
International Journal of Operations Research Vol. 16, No. 4, 105-118 (2019)

Linear and Conditional Logit Models of Demand Shifting for the
Time-varying Capacity-Demand-Imbalance Problem

Christian John Immanuel S. Boydon*, Lowell L. Lorenzo, Iris Ann G. Martinez

Department of Industrial Engineering and Operations Research, University of the Philippines
Diliman, Quezon City, 1101 Metro Manila, Philippines

Received September 2019; Revised December 2019; Accepted December 2019

Abstract:We study the capacity-demand-imbalance problem occurring in manufacturing and service systems in
which capacity is constrained but demand is time-varying. We construct profit optimization models using three
different demand shifting functions and two different approaches. The demand shifting functions differ in the
behavior (i.e. linear or conditional logit) as well as in the factors that affect this shift (i.e. price, demand difference,
time difference). The approaches differ in the situation mainly as seen from how customers react upon seeing a
fully utilized system (i.e. either they balk/leave immediately or wait in line until a server is free). We then perform
numerical experiments on derived data from a real-life service system to study the practicality of these models in
terms of profit improvement and computational effort. We find out that the parameters of the models affect profit
improvement in a certain trend and that price settings which result to profit improvement can be computed in a
fast time. In practice, a manufacturing or service system should aim to estimate these parameters based on actual
demand shifting behavior and then determine the optimal price setting using the model that best approximates the
real-life system.
Keyword — revenue management, demand shifting, nonlinear programming, cost analysis

1. INTRODUCTION

Demand is naturally fluctuating in most manufacturing and service systems. Given a manufacturing system with
fixed resources for production or a service system with fixed number of servers to fulfil demand of incoming
customers, demand that is time-varying can have severe repercussions. If we divide time into finite discrete time
periods, for a manufacturing system we would see that some time periods will have overutilized resources with
work-in-process piling while some time periods will have underutilized resources. In the former, the system may
incur shortage cost due to delays in production while in the latter the system still has opportunities for profit since
overhead is being paid without utilizing capacity. Similarly, for a service system we would see that some time
periods will have busy servers seeing a growing queue while some time periods will have servers that are idle. In
the former, the system may incur a certain amount of waiting cost due to customers in queue while in the latter
idle servers translate to salaries paid without earning revenue. For systems in which capacity is constrained and
demand is time-varying, we call this the capacity-demand-imbalance problem.
Revenue management has a variety of ways to solve related problems regarding influencing demand to maximize
revenues or profit. But while successful and extensively researched in the airline and hotel industry, little mathe-
matical research has been done on the specific aspect of demand shifting (Ingold & Yeoman, 2000; Shen & Su,
2007). Studies of demand shifting in the electric grid industry, e.g. Joe-Wong, Sen, Ha, and Chiang (2012), have
a lot of difference with the manufacturing and service industry that make their frameworks not directly applicable.
Thus, it is interesting to see how such demand shifting models could possibly be applied to manufacturing systems
(e.g. make-to-order production system) such that when price is manipulated, demand is influenced to move into less
occupied time periods resulting to shorter lead time for buyers; or to service systems (e.g. bank, restaurant, tourist
spot, amusement park, post office, parking system) such that when price is manipulated, demand is influenced to
move into less busy time periods resulting to less waiting time for customers. The motivation for optimization lies
in the trade-off between lower revenues due to price reduction, higher revenues due to more demand served, and
lower cost due to reduced shortage cost penalty. The basic decision of the optimization model is by how much
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should price be reduced and when should price be reduced.
In this paper, we focus on the construction of simple linear and conditional logit functions of demand shifting for the
time-varying capacity-demand-imbalance problem. We then incorporate these into two different profit optimiza-
tion models and perform numerical experiments to get insights on their mathematical structures and practicality.
Further, we discuss some possible extensions to make the models more realistic. We end the paper with some
discussions regarding the use of these models as well as managerial insights.

2. LITERATURE REVIEW

Possibly the oldest model that involved pricing policies in managing capacity is Whitin (n.d.) which provided
an extended inventory management model wherein optimal price is determined assuming a probabilistic demand
related to price. It finds motivation from the classical Newsboy Problem which also becomes the basis of one of
the mathematical models presented later. McAfee and Te Velde (2006), focusing on the airline industry, provides a
survey of revenue management research and discusses the different operations research models concerning dynamic
pricing applicable also in the hotel, electricity, and retail industries. While it is an extensive review of existing
models and practical applications, all those models assume only a single period (i.e. booking horizon) in which
price is manipulated dynamically to influence potential customers to buy until that inventory unit (e.g. airline seat,
hotel room) is consumed. Finally, papers in real-time pricing often used in the electric grid industry, e.g. Faria
and Vale (2011); Kobayashi, Maruta, Sakurama, and Azuma (2014), change prices per time period but does so
dynamically such that demand shifting is not considered, using only a relationship of price and demand. To the
authors’ knowledge, there is only one paper, i.e. Joe-Wong et al. (2012), that models the shifting of demand along
multiple time periods, but which uses only a linear function, does not maximize profit, and provides a different
situation not applicable to manufacturing and service systems.
More recent review papers in revenue management (M. Chen & Chen, 2015; Shen & Su, 2007) discuss the different
intertemporal substitution models in dynamic pricing but still assume a single period (i.e. booking horizon). Other
review papers (Chao & Zhou, 2006; X. Chen & Simchi-Levi, 2004) discuss inventory and pricing strategies in
the infinite-horizon or multiple-time period, thus tackling the capacity-demand-imbalance problem, but do not
include demand shifting along time periods. A very recent review paper (Klein, Koch, Steinhardt, & Strauss, 2019)
mentioned the real-time multi-period planning horizon and discussed possible extensions of revenue management
in the manufacturing sector, but focuses on availability/capacity control (make-to-order) and inventory control
(make-to-stock), thus not covering dynamic pricing and demand shifting.
In summary, none of the papers discuss profit optimization models with demand shifting for the capacity-demand-
imbalance problem applicable to manufacturing and service systems. Traditional revenue management assumes
only a single period (i.e. booking horizon) and thus demand shifting along selling time periods do not happen.
Recent extensions of revenue management consider multiple selling periods that have demand as a function of price
but do not construct models that incorporate the phenomenon of demand shifting while maximizing profit which is
usually the goal of most manufacturing and service systems.

3. MATHEMATICAL MODEL

3.1 Demand shifting function

First, we discuss possible demand shifting functions that can be used. As in Joe-Wong et al. (2012), the structure of
the demand shifting function is simple factors are placed in the equation depending on whether they are positively
or negatively related to demand shift with a parameter to adjust the magnitude of relationship. Literature has
provided some factors aside from price that may be related to demand shift, e.g. time proximity in the electric
grid industry Joe-Wong et al. (2012), type of promotional discount in restaurants (Susskind, Reynolds, & Tsuchiya,
2004), socioeconomic characteristics and purpose in the traffic sector (Burris & Pendyala, 2002), the level of being
strategic or myopic of a customer (M. Chen & Chen, 2015). In this paper, we will be assuming homogenous
customers and a generic type of system so the factors to include are price (i.e. the higher the price reduction,
the stronger the demand shift), time proximity (i.e. the farther the time period, the weaker the demand shift),
and relative demand difference (i.e. the higher the difference in demand between two time periods, the higher the
demand shift) since if information is known a customer has the tendency to shift to the most unutilized time periods
to achieve lowest lead time or waiting time in queue.
The behavior of demand shift can be characterized by a linear model, e.g. Joe-Wong et al. (2012), or by a discrete
choice model wherein the choices are the time periods to which a customer may shift into or stay at. Strauss, Klein,
and Steinhardt (2018) reviewed the parametric discrete choice models of random utility theory used in revenue
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management literature: multinomial logit, finite-mixture logit, nested logit, Markov chain model, exponomial
model. In this paper, we will be using the simplest models: linear and conditional logit, which is a variant of
multinomial logit for homogenous customers but with alternative-variant factors. In this study, we will apply
the models using data derived from a real-life system and then perform sensitivity analysis to get insights on the
possible values of the parameters.
We summarize in Table 1 the variables and notations to be used in formulating the different demand shifting
functions.

Table 1: Summary of variables and notations for the demand shifting functions.

Demand shifting Description:
function:
𝑠𝑘𝑖 (𝑟𝑖) Proportion of demand that shifts from time period 𝑘 to time period 𝑖 as a function of decision variable, 𝑟𝑖
Decision Description:
variable:
𝑟𝑖 Price reduction (or price discount)
Parameters and Description:
factors:
𝛾 Normalizing constant and parameter to adjust magnitude of shift for a linear model
𝛼 Parameter to adjust effect of price reduction ri for a conditional logit model
𝛽 Parameter to adjust effect of time difference |𝑖𝑘 | for a conditional logit model
𝜇 Scaling factor for conditional logit model (which can be set to 1 for numerical example)
𝐷𝑘 , 𝐷𝑖 Demand in time period 𝑘 (or 𝑖)
(𝐷𝑘 − 𝐷𝑖)+ Positive part of difference of 𝐷𝑘 and 𝐷𝑖 , i.e. Max(𝐷𝑘𝐷𝑖 , 0)
𝑘, 𝑖 Time period indices
|𝑖 − 𝑘 | Absolute value of difference between time index 𝑖 and time index 𝑘

This paper will use the following three demand shifting functions:

𝑠𝑘𝑖 (𝑟𝑖) = 𝛾𝑟𝑖 (𝐷𝑘 − 𝐷𝑖)+ (1)

Equation 1 is the simplest demand shifting function which is a linear model with both factors proportional to
demand shift. The function, 𝑠𝑘𝑖(𝑟𝑖) , gives the proportion of demand that shifts from time period 𝑘 to time period 𝑖
and is a function of price reduction at time period 𝑖, 𝑟𝑖 , which is the value to be determined in the profit optimization
model, and of the demand difference between time periods 𝑘 and 𝑖 as given by (𝐷𝑘 −𝐷𝑖)+ such that there will only
be a shift if time period i has lower demand (customers will not shift to a time period with higher demand). We
add a parameter 𝛾 that acts both as normalizing constant to keep the proportion of demand shift from 0 to 1 and a
parameter that can be adjusted depending on the magnitude of shift.

𝑠𝑘𝑖 (𝑟𝑖) = 𝛾
𝑟𝑖

|𝑖 − 𝑘 | , 𝑘 ≠ 𝑖 (2)

Equation 2 is another simple demand shifting function which is a linear model with one factor, price reduction,
𝑟𝑖 , proportional to the proportion of demand that shifts from time period 𝑘 to time period 𝑖, 𝑠𝑘𝑖 (𝑟𝑖), and another
factor, time difference as given by |𝑖𝑘 |, which is inversely proportional since customers have less tendency to shift to
farther time periods. Similarly, there is a parameter 𝛾 that acts both as normalizing constant and for characterizing
the magnitude of shift.

𝑠𝑘𝑖 (𝑟𝑖) =
𝑒 (

1
𝜇 ) (𝛼𝑟𝑖−𝛽 |𝑖−𝑘 |)∑𝑛

𝑗=1 𝑒
( 1
𝜇 ) (𝛼𝑟 𝑗−𝛽 | 𝑗−𝑘 |)

(3)

Equation 3 is a demand shifting function based on a conditional logit model. The proportion of demand at time
period 𝑘 that stays at time period 𝑘 or shifts into any time period 𝑖 is calculated as the proportion of the utility
of that particular discrete choice over the probability of the sum of utilities of all discrete choices. The utility,
as given by the conditional logit model, has a scaling factor, 𝜇, that characterizes the covariance structure of the
discrete choices, and two alternative-variant factors. These factors are price, 𝑟𝑖 , which has a parameter 𝛼, and time
difference as given by |𝑖𝑘 | , which has a parameter 𝛽. In the conditional logit model, the factors are additive inside
the exponential function and given a positive sign if positively related or negative sign if negatively related.
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3.2 Profit optimization model

We then construct the profit optimization model for this problem. For a manufacturing or service system with fixed
capacity, we assume a finite planning horizon that is cyclical in nature (e.g. day, week, any seasonal time interval)
wherein demand forecast is available and decision-making happens beforehand such that optimal prices can be
calculated and price reductions pre-announced (e.g. in the form of promotional discount) so that customers may
shift accordingly. The finite planning horizon is divided into multiple time periods wherein demand is different
per time period. These time periods are finite and equal in length (e.g. 30-minute time period, 1-hour time period,
1 day) depending on the time interval of interest. Thus, the pricing decisions (i.e. when to offer price discount,
how much price discount to offer) can be done in such a way that the model determines the optimal price reduction
per time period to maximize total profit. We allow continuous prices for a single product with a single default
price. Additionally, we assume that the system is closed such that no additional demand goes in (i.e. customers
not previously buying see the price reduction and now decide to buy). This is a conservative analysis since any
additional demand will surely yield a higher profit. Note that we only allow price reductions since a number of
papers in literature state that price discounts are more ethical and acceptable in the field of revenue management,
e.g. Selmi (2010).
A comprehensive review on the performance evaluation of time-dependent queuing systems done by Schwarz,
Selinka, and Stolletz (2016) provide different interpretations of capacity and demand. Thus, we construct two
models based on two plausible approaches differing on how customers react upon seeing a fully utilized system
(i.e. either they balk or wait). Interestingly, in the review by Schwarz et al. (2016), they mentioned that one
good direction for future work in the study of time-dependent queuing systems is the integration of performance
evaluation with optimization models.
We first summarize in Table 2 the variables and notations to be used in constructing the profit optimization models.

Table 2: Summary of variables and notations for the profit optimization models.

Variables in both Description:
models:
𝑍 Total profit to be maximized
𝑛 Number of time periods
𝑃 Price of one unit of capacity
𝑟𝑖 Price reduction (or price discount)
𝑎𝑖 Revenue per demand fulfilled at time period 𝑖
𝑠𝑘𝑖 (𝑟𝑖) Proportion of demand that shifts from time period 𝑘 to time period 𝑖
Newsboy-based Description:
model:
𝑍𝑖 Profit for time period 𝑖, such that 𝑍 = summation of 𝑍𝑖 (from 𝑖 = 1 to 𝑛)
𝐵 Penalty per demand unfulfilled (assume same at any time period)
𝐶 Capacity (fixed at all time periods)
𝑑𝑖 Demand at time period i, which becomes the sum of three components: original demand,

plus summation of demand that shifts into, minus summation of demand that shifts out
𝐷𝑖 , 𝐷𝑘 Original demand in time period 𝑖 (or 𝑘)
𝑡𝑖 Auxiliary variable to transform Min function representing demand shortage
Queuing-based Description:
model:
𝛼𝑖 Arrival rate at time period i, which becomes the sum of three components: original arrivals,

plus summation of arrivals that shift into, minus summation of arrivals that shift out
∧𝑖 ,∧𝑘 Original arrival rate at time period 𝑖 (or 𝑘)
𝜇𝑖 Service rate at time period 𝑖
𝑠 Number of servers
𝑔(𝜆𝑖 , 𝜇𝑖 , 𝑠) Waiting cost at time period i as a function of arrival rate, service rate, and number of servers
𝐾𝑞 Cost of waiting per time unit of waiting
𝑊𝑞 (𝜆𝑖 , 𝜇𝑖 , 𝑠) Average waiting time per customer at time period i as a function of arrival rate,

service rate, and number of servers
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3.2.1 Newsboy-based model

The first model is motivated by two papers (Carr & Lovejoy, 2000; Matsuyama, 2006) that extend the classical
newsboy problem into a profit optimization model for a manufacturing or service system. This model is applicable
if we assume that customers seeing a fully utilized system will balk (i.e. exit the system immediately) and thus incur
shortage cost. Defining 𝑎𝑖 as revenue per demand fulfilled at time period 𝑖, 𝐵 as penalty per demand unfulfilled
(assume same at any time period), 𝐶 as capacity (fixed at all time periods), 𝑑𝑖 as demand at time period 𝑖, 𝑛 as the
number of time periods, and 𝑍𝑖 as profit for time period 𝑖, we have these two equations to compute for the profit in
one time period.

𝑍𝑖 = 𝑎𝑖𝐶 − 𝐵(𝑑𝑖 − 𝐶), if 𝑑𝑖 > 𝐶 (4)

𝑍𝑖 = 𝑎𝑖𝑑𝑖 , if 𝑑𝑖 ≤ 𝐶 (5)
Using a MIN function to compress the equations and summing profit for all time periods 𝑛, we get total profit:

𝑍 =
𝑛∑
𝑖=1

[𝑎𝑖𝑑𝑖 + (𝑎𝑖 + 𝐵)(MIN[𝐶 − 𝑑𝑖 , 0])] (6)

Revenue per time period, 𝑎𝑖 , differs per time period because of the price reduction, 𝑟𝑖 , which is the decision variable
in our profit maximization model. Hence, we change 𝑎𝑖 to 𝑃𝑟𝑖 where 𝑃 is the default price and 𝑟𝑖 is the price
reduction to be determined. Then incorporating demand shifting, 𝑑𝑖 at each time period 𝑖 becomes the sum of
three components: the current original demand 𝐷𝑖 , plus the sum of all demand that shifts from other time periods
as given by the summation of 𝐷𝑘𝑠𝑘𝑖 (𝑟𝑖), minus the sum of all demand that shifts into other time periods as given
by the summation of 𝐷𝑖𝑠𝑖𝑘 (𝑟𝑘 ). Knowing that 𝑟𝑖 is constrained from zero to 𝑃, we have our profit maximization
model:

Max𝑍 =
𝑛∑
𝑖=1

[
(𝑃 − 𝑟𝑖)

(
𝐷𝑖 +

∑
𝑘≠𝑖

𝐷𝑘𝑆𝑘𝑖 (𝑟𝑖) −
∑
𝑖≠𝑘

𝐷𝑖𝑆𝑖𝑘 (𝑟𝑘 )𝑏𝑖𝑔𝑟)

+ (𝑃 − 𝑟𝑖 + 𝐵) (MIN[𝐶 − (𝐷𝑖 +
∑
𝑘≠𝑖

)𝐷𝑘𝑆𝑘𝑖 (𝑟𝑖) −
∑
𝑖≠𝑘

𝐷𝑖𝑆𝑖𝑘 (𝑟𝑘 ), 0])𝑏𝑖𝑔𝑟]

s.t. 0 ≤ 𝑟𝑖 ≤ 𝑃 ∀ 𝑖 = 1, 2, · · · , 𝑛

(7)

For this model, we apply the interpretation of capacity and demand as in the infinite-server approximation approach
mentioned in Schwarz et al. (2016) and applied by Jennings, Mandelbaum, Massey, and Whitt (1996). We compute
capacity in terms of server-hours and demand also in terms of server-hours by dividing arrival rate with service
rate. For example, in a manufacturing system, if we are provided the number of resources, average arrival rate of
orders (e.g. forecast from historical demand data), average service rate to fulfill those orders (e.g. production rate),
the values of capacity and demand can be computed as deterministic inputs; or similarly if in a service system
we are provided the number of servers, arrival rate of customers, and service rate of servers, we can compute
deterministic inputs for 𝐶 and 𝐷𝑖 . Note that for this model, we assume that each time period is independent of
each other. Hence, we also do not need to know the distribution of arrival rate and service rate but only the average
(as in the infinite-server model). Further, we can show that if we use the demand shifting function of Equation 1
or Equation 2 (i.e. linear functions), we can transform the profit optimization model into a quadratic program with
linear constraints by adding an auxiliary variable 𝑡𝑖 to reduce the MIN function as in the transformation of maximin
functions. We get:

Max𝑍 =
𝑛∑
𝑖=1

[
(𝑃 − 𝑟𝑖)

(
𝐷𝑖 +

∑
𝑘≠𝑖

𝐷𝑘𝑆𝑘𝑖 (𝑟𝑖) −
∑
𝑖≠𝑘

𝐷𝑖𝑆𝑖𝑘 (𝑟𝑘 )
)
+ (𝑃 − 𝑟𝑖 + 𝐵)(𝑡𝑖)

]
s.t. 0 ≤ 𝑟𝑖 ≤ 𝑃 ∀ 𝑖 = 1, 2, · · · , 𝑛

(8)

𝑡𝑖 ≤ 𝐶 −
(
𝐷𝑖 +

∑
𝑘≠𝑖

𝐷𝑘𝑆𝑘𝑖 (𝑟𝑖) −
∑
𝑖≠𝑘

𝐷𝑖𝑆𝑖𝑘 (𝑟𝑘 )
)
∀ 𝑖 = 1, 2, · · · , 𝑛

𝑇𝑖 ≤ 0 ∀ 𝑖 = 1, 2, · · · , 𝑛
(9)

We see that if the demand shifting function, 𝑠𝑘𝑖 (𝑟𝑖) or 𝑠𝑖𝑘 (𝑟𝑘 ), is linear with respect to 𝑟𝑖 and 𝑡𝑖 , the profit opti-
mization model is a quadratic program with 4𝑛 linear constraints. In general, quadratic programming is NP-hard
unless we can determine the convexity of the search space. While we will not prove this mathematically, we will
get some insights regarding the structure of the model in the numerical experiments that follow. It is also obvious
that if we use the demand shifting function of Equation 3, the model does not become a quadratic program and is
in fact quite complex.
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3.2.2 Queuing-based model

The second model is based from a simple queuing optimization model such that arriving jobs/customers are served
upon arrival if there is an available server or waits in queue if there are no available servers. Defining 𝑎𝑖 as revenue
per demand fulfilled at time period 𝑖, 𝜆𝑖 as demand at time period 𝑖, 𝑔(𝜆𝑖 , 𝜇𝑖 , 𝑠) as the waiting cost which is a
function of 𝜆𝑖 (arrival rate at time period 𝑖), 𝜇𝑖 (service rate at time period 𝑖), and 𝑠 (number of servers which is the
same at all time periods), 𝑛 as the number of time periods, and 𝑍 as total profit across all time periods, we get total
profit:

𝑍 =
𝑛∑
𝑖=1

[
𝑎𝑖𝜆𝑖 − 𝑔(𝜆𝑖 , 𝜇𝑖 , 𝑠)

]
(10)

In this model, we similarly assume that time periods are independent of each other. This means that we assume
that each time period is an independent and stationary M/M/s queuing system with arrival rate 𝜆𝑖 , service rate
𝜇𝑖 , and number of servers 𝑠. This is consistent with the stationary independent period-by-period approximation
(SIPP) approach as discussed by Schwarz et al. (2016) under piecewise stationary (independent periods) approaches
and applied by Green, Kolesar, and Soares (2001). This is however restricted to the case of no overlap, i.e. no
queuing customers carry over to the next period and all service gets finished at the time period where it started,
and no overload, i.e. the independent and stationary M/M/s queuing systems achieve steady-state so that limiting
probabilities and queuing performance measures can be computed. Some approaches in literature use an Erlang
loss model wherein the loss function translates to shortage cost, but in this model, we will use an M/M/s queuing
system with infinite queue wherein the waiting time of customers if servers are busy translate to waiting cost. If we
desire to relax these assumptions such that we allow overlap and overload, another approach discussed by Schwarz
et al. (2016) under piecewise stationary (linked periods) approaches can be used stationary backlog-carryover
approximation (SBCA), which is used by Stolletz (2008). This approach however is already outside the scope
of this paper. For this model, we are essentially using the SIPP approach in a profit optimization model that
incorporates demand shifting.
Defining 𝑎𝑖 as 𝑃𝑟𝑖 where 𝑃 is the default price and 𝑟𝑖 is the price reduction to be determined, incorporating the
phenomenon of demand shifting such that 𝜆𝑖 becomes the sum of three components: current original demand ∧𝑖 ,
plus the sum of all demand that shifts from other time periods as given by the summation of ∧𝑘𝑆𝑘𝑖 (𝑟𝑖), minus the
sum of all demand that shifts into other time periods as given by the summation of ∧𝑖𝑆𝑖𝑘 (𝑟𝑘 ), then using the linear
function of waiting cost Hillier and Lieberman (1995) wherein a cost of waiting 𝐾𝑞 is multiplied to each time
unit of waiting 𝑊𝑞 (𝜆𝑖 , 𝜇𝑖 , 𝑠) and multiplied to the number of customers arriving 𝜆𝑖 , and finally adding the price
constraint of 𝑟𝑖 , we have our profit maximization model:

Max𝑍 =
𝑛∑
𝑖=1

[
(𝑃 − 𝑟𝑖)(𝜆𝑖) − 𝐾𝑞𝑊𝑞 (𝜆𝑖 , 𝜇𝑖 , 𝑠)𝜆𝑖

]
s.t. 0 ≤ 𝑟𝑖 ≤ 𝑃 ∀ 𝑖 = 1, 2, · · · , 𝑛

(11)

We define 𝜆𝑖 as (summation of three components as a result of demand shifting):

𝜆𝑖 = ∧𝑖 +
∑
𝑘≠𝑖

∧𝑘𝑆𝑘𝑖 (𝑟𝑖) −
∑
𝑖≠𝑘

∧𝑖𝑆𝑖𝑘 (𝑟𝑘 ) (12)

Following Hillier and Lieberman (1995), the waiting time in queue𝑊𝑞 (𝜆𝑖 , 𝜇𝑖 , 𝑠) for an M/M/s queuing system can
be computed as:

𝑊𝑞 (𝜆𝑖 , 𝜇𝑖 , 𝑠) =
1∑𝑠−1

𝑛=0
( 𝜆𝑖𝜇𝑖 )

𝑛

𝑛! +
( 𝜆𝑖𝜇𝑖 )

𝑠

𝑠!
1

1− 𝜆𝑖
𝑠𝜇𝑖

( 𝜆𝑖𝜇𝑖 )
𝑠 ( 𝜆𝑖

𝑠𝜇𝑖
)

𝑠!(1 − 𝜆𝑖
𝑠𝜇𝑖

)2

1
𝜆𝑖

(13)

If we use a demand shifting function 𝑠𝑘𝑖 (𝑟𝑖) that is linear as in Equation 1 and Equation 2, the resulting objective
function is an operation of polynomial functions depending on the number of servers 𝑠. Obviously, the same
cannot be concluded if we use the multinomial function as in Equation 3. Nevertheless, we can guarantee a smooth
function (except for the asymptotes) since the resulting function is just an expression of linear and exponential
functions. We can get more insights regarding the structure of these models in the next section.

4. NUMERICAL EXAMPLES

In this section, we use values derived from a real-life service system. We use this set of values because it has features
that describe situations of interest (i.e. equal demand in two proximal time periods, a significantly overutilized time
period, a significantly underutilized time period, moderately utilized time periods). We do not have specific values
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however for the parameters of the demand shifting functions (e.g. 𝛾, 𝛼, 𝛽). Thus, we are interested in the effect of
these parameters in the magnitude of demand shift and ultimately in the profit. Partially knowing the mathematical
structure of our models, we are also interested in the computation times and whether the found solution is a local
or global maximum. We will do analysis on each combination of model (i.e. newsboy-based, queuing-based) and
demand shifting function (i.e. linear with demand difference, linear with time difference, conditional logit) by
using different values of the parameters. We run the models using Lingo 18.0 and use the nonlinear solver (which
gives a local optimum in a relatively fast time) and the global solver (which attempts to find a global optimum) with
multiple multi-start attempts. According to Lindo Systems Inc., the developer of Lingo 18.0, they have found that
five multi-start attempts usually give adequate results for most models, although possibly more for larger models
(Inc., 2019).

4.1 Newsboy-based model linear with demand difference demand shifting function

We use the newsboy-based model in Equation 9 to 12 and the demand shifting function in Equation 1. The inputs
are 𝑛 = 7, 𝐷1 = 25, 𝐷2 = 25, 𝐷3 = 11, 𝐷4 = 7, 𝐷5 = 28, 𝐷6 = 52, 𝐷7 = 2, 𝑃 = 200, 𝐵 = 20, 𝐶 = 25. We use
different values of 𝛾 starting from the highest possible (i.e. 𝛾 is a normalizing constant so the highest value is
1/[𝑟𝑚𝑎𝑥 (𝐷𝑚𝑎𝑥𝐷𝑚𝑖𝑛)] = 0.0001 then in equal decrements down to zero (e.g. 0.0001, 0.000095, 0.00009, etc.) for
a total of 21 points.
Using the nonlinear solver, the model is identified as a quadratic program and a local optimum is found in all runs
with a small amount of iterations (i.e. < 103 iterations) and a very low run time (i.e. < 0.26 seconds). Using the
global solver with 10 multi-start attempts, a global optimum is found in all runs with a larger amount of iterations in
a decreasing trend (i.e. 242102 iterations for the largest 𝛾 down to 56 iterations for the smallest 𝛾) and a longer run
time also in a decreasing trend (i.e. 19.29 seconds for the largest 𝛾 down to 1.23 seconds for the smallest 𝛾). This
decreasing computational effort is explained by the lessening complexity of the profit optimization model because
as 𝛾 goes down, the magnitude of demand shift weakens and thus the model does not need to explore higher values
of 𝑟𝑖 . The results of the nonlinear solver (i.e. local optima) and global solver (i.e. global optima) yield similar
values for each value of 𝛾 except for five specific values which yield an insignificant discrepancy of 0.0044% on
average in the objective function value. This tells us that the local optima found are practically global optima and
thus for this model, there may be no need to use a global solver that requires higher computational effort.
The results of profit optimization are summarized in Figure 1 with the y-axis being percent increase in profit
compared to when no price reductions are introduced and x-axis being the values of 𝛾. As an example, if we
use the highest possible value of 𝛾 = 0.0001, the model returns 𝑟1 = 3.33629, 𝑟2 = 3.33629, 𝑟3 = 32.48156,
𝑟4 = 36.63501, 𝑟5 = 0, 𝑟6 = 0, 𝑟7 = 40.63657 as the optimal solution with a maximum profit 𝑍 = 27562.27 which
is a 17.79% increase from the profit 𝑍 = 23400 if there is no price reduction and demand shifting that occur.

Figure 1: Sensitivity analysis for Model 4.1 (different values of 𝛾)

From the results, we see that percent increase in profit is monotonic increasing relative to 𝛾. Starting from the
highest possible value (rightmost point) then slowly decreasing it, we find that there is a value wherein there is no
increase in profit and the model returns 0 for all 𝑟𝑖 . In our experiments, this occurs at around 𝛾 = 0.0000025 which
is 2.50% of the highest possible value. At this point, the increase in profit (i.e. increase in revenue plus decrease
in shortage cost) due to the demand shift does not compensate the lost revenue due to reduction in price and it is
therefore better to set no price reduction.

4.2 Newsboy-based model linear with time difference demand shifting function

Similarly, we use the newsboy-based model in Equation 9 to 12 but now the demand shifting function in Equation
2. The inputs are 𝑛 = 7, 𝐷1 = 25, 𝐷2 = 25, 𝐷3 = 11, 𝐷4 = 7, 𝐷5 = 28, 𝐷6 = 52, 𝐷7 = 2, 𝑃 = 200, 𝐵 = 20, 𝐶 = 25.
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We use different values of 𝛾 starting from the highest possible (i.e. 𝛾 = |𝑖𝑘 |min/𝑟𝑚𝑎𝑥 = 0.005) then in equal
decrements down to zero (e.g. 0.005, 0.0048, 0.0046, etc.) for a total of 26 points.
Similar to Section 4.1, using the nonlinear solver, the model is identified as a quadratic program and a local optimum
is found in all runs with a small amount of iterations (i.e. < 71 iterations) and a very low run time (i.e. < 0.26
seconds). Using the global solver with 10 multi-start attempts, a global optimum is found in all runs with a larger
amount of iterations also in a decreasing trend (i.e. 1025977 iterations for the largest 𝛾 down to 56 iterations for the
smallest 𝛾) and a longer run time still also in a decreasing trend (i.e. 36.52 seconds for the largest 𝛾 down to 1.36
seconds for the smallest 𝛾). This decreasing computational effort is also explained by the lessening complexity of
the profit optimization model. Also, the results of the nonlinear solver (i.e. local optima) and global solver (i.e.
global optima) yield similar values for each value of 𝛾 except for two specific values which yield an insignificant
discrepancy of 0.014% on average in the objective function value. This tells us that the local optima found are
practically global optima and there may be no need to use a global solver that requires higher computational effort.
The results of profit optimization are summarized in Figure 2 with the y-axis being percent increase in profit
compared to when no price reductions are introduced and x-axis being the values of 𝛾. As an example, if we use
the highest possible value of 𝛾 = 0.005, the model returns 𝑟1 = 0, 𝑟2 = 0.90701, 𝑟3 = 21.41166, 𝑟4 = 37.62434, 𝑟5 =
19.65375, 𝑟6 = 0, 𝑟7 = 58.01627 as the optimal solution with a maximum profit 𝑍 = 26909.99 which is a 15.00%
increase from the profit 𝑍 = 23400 if there is no price reduction and demand shifting that occur.

Figure 2: Sensitivity analysis for Model 4.2 (different values of 𝛾)

From the results, we also see that percent increase in profit is monotonic increasing relative to 𝛾. Starting from the
highest possible value (rightmost point), we also find that there is a value of 𝛾 wherein there is no increase in profit
and the model returns 0 for all 𝑟𝑖 . In our experiments, this occurs at around 𝛾 = 0.00012 which is 2.40% of the
highest possible value.

4.3 Newsboy-based model conditional logit demand shifting function

We again use the newsboy-based model in Equation 9 to 12 but now the demand shifting function in Equation 3.
Note that in the conditional logit function, we allow shifting to the same time period (e.g. from time period 1 to 1, i.e.
stay at time period 1), but we can use the same equation since the same term is produced in the positive summation
and negative summation thus cancelling out. Note also that this demand shifting function has two parameters, 𝛼
and 𝛽, that we cannot combine. The scale parameter 𝜇 however can be combined with these parameters for the
sake of numerical example. The inputs are 𝑛 = 4, 𝐷3 = 11, 𝐷4 = 7, 𝐷5 = 28, 𝐷6 = 52, 𝑃 = 200, 𝐵 = 20, 𝐶 = 25.
We first find realistic values of the parameters and then explore along these directions. In our experiments, we
use values of 𝛼 from 1 to 6 in increments of 1 and values of 𝛽 from 0 to 11 in increments of 0.5 for a total of
138 points. Using the nonlinear solver, a local optimum is found in all runs with a small amount of iterations
(i.e. < 173 iterations) and a very low run time (i.e. < 0.62 seconds). Using the global solver however, even with
just 1 multi-start attempt, results in an impractically high number of iterations (exceeding 40 million iterations)
and a very long run time (exceeding 1 hour and not yet converging) for just one point. This is explained by the
complexity of using a multinomial function which tells us that it is extremely difficult to find a global optimum
for this model. Thus, we instead resort to using the nonlinear solver and run each point in 5 and 10 multi-start
attempts. We note that when using 5 multi-start attempts, the local optimum improves in 39 out of the 138 points,
and when using 10 multi-start attempts, the local optimum improves in a total of 68 out of the 138 points (compared
to when only one attempt was done). Observing that it takes a relatively small amount of iterations (i.e. < 9421
iterations) and a relatively short run time (i.e. < 7.10 seconds) to find a better local optimum when using the
nonlinear solver with 10 multi-start attempts, we say that it is in fact better to use this approach for this model.
The results of profit optimization are summarized in Figure 3 with the y-axis being percent increase in profit

1813713X Copyright © 2019 ORSTW



113

compared to when no price reductions are introduced and x-axis being the values of 𝛾. As an example, the highest
percent increase in profit attained from our experiments is achieved when 𝛼 = 6, 𝛽 = 6, with the model returning
𝑟1 = 3.15398, 𝑟2 = 3.26730, 𝑟3 = 3.38082, 𝑟4 = 2.47875, 𝑟5 = 0.57595, 𝑟6 = 0.85829, 𝑟7 = 1.84439 as the optimal
solution with a maximum profit 𝑍 = 34593.09 which is a 47.59% increase from the profit 𝑍 = 23438.64 if there is
no price reduction and demand shifting that occur. Note that when 𝑟𝑖 = 0 for all time periods, the profit 𝑍 differs
given different values of 𝛽 due to the random utility effect of the conditional logit function such that even when
there is no price reduction, every customer or unit of demand has a tendency to change their choice.

Figure 3: Sensitivity analysis for Model 4.3 (different values of 𝛼 and 𝛽)

From the results of our experiments, we see that percent increase in profit is inverse parabolic with respect to 𝛽
while increasing and asymptotic with respect to 𝛼. The conditional logit demand shifting function is different from
the linear demand shifting function because all values of 𝛼 and 𝛽 are feasible, although only a certain range will
produce realistic and significant results, such as the range used in our examples. Note that the values plotted are
only local optima found using a nonlinear solver with 10 multi-start attempts and thus there are inconsistencies
along the x-axis. While the inverse parabolic behavior with respect to 𝛽 can be suspicious because there may be
in fact better objective function values found if we allow a significantly longer computational time, we did a few
experiments on very high values of 𝛽 with excessive multi-start attempts which all find local optima that yield 0%
increase in profit. But still, we cannot be sure unless we study the mathematical structure of the model. Similarly,
for 𝛼, there is strong support for the monotonic increasing and asymptotic behavior as we did a few experiments
in extremely high values of 𝛼 in different values of 𝛽 which all find local optima approaching a certain value
(specifically, 𝑍 = 35000). Nevertheless, we have seen that it is impractically difficult to find a global optimum
for this model. However, we have shown that there are values of 𝛼 and 𝛽 wherein profit increases as found by a
nonlinear solver with multiple multi-start attempts in a relatively fast time. Also, we observe that there is a certain
behavior of the objective function value depending on the values of 𝛼 and 𝛽. Note however that if we will use
this model in practice, we should be able to estimate the values for these parameters based on the real-life demand
shifting behavior of customers.

4.4 Queuing-based model linear with demand difference demand shifting function

We now use the queuing-based model detailed in Equation 14 to 17 and the demand shifting function in Equation 1
replacing 𝐷𝑖 with 𝜆𝑖 . Note however that we cannot use the same inputs because applying them to a queuing-based
model with discrete-time periods will cause some queuing systems to have overload which cannot be handled by
our model. Thus, we do reductions on the actual arrival rates such that all queuing systems are stationary (i.e.
𝜆/𝑠𝜇 < 1) but the overall demand pattern is retained and the resulting waiting costs due to queuing is comparable to
the shortage costs if we use the newsboy-based model. This section cannot be directly compared to its counterpart
in Section 4.1 because we use a different way to derive the inputs. Nevertheless, we can get insights on the
structure and behavior of the profit optimization model. The inputs are 𝑛 = 7, 𝜆1 = 0.71429, 𝜆2 = 0.71429, 𝜆3 =
0.31429, 𝜆4 = 0.2, 𝜆5 = 0.8, 𝜆6 = 1.48571, 𝜆7 = 0.05714, 𝑃 = 200, 𝐾𝑞 = 120, 𝑠 = 4, 𝜇 = 0.5. We use different
values of 𝛾 starting from the highest possible then in equal decrements down to zero (e.g. 0.0035, 0.0034, 0.0033,
etc.) for a total of 36 points.
Using the nonlinear solver, a local optimum is found in all runs with a small amount of iterations (i.e. < 54
iterations) and a very low run time (i.e. < 0.28 seconds). Using the global solver with 10 multi-start attempts, a
global optimum is found in all runs with a larger amount of iterations (i.e. < 52644 iterations) and a longer run
time (i.e. < 4.68 seconds) not seeing the decreasing trend as in Section 4.1. The results found by the nonlinear
solver (i.e. local optima) and global solver (i.e. global optima) yield the same values for all values of 𝛾. This
tells us that in maximizing the objective function value, there is no need to use a global solver that requires higher
computational effort.
The results of profit optimization are summarized in Figure 4 with the y-axis being percent increase in profit
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compared to when no price reductions are introduced and x-axis being the values of 𝛾. As an example, if we use the
highest possible value of 𝛾 = 0.0035, the model returns 𝑟1 = 0, 𝑟2 = 0, 𝑟3 = 17.67099, 𝑟4 = 23.43266, 𝑟5 = 0, 𝑟6 =
0, 𝑟7 = 28.89106 as the optimal solution with a maximum profit 𝑍 = 794.6131 (which translates to 27811.46 if
we revert the reduction) which is an 18.82% increase from the profit 𝑍 = 668.7557 (which similarly translates to
23406.45) if there is no price reduction and demand shifting that occur.

Figure 4: Sensitivity analysis for Model 4.4 (different values of 𝛾)

From the results, we see that percent increase in profit is monotonic increasing relative to 𝛾. Starting from the
highest possible value (rightmost point) then slowly decreasing it, we also find a value of 𝛾 wherein there is no
increase in profit and the model returns 0 for all 𝑟𝑖 . In our experiments, this occurs at around 𝛾 = 0.00001 which is
0.29%of the highest possible value of 𝛾. While we cannot prove mathematically, we may have hints that the local
maxima found are actually global maxima since there are no inconsistencies that occur (i.e. the graph of sensitivity
analysis is smooth) and the results found by the nonlinear solver and global solver are exactly the same.

4.5 Queuing-based model linear with time difference demand shifting function

Similarly, we use the queuing-based model detailed in Equation 14 to 17 but now the demand shifting function in
Equation 2. As in Section 4.4, we do reductions on actual arrival rates to get queuing systems with no overload.
Then, we do sensitivity analysis on the parameter 𝛾. The inputs are 𝑛 = 7, 𝜆1 = 0.71429, 𝜆2 = 0.71429, 𝜆3 =
0.31429, 𝜆4 = 0.2, 𝜆5 = 0.8, 𝜆6 = 1.48571, 𝜆7 = 0.05714, 𝑃 = 200, 𝐾𝑞 = 120, 𝑠 = 4, 𝜇 = 0.5. We use different
values of 𝛾 starting from the highest possible then in equal decrements down to zero (e.g. 0.005, 0.0049, 0.0048,
etc.) for a total of 51 points.
Using the nonlinear solver, a local optimum is found in all runs with a small amount of iterations (i.e. < 62
iterations) and a very low run time (i.e. < 0.21 seconds). Using the global solver with 10 multi-start attempts, a
global optimum is found in all runs with a larger amount of iterations (i.e. < 1834104 iterations) and a longer run
time (i.e. < 99.0 seconds) with a decreasing trend same as in Section 4.2 but more pronounced and abrupt. The
results found by the nonlinear solver (i.e. local optima) and global solver (i.e. global optima) yield the same values
for all values of 𝛾 and thus there is no need to use a global solver that requires higher computational effort.
The results of profit optimization are summarized in Figure 5 with the y-axis being percent increase in profit
compared to when no price reductions are introduced and x-axis being the values of 𝛾. As an example, if we
use the highest possible value of 𝛾 = 0.005, the model returns 𝑟1 = 0, 𝑟2 = 0, 𝑟3 = 9.30721, 𝑟4 = 18.51455, 𝑟5 =
5.33952, 𝑟6 = 0, 𝑟7 = 39.47662 as the optimal solution with a maximum profit 𝑍 = 784.9902 (which translates to
27474.66 if we revert the reduction) which is a 17.38% increase from the profit 𝑍 = 668.7557 (which similarly
translates to 23406.45) if there is no price reduction and demand shifting that occur.

Figure 5: Sensitivity analysis for Model 4.5 (different values of 𝛾)

1813713X Copyright © 2019 ORSTW



115

From the results, we see that percent increase in profit is monotonic increasing relative to 𝛾. We also find a value of
𝛾 wherein there is no increase in profit and the model returns 0 for all 𝑟𝑖 . In our experiments, this occurs at around
𝛾 = 0.00004 which is 0.80% of the highest possible value of 𝛾.

4.6 Queuing-based model conditional logit demand shifting function

Finally, we use the queuing-based model detailed in Equation 14 to 17 and the demand shifting function in Equation
3. We do the same reduction on actual arrival rates to get queuing systems with no overload. The inputs are
𝑛 = 7, 𝜆1 = 0.71429, 𝜆2 = 0.71429, 𝜆3 = 0.31429, 𝜆4 = 0.2, 𝜆5 = 0.8, 𝜆6 = 1.48571, 𝜆7 = 0.05714, 𝑃 = 200, 𝐾𝑞 =
120, 𝑠 = 4, 𝜇 = 0.5. We first find realistic values of the parameters and then explore along these directions. In our
experiments, we use values of 𝛼 from 0.5 to 3 in increments of 0.5 and values of 𝛽 from 0.1 to 3.1 in increments of
0.1 for a total of 186 points. Note however that a few values within the range either resulted in an endless number
of iterations or yielded infeasibilities or unbounded solutions even with multiple multi-start attempts and were thus
omitted. This might be because of the complex mathematical structure of an M/M/s waiting time function used
with a multinomial function.
Using the nonlinear solver, a local optimum is found in all runs with a slightly larger amount of iterations (i.e. <
543 iterations) yet still a very low run time (i.e. < 0.60 seconds). Similar to Section 4.3, using the global solver
results in an impractically high number of iterations and a very long run time for just one point. Thus, we resort to
using the nonlinear solver and run each point in 5 and 10 multi-start attempts, noting also that better local optima
are found in some of the points if we do more attempts. Observing that it takes a practically moderate amount of
iterations (i.e. < 524554 iterations) and a practically short run time (i.e. < 22.69 seconds) to find a better local
optimum when using the nonlinear solver with 10 multi-start attempts, we say that it is in fact better to use this
approach for this model.
The results of profit optimization are summarized in Figure 6 with the y-axis being percent increase in profit
compared to when no price reductions are introduced and x-axis being the values of 𝛾. As an example, the highest
percent increase in profit attained from our experiments is achieved when 𝛼 = 3, 𝛽 = 1.2, with the model returning
𝑟1 = 1.85415, 𝑟2 = 1.80536, 𝑟3 = 1.99025, 𝑟4 = 1.78914, 𝑟5 = 0, 𝑟6 = 1.38004, 𝑟7 = 1.76030 as the optimal
solution with a maximum profit 𝑍 = 1011.91 (which translates to 35416.89 if we revert the reduction) which is a
20.01% increase from the profit 𝑍 = 843.1775 (which similarly translates to 29511.21) if there is no price reduction
and demand shifting that occur.

Figure 6: Sensitivity analysis for Model 4.6 (different values of 𝛼 and 𝛽)

From the results of our experiments, we get a hint that percent increase in profit is also inverse parabolic with
respect to 𝛽 while increasing and asymptotic with respect to 𝛼. Note that for the sake of numerical experiments,
we use this range of values because it lets us see the behavior of the function in practically manageable run times.
It seems that the mathematical structure of this model is far more complex that there are a few values of 𝛼 and 𝛽
inside the range wherein even a local optimum cannot be found.
Nevertheless, we see similar trends to the effect of changing the values of 𝛼 and 𝛽 as in the previous models. We
also see that it is impractically difficult to find a global optimum for this model and thus base only on local optima
that seem to converge to the global optimum. Similarly, we have shown that there are values of 𝛼 and 𝛽 wherein
profit increases as found by a nonlinear solver with multiple multi-start attempts in relatively short run times.

5. DISCUSSION

From the numerical experiments in Section 4.1, 4.2, 4.4, and 4.5, we find that percent increase in profit is always
monotonic increasing with respect to the parameter 𝛾. Thus, if we start from its highest possible value and slowly
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decrease, we always find a value of 𝛾 wherein the optimal solution is 𝑟𝑖 = 0 for all time periods which implies that
setting no price reductions is the best decision. This is explained by the fact that at a significantly low value of 𝛾, the
demand shift due to price reduction is weak such that the opportunity for more revenue and shortage cost reduced
do not compensate for the loss in revenues due to lower prices. As for the parameters 𝛼 and 𝛽, as seen in Section
4.3 and 4.6, percent increase in profit is monotonic increasing with respect to 𝛼 while having an inverse parabolic
relationship with 𝛽. Unlike the linear demand shifting functions, the values of 𝛼 and 𝛽 do not have limits (i.e. any
value would give a realistic utility function), but objective function values found along different values of 𝛼 seem to
converge while those found along different values of 𝛽 seem to have a best possible value. But while we know the
behavior of these parameters, in real-life they are not chosen. They should be estimated given the real-life demand
shifting behavior of customers. In this study, we performed numerical experiments for their different values since
we do not know their actual values and to at least show that there are values wherein profit can be improved.
We created two models for profit optimization the newsboy-based model and the queuing-based model. In the
comprehensive review of Schwarz et al. (2016), they are regarded as different approaches with different applications.
Perhaps the best way to determine which model to use is by determining which model best approximates the situation
in real life. While the newsboy-based model approximates backlog as shortage cost (i.e. customers balk upon
seeing a fully utilized system) and the queuing-based model approximates waiting cost but without overload (i.e.
customers wait in line upon seeing a fully utilized system), we should choose the more appropriate model based on
the actual situation. There are other approaches that can be used such as using an Erlang loss model and the SBCA
approach used by Stolletz (2008) but they shall be topics for another paper.
We used three demand shifting functions linear with demand difference, linear with time difference, and conditional
logit with two factors. The major disadvantage of using a linear demand shifting function is that they can be limited
in modelling the actual behavior of demand shift. Also, the values allowable for the parameter 𝛾 can have restrictions
(i.e. they can return erroneous results if outside range) so the parameters must be determined carefully and model
checked if the case still reflects real-life behavior. Comparing Model 4.1 and Model 4.2, we see that at the highest
possible value of 𝛾, the percent increase in profit is lower if we use the demand shifting function with time difference,
obviously because of its negative effect. However, this can also be explained by the fact that we now use a demand
shifting function that considers proximity of time periods, which is in fact shown by the different optimal values of
𝑟1 and 𝑟2 in Model 4.2 even though 𝐷1 and 𝐷2 have the same initial demand (i.e. 𝑟2 is given a higher value than 𝑟1
since shifting is stronger to a nearer time period than to a farther time period, while in Model 4.1 they have equal
values). On the other hand, the conditional logit demand shifting function can be more realistic since it is derived
from the well-known random utility theory. But due to this randomness, even when there is no price reduction
introduced (i.e. 𝑟𝑖 = 0 for all time periods), there is demand shifting that happens. This is not a big problem, but it
may cause some inconsistencies if used in practical situations.
Models 4.1, 4.2, 4.4, and 4.5 may actually be finding the global optimum even if only a single-attempt nonlinear
solver is used as shown in the numerical experiments because the local optima found are either very near (i.e.
discrepancy is insignificant) or exactly the same as with the global optima found. While we do not prove it
mathematically in this paper, we may infer about the possible convexity of these nonlinear programs. Model 4.3
and Model 4.6 obviously do not find the global optimum given the inconsistencies in the numerical experiments
and the complex mathematical structure due to the multinomial logit function. All models however have found
local optima (i.e. profit improvement) in practically fast run times.
When applied in a real-life manufacturing or service system, we must remember that 𝑟𝑖 represent price discounts,
usually seen as the percent reduction in default price. This is done so that customers seeing this price discount
will change their behavior in our paper, their time of consumption along time periods. There are many papers
in literature (e.g. those mentioned in Section 3.1) that assume and explain how this happens, but the difficulty is
always in estimating the parameters. Without a huge amount of data, one approach that can be used to estimate
the parameters is to implement the price discounts in real life and observe the magnitude of demand shifting that
happens. Then, we can find the value of 𝛾 or 𝛼 and 𝛽 most suitable to represent this level of demand shifting.

6. CONCLUSION AND FURTHER STUDY

We presented six profit optimization models that incorporate demand shifting for the time-varying capacity-demand
imbalance problem faced by manufacturing and service systems. We summarize the models in the table below:
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Table 3: Summary of profit optimization models.

Model
name:

Approach (balk or wait): Behavior of demand shift: Factors that affect demand shift:
Newsboy Queuing Linear Conditional Price Demand Time

based based model logit model reduction difference difference
Model 4.1 X X X X
Model 4.2 X X X X
Model 4.3 X X X X
Model 4.4 X X X X
Model 4.5 X X X X
Model 4.6 X X X X

The models vary in the demand shifting function used (i.e. linear or conditional logit; and the factors that
affect demand shift: price, relative demand, time difference) and their application (i.e. newsboy-based if we assume
customers are lost, queuing-based if we assume customers wait in line). Regarding practical use, we performed
numerical experiments by using inputs derived from data of a real-life service system and changed the values of
the parameters to see their effect. As a summary of our findings, we have:

• For all models, there are values of the parameters wherein profit improvement can be found and computed in
practically short run times

• For the linear models, the profit improvement found are also the global maxima

• For the conditional logit models, the profit improvement found are not necessarily global maxima

• For the linear models, profit improvement is monotonic increasing with respect to 𝛾, i.e. there is a low value
of 𝛾 wherein there is no possible profit improvement and optimal price reduction is zero

• For the conditional logit models, profit improvement is seen to be monotonic increasing and converging with
respect to 𝛼 while inverse parabolic with respect to 𝛽

In general, when we are to use these models in a real-life setting, we should first choose the approach to use
(i.e. newsboy-based or queuing-based) depending on the situation of the manufacturing or service system mainly
based on whether customers balk/leave immediately or wait in line upon seeing a fully utilized system. Then, we
should estimate the parameters based on actual customer shifting behavior while also determining if a linear or a
conditional logit function fits this behavior better as well as decide which factors to include in the model. Finally,
using data to fill in values for the inputs, we can run the appropriate profit optimization model and determine
optimal price settings.
In the future, the mathematical structure of all models shall be further investigated and possibly prove the convexity
of the quadratic programs of Models 4.1 and 4.2 as well as the nonlinear programs of Models 4.4 and 4.5 and find
structural patterns in the complex nonlinear programs of Models 4.3 and 4.6. Superior techniques for searching
better objective function values shall be done for the conditional logit models such as the use of metaheuristics or
soft computing methods. This may also require studying other types of datasets such as those with higher variability
of demand or more time periods and see the effects to profit improvement and computational effort required. We
may as well include other factors of demand shifting that will make the functions more complex as we increase
the number of parameters. Better yet, we shall try to gather real-life data with actual demand shifting in order to
perform empirical estimation of these parameters. Aside from linear and conditional logit, we may also use other
functions such as higher polynomials or those mentioned in Strauss et al. (2018), whichever is most appropriate for
practical use. An interesting question raised by Stolletz (2008) is how large or small the time periods should be as
divided from the planning horizon (e.g. 15-minutes, 5-minutes) which also warrants further investigation. Most
interestingly, the stationary backlog-carryover approximation (SBCA) approach done by Stolletz (2008) may be a
more accurate approximation of time-varying queuing systems since it considers overlap and overload and shall
thus be incorporated in the future.
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