+ knm/

√
σ

]
ΓmomαOil

}
(15)

• E(∆) : expected distance from terminal to consignees

• nm : average number of consignees served by the same vehicle at periodm

• nm : number of consignees the carrier serves at periodm

• k : constant; k ≈ 0.57 when distance is calculated by Euclidean Metric (straight-line distance between two
points), and k ≈ 0.82 if distance is computed as Manhattan Metric (sum of the absolute differences of two
points’ Cartesian coordinates)

• σ : number of consignees per unit area

• Γm : average vehicle payload factor at period m that measures deviation of a vehicle’s fuel consumption rate
from an average value based on payload

• om : fuel consumption rate (km/L) of a vehicle under average vehicle payload and speed vm, which is road speed
at periodm

• αOil : emission factor of unit oil consumption

In Eq. (15), nm and nm can be substituted by the right hand sides of Eq. (6) and Eq. (4), respectively. Therefore, Eq.
(15) can expressed through the decision variables, θmijt.

Second, electric power consumption of freezers in the terminal generates greenhouse gas emissions, and these
emissions depend on number of cold boxes and usage time. According to W. Chen and Hsu (2015), emissions from
electric power consumption by freezer in the MTJD system, GEle, can be computed as

GEle =
∑
m

∑
r

(Nm,rXr) (dm/vm + 2ωNm,r) γαEle (16)

where
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• Nm,r : number of cold boxes used for temperature range r at periodm

• Xr : number of cold accumulators used for a temperature range r cold box

• dm : total vehicle travel distance at periodm

• vm : road speed at periodm

• ω : loading or unloading time for one cold box

• γ : electric power consumption per unit time for unit cold accumulator

• αEle : emission factor of unit electric power consumption

Eq. (16), the emissions from electric power consumption by freezer in the MTJD system, GEle, can be re-written as
Eq. (17) by using Eq. (14).

GEle =
∑
m

∑
r

(Nm,rXr)

{[
2E(△)n̄m

nm
+ knm/

√
σ

]
/vm + 2ωNm,r

}
γαEle (17)

• Nm,r : number of cold boxes used for temperature range r at periodm

• Xr : number of cold accumulators used for a temperature range r cold box

• E(∆) : expected distance from terminal to consignees

• nm : average number of consignees served by the same vehicle at periodm

• nm : number of consignees the carrier serves at periodm

• k : constant; k ≈ 0.57 when distance is calculated by Euclidean Metric (straight-line distance between two
points), and k ≈ 0.82 if distance is computed as Manhattan Metric (sum of the absolute differences of two
points’ Cartesian coordinates)

• σ : number of consignees per unit area

• vm : road speed at periodm

• ω : loading or unloading time for one cold box

• γ : electric power consumption per unit time for unit cold accumulator

• αEle : emission factor of unit electric power consumption

Furthermore, in Eq. (17), Nm,r , nm, nm can be substituted by the right hand sides of Eq. (2), (6), (4), respectively.
Therefore, Eq. (17) can be expressed through the decision variables, θmijt.

Freezers in the MTJD system also result in refrigerant leakage. Emissions due to refrigerant leakage include
Hydrofluorocarbons (HFCs) and Perfluorocarbons (PFCs). According to W. Chen and Hsu (2015), emissions from
refrigerant leakage in the MTJD system, GRef , can be calculated as

GRef =
∑
m

∑
r

(Nm,rXr) (dm/vm + 2ωNm,r)Rr (18)

where

• Nm,r : number of cold boxes used for temperature range r at periodm

• Xr : number of cold accumulators used for a temperature range r cold box

• dm : total vehicle travel distance at periodm

• vm : road speed at periodm

• ω : loading or unloading time for one cold box

• Rr : emissions from refrigerant leakage due to accumulating cold for a temperature range r accumulator per unit
time
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Eq. (18), the emissions from refrigerant leakage in the MTJD system,GRef , can be re-written as Eq. (19) by using Eq.
(14).

GRef =
∑
m

∑
r

(Nm,rXr)

{[
2E(△)n̄m

nm
+ knm/

√
σ

]
/vm + 2ωNm,r

}
Rr (19)

• Nm,r : number of cold boxes used for temperature range r at periodm

• Xr : number of cold accumulators used for a temperature range r cold box

• E(∆) : expected distance from terminal to consignees

• nm : average number of consignees served by the same vehicle at periodm

• nm : number of consignees the carrier serves at periodm

• k : constant; k ≈ 0.57 when distance is calculated by Euclidean Metric (straight-line distance between two
points), and k ≈ 0.82 if distance is computed as Manhattan Metric (sum of the absolute differences of two
points’ Cartesian coordinates)

• σ : number of consignees per unit area

• vm : road speed at periodm

• ω : loading or unloading time for one cold box

• Rr : emissions from refrigerant leakage due to accumulating cold for a temperature range r accumulator per unit
time

Furthermore, in Eq. (19), Nm,r , nm, nm can be substituted by the right hand sides of Eq. (2), (6), (4), respectively.
Therefore, Eq. (19) can be expressed through the decision variables, θmijt.

2.4 Constraints

For a delivery scheduling model, there exist some general constraints such as capacity limits of vehicles. In addition,
this paper estimates vehicle routing time and distance using continuous approximation (Daganzo, 1999). The related
equations for these issues are as follows.

2.4.1 Capacity limit of vehicles

In general, fleet size of a carrier is fixed. Total volume of all temperature ranges of cold boxes loaded in the same
vehicle cannot exceed vehicle capacity. According to Hsu and Chen (2014), the constraint for vehicle capacity can be
expressed as

am ≤ Ω, ∀m (20)

where

• am : number of vehicles used at periodm

• Ω : fleet size

According to Eq. (3), am in Eq. (20) can be substituted by a function of shipping volume and the decision variables of
the proposed model. Thus, Eq. (20) can be expressed through the decision variables, θmijt.

2.4.2 Estimation of vehicle routing time

This paper refers to Hsu and Chen (2014) to estimate vehicle routing time and distance using continuous approximation
(Daganzo, 1999). Thus, average vehicle travel time from terminal to consignees at periodm, ρm, can be computed as

ρm =

[
2E(△)n̄m

nm
+ knm/

√
σ

]
/vm (21)

where

• E(∆) : expected distance from terminal to consignees

1813­713X Copyright © 2019 ORSTW



54 Chen and Hsu: Optimal scheduling for multi­temperature joint distribution under carbon tax

IJOR Vol. 16, No. 2, 45-62 (2019)

• k : constant; k ≈ 0.57 when distance is calculated by Euclidean Metric (straight-line distance between two
points), and k ≈ 0.82 if distance is computed as Manhattan Metric (sum of the absolute differences of two
points’ Cartesian coordinates)

• nm : average number of consignees served by the same vehicle at periodm

• σ : number of consignees per unit area

• vm : road speed at periodm

Eq. (21) can be substituted by a function of shipping volume and the decision variables of the proposed model.
Therefore, Eq. (21) can be expressed through the decision variables, θmijt.

Finally, a mathematical programming model is formulated here to optimize the delivery schedule for multi-
temperature food, based on the cost functions and constraints in Sections 3.3 and 3.4.

min[CInv + CTra + CEle + CPen + T (GOil +GEle +GRef )] (22a)
s.t.

CInv =
∑
i

∑
j

∑
t

qijtBi(y
s
ijt − yfijt) (22b)

CTra =
∑
m

{
amf +

[
2E(△)n̄m

nm
+ knm/

√
σ

]
τmom +

∑
r

δNm,r

}
(22c)

CEne =
∑
m

∑
r

{
ϕrNm,r

[
2E(△)n̄m

nm
+ knm/

√
σ

]
/vm

}
(22d)

CPen =
∑
m

∑
i

∑
j

θijtbijtqijtPihi

[
λ(ysijt + ρm − sijt)

]ξi (22e)

GOil =
∑
m

{[
2E(△)n̄m

nm
+ knm/

√
σ

]
τmomαoil

}
(22f)

GEle =
∑
m

∑
r

(Nm,rXr)

{[
2E(△)n̄m

nm
+ knm/

√
σ

]
/vm + 2ωNm,r

}
γαEle (22g)

GRef =
∑
m

∑
r

(Nm,rXr)

{[
2E(△)n̄m

nm
+ knm/

√
σ

]
/vm + 2ωNm,r

}
Rr (22h)

am ≤ Ω, ∀m (22i)

ρm =

[
2E(△)n̄m

nm
+ knm/

√
σ

]
/vm (22j)

Qm,r =
∑
i

∑
j

∑
t

θijtAi,rqijtVi (22k)

Nm,r = Qm,r/β (22l)

am = e
∑
r

Nm,r/χ (22m)

nm =
∑
j

max(θijt,∀i, t) (22n)

Dm = Qm/nm (22o)
n̄m = χ/Dm (22p)

Eq. (22a) represents the objective function that minimizes cost through the entire study duration. Eq. (22b), (22c),
(22d), and (22e) express inventory, transportation, electric power, and penalty cost during the entire study duration,
respectively. Eq. (22f), (22g), and (22h) estimate emissions from fuel, electric power consumption, and refrigerant
leakage in the MTJD system, respectively. Eq. (22i) requires capacity limits for vehicles. Finally, Eq. (22j) expresses the
estimation of vehicle travel time.

2.5 Algorithm

The solution for the proposed model contains departure time for each order. If the study duration is divided into l
periods, and the carrier receives w orders. There are lw feasible solutions. In practice, lw is usually a huge number,
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and it is time-consuming to find an optimal solution. For a carrier who transports a lot of food orders with delivery
time windows, the time for solving should be short. Otherwise, some delivery time windows might be violated because
the carrier spends too much time on solving scheduling problem. For this reason, a heuristic algorithm is required.
This paper follows Hsu et al. (2013) and Hsu and Chen (2014) to adopt Simulated Annealing algorithm to solve the
proposed model and set the time for solving to be 0.5 hour. The optimal solution is output when the solving time runs
out. Such solving time may not sufficient to find the optimal solution, but in practice, carriers cannot spend a lot of
time to solve daily delivery problem. Otherwise, their operations may be delayed.

The values of the Simulated Annealing algorithm parameters include (1) the initial temperature Z0 = 50; (2) the
decreasing ratio of temperature is 0.8, and the stop temperature is 0.1; and (3) the number of moves at each temperature
is 2000. Referring to Heragu and Alfa (1992) and Yan and Luo (1999), the SA algorithm can be described as follows.

Step 0. Find an initial solution, H , and calculate its objective function, K(H). This paper chooses the lower limit of
delivery time windows of each order to be combine the initial solution.

Step 1. At temperature Zx, implement the Metropolis algorithm (Metropolis et al., 1953):

(1) Randomly choose an order and randomly generate a variable π ∼ (0, 1); if π ≥ 0.5, ysijt = ysijt + 1;
otherwise, ysijt = ysijt − 1. Let the altered solution be adjacent solution,H ′. Calculate the objective value
K(H ′) for adjacent solution H ′.

(2) Determine whether the new solution is accepted.
(2.1) Calculate the difference between the objective function ofH and H ′, τ = K(H ′)−K(H).
(2.2) If τ < 0, then H = H ′; else randomly generate a variable π ∼ (0, 1). If exp(−τ/Z0) ≥ π, then

H = H ′; else go to Step1.
(2.3) If the stop criteria of the Metropolis algorithm are satisfied, then go to Step 2, else go to Step 1.

Step 2. If the stop criteria of the SA algorithm are satisfied, then go to Step 3; else let x = x + 1 and Zx+1 = 0.8Zx,
and go to Step 1.

Step 3. Output the optimal distribution time for each temperature range food,H∗.

3. NUMERICAL EXAMPLE

This section presents a numerical example to demonstrate application of the model described in Section 3. Following
W. Chen and Hsu (2015), this section assumes a 24-hour operating day as the entire study duration, which is divided
into 24 periods. That is, the unit of time for this example is one hour. In this example, all parameters are the same as
those in W. Chen and Hsu (2015). The carrier serves consignees located in an area of 500 square kilometers, and the
time-dependent road speed in this area is shown in Figure 1. For parameters related to the object carrier, the lists of
equipment and delivered goods are provided in Tables 1 and 2, respectively. As shown in Table 2, shipping goods in
this example contain five temperature ranges of food. Furthermore, based on the density column, foods in Ranges 3
and 4 are heavy as compared with those in Ranges 1, 2, and 5. In this example, the carrier receives 1177 orders for 20
kinds of food from 85 different retailers, who are not only shippers but also consignees. Each order is consigned to a
delivery time window. Figure 2 shows the time-dependent shipping demand during the entire study, in terms of weight
(kg). The demand time is defined as the middle of a delivery time window. Shipping demand for most temperature
range food peaks from 7:00-9:00 and 14:00-16:00. Moreover, Range 3 has the greatest demand, and Range 1 is most
centralized (W. Chen & Hsu, 2015).

For carbon tax, the Chung-Hua Institution for Economic Research (2009) studied the Green Tax Reform through
a project entrusted by Executive Yuan, Taiwan. They reviewed green tax regulations in different countries and suggested
that Executive Yuan should set carbon tax rate as NT$750/tCO2e. We use this tax rate as the cost for unit carbon
emission.

3.1 Cost structures under minimized cost

Table 3 lists the cost structures obtained with and without carbon tax. It is clear from the data that total cost obtained
with carbon tax, NT$352,489, is lower than that obtained without carbon tax, NT$362,018. The main reason for this
result is the difference in fuel and electric power costs between the two cases. The results show that carbon tax not
only helps the carrier reduce the fuel cost from NT$122,285 to NT$108,915, but decreases the percentage that the
fuel cost accounts for from 33.78% to 30.90% of the total cost. This further implies that carbon tax can lessen the
effect of oil prices on carriers’ operation costs since fuel cost dramatically varies with oil prices. As for electric power
cost, the case with carbon tax results in NT$78,243, and is less than that obtained without carbon tax, NT$82,783.
However, the proportions of electric power cost to total cost in the two cases, 22.20% and 22.85%, respectively, with
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Source: Hsu and Chen (2014)

Figure 1: Time-dependent road speed in Taipei City.

Table 1: Value of parameters related to vehicles and refrigerants.

Definition Value
Capacity of refrigerated and regular vehicle 16m3

Fuel consumption of regular vehicle 0.09434 Liters/km
Freezer capacity (in terms of cold accumulators) 78
Unloading time for a cold box 1 minute
Capacity of a cold box 300 Liters
Volume of a cold box 532 Liters
Number of cold accumulators used for a cold box 6, 6, 6, 4, 0(temperature range 1, 2, 3, 4, 5)
Refrigerant category and charge of freezer R507, 3kg

Source: W. Chen and Hsu (2015)

Source: W. Chen and Hsu (2015)

Figure 2: Time-dependent demand for different temperature ranges of food.

and without carbon tax are close. The above comparisons imply that carbon tax does not raise carriers’ costs but helps
carriers reduce them because one more factor related to energy consumption, emission cost, is taken into account in the
programming model. Thus, optimal delivery scheduling tends to increase energy efficiency. In this numerical example,
the carrier has to spend NT$6,547 on carbon tax, which accounts for 1.86% of the total cost. Regarding warehousing
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cost, the two conditions generate similar results, NT$74,963 and NT$74,015 in the cases with and without carbon tax,
respectively. Finally, both cases result in no penalty cost because all food can be delivered within the time windows. In
sum, the above results imply that carbon tax decreases energy consumption of delivery activities, then both greenhouse
gas emissions and carrier’s costs are decreased.

Table 2: Initial values of delivered food.

Temperature Food Food Unit volume Unit weight Density
range code (L/item) (kg/item) (kg/L)
Range 1 1 Sashimi 0.5 0.148 0.296(< 30◦C)

2 Ice cream 1.2 0.480 0.400
Range 2 3 Frozen steamed buns with stuffing 1.5 0.512 0.341

(−30◦C ∼ 4 Frozen steamed dumplings 1.5 1.275 0.850
−18◦C) 5 Frozen vegetables 1.5 0.500 0.333

6 Frozen meat 0.8 0.310 0.388

Range 3
(−2◦C ∼
+2◦C)

7 Fish 0.5 0.478 0.956
8 Duck 0.5 0.478 0.956
9 Chicken 0.5 0.472 0.944
10 Mutton 0.5 0.478 0.956
11 Pork 0.5 0.172 0.344
12 Beef 0.5 0.172 0.344

Range 4
(0◦C ∼
+7◦C)

13 Ham 0.2 0.180 0.900
14 Bean curd 0.2 0.300 1.500
15 Milk 0.2 0.460 2.300
16 Juice 1.8 1.800 1.000
17 Vegetables 2 0.100 0.050

Range 5
(+18◦C ∼)

18 Chocolate 0.3 0.132 0.440
19 Cookie 1.2 0.170 0.142
20 Soft dring 1.2 1.120 0.933

Table 3: Cost structure obtained with and without carbon tax.

Result obtained with Result obtained without
carbon tax (NT$750/tCO2e) carbon tax

Total cost (NT$) 352,489 362,018
Transportation cost (NT$) 192,735 (54.68%) 205,265 (56.70%)

Vehicle cost (NT$) 22,000 (6.24%) 21,400 (5.91%)
Fuel cost (NT$) 108,915 (30.90%) 122,285 (33.78%)
Loading/unloading cost (NT$) 61,820 (17.54%) 61,580 (17.01%)

Warehousing cost (NT$) 74,963 (21.27%) 74,015 (20.45%)
Penalty cost (NT$) 0 (0.00%) 0 (0.00%)
Electric power cost (NT$) 78,243 (22.20%) 82,738 (22.85%)
Emission cost due to carbon tax (NT$) 6,547 (1.86%)

3.2 Distributed weight under minimized cost

Figures 3 (a) and (b) show the time-dependent distributed weights for the optimal scheduling obtained without and
with carbon tax, respectively. First, in the case without carbon tax, as discussed in W. Chen and Hsu (2015) and shown
in Figure 3 (a), the time-dependent shipping demand can be smoothed by optimizing delivery scheduling for the MTJD
system. Furthermore, the flexibility of the MTJD system helps carriers decrease distributed weights at higher traffic
congestion periods if such adjustments do not cause late delivery. Thus, fuel consumption due to traffic congestion
can be reduced (W. Chen & Hsu, 2015). Secondly, the results obtained with carbon tax, which are shown in Figure 3
(b), indicate that most of Range 1 food should be delivered at 13:00. Range 2 orders are mainly transported at 5:00,
6:00, 14:00 and 17:00. Distributed weight of Range 3 food peaks at 6:00, 8:00, 12:00, 13:00, 14:00 and 16:00, while that
of Range 4 food tops at 5:00, 8:00, 9:00, 13:00 and 19:00. As for Range 5 food, it is chiefly dispatched at 5:00, 9:00,
13:00 and 15:00. The comparison of Figures 3 (a) and (b) shows that food belonging to the same temperature range
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should have more centralized delivery when the green tax is taken into account than the case without emission cost
due to carbon tax. However, the results also show that delivery of certain temperature ranges should be mixed when
carbon tax exists. There are some insights that can be found below by comparing distribution patterns for different
temperature ranges, under conditions of the carbon tax.

(a) without carbon tax

(b) with carbon tax (NT$750/kgCO2e)

Figure 3: Time-dependent distributed volume.

First, for Ranges 3 and 4, it can be seen in Figure 3 (b) that their dispatched ranges cross. During the early periods,
Ranges 3 and 4 are mainly distributed at 6:00 and 5:00, respectively. In the afternoon, the distributed weight of Range
3 peaks at 14:00 while Range 4 tops at 13:00. The reason for the cross is food density. Ranges 3 and 4 are both
high-density food, as shown in Table 2. If they are transported simultaneously, vehicle payloads and fuel cost would
dramatically increase. To disperse weights and decrease payload factors, optimal delivery scheduling determines they
be dispatched separately. As for light food, Range 2 and Range 5 foods are also cross transported. Range 2 foods are
usually delivered with Range 3 (at 6:00 and 14:00) while Range 5 foods are distributed with Range 4 (at 5:00 and 13:00).
This suggests that carriers should distribute heavy goods with light ones to avoid transporting many groups of heavy
cargos at the same time when they are levied carbon tax. As for the lowest temperature range, since the shipping weight
of Range 1 is much lower than those of other ranges, the variation in Range 1 distribution patterns is insignificant when
compared with that of other ranges.

When the optimized distributed pattern in Figure 3 (b) and road speed in Figure 1 are compared, it can be seen
that distributed content is also related to road speed when carbon tax is taken into account. The results show that most
of Range 4 food is distributed at periods with high road speed; that is, periods without traffic congestion. As shown in
Figure 3 (b), more Range 4 foods are dispatched at 5:00 and 13:00 than those transported at 6:00 and 14:00, and the
road speeds at 5:00 and 13:00 are higher than those at 6:00 and 14:00, as shown in Figure 1. On the contrary, more
Range 3 food is delivered at 6:00 and 14:00 than that at 5:00 and 13:00. The reason for this is also the density of food.
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Although both Range 3 and Range 4 foods are heavy when compared with other ranges, the densities of most Range
4 food are further higher than those of Range 3, as shown in Table 2. These observations imply that carriers should
deliver high density food at periods without traffic congestion since heavy foods consume more energy than light ones.
With high road speed, routing time and energy consumption can be reduced simultaneously. Thus, both delivery and
emissions costs due to carbon tax decrease.

3.3 Emissions under minimized cost

Table 4 lists emissions obtained with the distributed pattern in Figure 3 (b). As shown in Table 4, emissions from
fuel consumption account for most percentages of total emissions when carbon tax exists. The distribution pattern
in Figure 3 (b) results in more emissions at 5:00-6:00 and 12:00-14:00 than those at other periods because distributed
weights at these periods are high. Furthermore, emissions from fuel consumption at 12:00 are greater than at 14:00, but
emissions from electric power consumption and refrigerant leakage at 12:00 are less than those at 14:00. The reasons
for this are as follows. At 14:00, the distributed Range 3 food is more than that of Range 4, as shown in Figure 3 (b),
and the temperature for storing Range 3 food is lower than that of Range 4. That is, Range 3 food consumes more
electric power and refrigerant than Range 4 food. Therefore, the distribution pattern results in more emissions from
electric power consumption and refrigerant leakage at 14:00. However, at 12:00, the distributed Range 3 food is less
than that of Range 4, and the density of Range 4 is higher than that of Range 3, as shown in Table 2. That is, Range 4
food consumes more fuel than Range 3 food. Therefore, the distribution pattern results in more emissions from fuel at
12:00. However, since greenhouse gas from fuel accounts for the greatest percentage of total emissions in the MTJD
system, total emissions at 12:00 are still greater than at 14:00. For greenhouse gas generated during the entire study
duration, total emissions obtained with carbon tax, 8729.57kgCO2e, are markedly reduced when compared with that
obtained without carbon tax, 9780.42 kgCO2e, which is calculated in W. Chen and Hsu (2015).

4. CONCLUSIONS

Since many governments around the world have planned carbon taxes for greenhouse gas emissions, optimizing deliv-
ery processes while considering the carbon tax is an important issue for multi-temperature food carriers. This paper
aims to optimize delivery scheduling for multi-temperature food while simultaneously taking into account delivery and
emissions costs due to carbon tax, time-dependent demand, and various traffic congestion issues. The results indicate
that carbon tax can lessen the effect of fuel consumption on operation cost and both transportation cost and emissions
can be reduced. The greenhouse gas from fuel consumption accounts for the great percentage of total emissions in the
MTJD system. Furthermore, the results show that carriers should deliver high density middle temperature ranges food
at periods without traffic congestion. Food belonging to the same temperature range should have more centralized
distribution when carbon tax exists than the case without emission cost.

However, this paper limits time for solving the model to be 0.5 hour due to considering practice. Under this
limitation, the solutions may be local optimal, not global optimal. Future studies may design heuristics to improve the
solving efficiency and compare the global optimal solutions obtained without and with carbon tax, respectively. This
paper assumes emissions due to back-haul of vehicles are equal to those of the delivery process. However, payload
factors of vehicles change after unloading food. Future studies may expand the model and explore reverse logistics
issues for the MTJD system. Furthermore, this paper focuses on emissions that depend on delivery scheduling. Future
studies can expand the model to discuss emissions due to other activities in the whole multi-temperature food supply
chain.

1813­713X Copyright © 2019 ORSTW



60 Chen and Hsu: Optimal scheduling for multi­temperature joint distribution under carbon tax

IJOR Vol. 16, No. 2, 45-62 (2019)

Table 4: Emissions from different sources at different periods when carbon tax is NT$750/tCO2e.

Time

Emissions (unit: kgCO2e)

Fuel
Consumption

Electric
Power consumption

Refrigerant
Leakage Total

1:00 0.00 0.00 0.00 0.00
2:00 0.00 0.00 0.00 0.00
3:00 0.00 0.00 0.00 0.00
4:00 4.76 0.17 0.01 4.94
5:00 1698.45 20.44 1.31 1720.20
6:00 1272.88 18.47 1.16 1292.51
7:00 176.50 3.96 0.26 180.72
8:00 453.39 9.88 0.63 463.90
9:00 265.78 5.55 0.36 271.69
10:00 48.85 1.75 0.12 50.72
11:00 11.47 0.83 0.05 12.35
12:00 1358.33 20.41 1.31 1380.05
13:00 1472.69 28.30 1.79 1502.78
14:00 1015.19 24.58 1.57 1041.34
15:00 401.48 5.98 0.41 407.87
16:00 34.04 0.85 0.07 34.96
17:00 139.99 7.10 0.45 147.54
18:00 11.70 0.21 0.01 11.92
19:00 36.14 1.98 0.13 38.25
20:00 163.62 3.95 0.26 167.83
21:00 0.00 0.00 0.00 0.00
22:00 0.00 0.00 0.00 0.00
23:00 0.00 0.00 0.00 0.00
24:00 0.00 0.00 0.00 0.00
Total 8565.26 154.41 9.9 8729.57

NOMENCLATURE

Symbol Definition
Ai,r Binary variable, if food i is stored at temperature range r, Ai,r = 1; otherwise, Ai,r = 0.
Bi Warehousing cost of unit food i per unit time

Cdelivery Delivery cost due to carbon tax in the MTJD system
CEne Electric power cost in the MTJD system

Cemission Emission cost due to carbon tax in the MTJD system
CInv Warehousing costs in the MTJD system,
CPen Penalty cost in the MTJD system
CTra Transportation cost in the MTJD system
Dm Average shipping volume for each shipper at periodm
E(∆) Expected distance from terminal to consignees
GEle Emissions from electric power consumption
GOil Emissions from fuel consumption
GRef Emissions from refrigerant leakage
H Current solution n the Simulated Annealing algorithm

Nm,r Number of cold boxes used for temperature range r at periodm
K(H) Objection value of the solutionH
O Cost per unit fuel consumption
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Pi Value of food i
Qm,r Total shipping volume of temperature range r food that carrier distributes at periodm

Rr
Emissions from refrigerant leakage due to accumulating cold for a temperature range r accumulator
per unit time

T Carbon tax for unit emission
Vi Volume of unit food i
Zx Temperature at the xth iteration in the Simulated Annealing algorithm
am Number of vehicles used at periodm

bijt
Binary variable, if food i ordered by consignee j at time t could not be delivered within soft time
window, bijt = 1; otherwise, bijt = 0.

dm Total vehicle travel distance at periodm
e Volume of a cold box
f Fixed cost for dispatching a vehicle
hi Ratio of penalty to value of food i for consignee j

k
Constant; k ≈ 0.57 when distance is calculated by Euclidean Metric (straight-line distance between
two points), and k ≈ 0.82 if distance is computed as Manhattan Metric (sum of the absolute
differences of two points’ Cartesian coordinates)

l Number of periods the study duration is divided
nm Number of consignees that carrier serves at periodm
nm Average number of consignees served by the same vehicle at periodm

om
Fuel consumption rate (km/L) of a vehicle under average vehicle payload and speed vm, which is road
speed at periodm

qijt Amount of food i ordered by consignee j at time t
sijt Upper bound of time window for food i ordered by consignee j at time t
vm Road speed at periodm
w Number of orders the carrier receives
yfijt Arrival time at terminal of food i ordered by consignee j at time t
ysijt Departure time from terminal for food i ordered by consignee j at time t

Γm
Average vehicle payload factor at periodm that measures deviation of a vehicle’s fuel consumption rate
from an average value based on payload

Xr Number of cold accumulators used for a temperature range r cold box
Ω Fleet size

αOil Emission factor of unit oil consumption
αEle Emission factor of unit electric power consumption
β Capacity of a cold box
γ Electric power consumption per unit time for unit cold accumulator
δ Loading/uploading cost for a cold box at periodm
σ Number of consignees per unit area

θmijt
Binary variable. If departure time from terminal for food i ordered by consignee j at time t ism,
θmijt = 1; otherwise, θmijt = 0.

λ A parameter that is set 0 for delay being less than one period; otherwise, λ = 1
ξi A parameter of food i, ξi > 1
π Random variable
ρm Average vehicle travel time from terminal to consignees at periodm
ϕr Electric power cost for a temperature range r cold box per unit time
χ Vehicle capacity
ω Loading or unloading time for one cold box
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