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Abstract: Controlling the end state of a growth process by terminating it at the right time is defined as a problem
of passive regulation. Within this class, the periodic sampling based methods are used in many practical situations.
However, it appears that this type of passive regulation system has received no systematic attention in the past. The
problem of controlling the final melting point of a batch of edible oil during hydrogenation belongs to this category.
This problem is formulated in terms of two stochastic optimization problems. The first problem is solved following a
scenario tree based approach, while the second one is formulated as a Stochastic Dynamic Program (SDP). The SDP is
solved by evaluating a quality cost function through simulation. It is shown that the performance of the hydrogenation
process is expected to improve significantly under the proposed passive regulation scheme.
Keyword — Simulation, Hydrogenation of edible oil, Growth model, Control chart, Approximate dynamic program-
ming

1. INTRODUCTION

Hydrogenation of edible oil is a process of adding hydrogen atoms by breaking the C = C double bonds that are present
in the mono and polyunsaturated fatty acids. The breakage of the double bonds leads to an increase in the melting point
of the oil. Thus, during hydrogenation, the melting point of a batch of oil rises gradually over time. The specifications
for final melting point, which is the most important quality characteristic that needs to be controlled, is 40.0 ± 0.50◦C.
This is achieved by terminating the growth process at an appropriate time.
However, the hydrogenation process also suffers from occasional growth failure, which leads to the occurrence of what
is known as a ‘dead batch’. It is obvious that such failures need to be detected as quickly as possible so that the batch
can be recovered at the earliest to keep the cost of production under control.
In order to perform the twin tasks of detection of a dead batch and controlling the final melting point, samples are
drawn periodically from a batch and the melting point of the samples are determined off-line to judge the status of
the batch. This gives us the data for constructing the growth curve of each batch. Figure 1 shows two typical growth
curves, which also illustrate the important features of the process. For example, it shows that the batch process under
consideration is a two-stage process – active hydrogenation followed by cooling. The melting point of a batch also rises
slightly during cooling, but this growth cannot be controlled.
Thus, the three important decision variables for the control system are (i) The sampling points {ti}, (ii) A variable rep-
resenting the status of the batch (whether dead or active) and (iii) The cooling limit, i.e., the melting point at which the
active hydrogenation phase should be terminated. Here, the control of the end state of a growth process by terminating
it at the right time is called ‘passive regulation’. Such a regulatory action is called passive since it does not have any
impact on the growth path of the process. On the other hand, if the regulatory action is meant to influence the process
path then it will be called ‘active regulation’.
An important constraint of the system is the maximum number of samples that can be drawn from each batch (nmax
= 6). This constraint represents the capacity constraint of the testing laboratory and also the hazard associated with
frequent sampling. However, it is obvious that if the cooling limit is to be used as the basis for terminating the process
then the constraint on nmax cannot always be satisfied. One of the two needs to be considered as a soft constraint.
Here, it is decided to treat nmax as the soft constraint. Another important constraint is the presence of a significant
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lag in measurement (= 20 minutes).
In the existing system the process engineer decides on the most appropriate course of actions for controlling the process
based on his or her subjective judgment. As a result, the performance of the process with respect to both final melting
point and cycle time is found to be very poor. It is seen from Figure 2 that the distribution of final melting point is
positively skewed and the melting point exceeds the upper specification limit (USL) on many occasions. The cycle time
(till cooling) is also found to vary widely from 2.5 – 10 hours. The primary objective of this study is to develop an
economic integrated system for on-line control of the process of hydrogenation.
For the sake of simplicity, the above control problem is split into the following two sub problems: (i) A single stage
stochastic optimization problem for finding the cooling limit and (ii) A Stochastic Dynamic Program (SDP) for find-
ing the sampling points ti. The SDP is solved following a simulation based optimization scheme. To the best of our
knowledge, no previous work on this particular problem has been reported so far. The rest of the article is structured

Figure 1: Two typical growth curves

Figure 2: Histogram of final melting point (◦C) along with its specification limits

as follows. Section 2 presents a literature survey. Section 3 gives a brief summary of our approach along with a descrip-
tion of the data. Section 4 is devoted mainly towards the mathematical formulation of the problem. Each of the steps
mentioned in Section 3.1 are discussed in detail in this section. The results of our approach are presented in Section 5.
The article ends with some concluding remarks in Section 6.

2. RELATED WORK

In principle, a growth process can be actively regulated to track a pre-specified path. However, in practice, such an ideal
path is usually not specified. This is primarily due to the difficulty of translating the optimal performance of a growth
process to a particular growth path. Nevertheless, attempts have been made in the past to specify the desired path first
and then regulate the process to track the specified path ( Aerts et al. (2003); Niu and Yang (n.d.)).
On the other hand, if the end time is flexible then the end state may be controlled by terminating the process at the
right time, i.e., through passive regulation. Depending on the number of measurements (n) that can be made in each
cycle of the process (excluding the initial state), the passive regulation problems can broadly be classified into three
groups: (i) n = 1, (ii) n = ∞ (representing continuous measurement) and (iii) 1 < n ≤ nmax.
If n = 1, then one may use the observations on (Yf ,X ,∆t), where Yf is the end state corresponding to the cycle time
∆t and X is the vector of relevant process variables to develop a suitable model for predicting∆t | (X , T ), where T
is the target for Yf . The current and the past observations can then be used to develop a suitable scheme for updating
the model. This is a low cost approach and is used, for example, in electroplating for controlling the coating thickness
( Antony (2014); Wahab, Noordin, Izman, and Kuriniawan (2013)).
The second case represents situations where continuous monitoring of the process is possible using on-line sensors, e.g.
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in-situ real time measurements for detection of the end point of a plasma etching process. Depending on the principle
used to design the sensor, the amount of noise present in the data and the criticality of application, the detection of the
end point may be a simple graphical exercise ( Sutomo, Wang, Bullen, Braden, and Liu (2003)) or it may involve the
use of sophisticated data analytic tools like Principal Component Analysis and Independent Component Analysis ( Pug
(2013)).
The control problem addressed in this study belongs to the last category, where 1 < n ≤ nmax. Such control
problems are encountered widely in industry, agriculture and also in everyday life. For example, farmers decide on the
date of harvesting based on periodic inspection. In manual cooking of rice, periodic sampling is used to decide the end
point of cooking. In LD converter based steel making, samples are drawn a few minutes before the end of the blowing
cycle to control the carbon content and the temperature of the bath ( Mishra, Wadhwa, and Hattum (2016)). However,
the results of these measurements are used for the purpose of path correction, i.e., for active regulation of the process.
No published literature on passive regulation of the process based on these measurements has come to our notice.
So far as the problem of monitoring a growth process is concerned, the method of monitoring will depend on the
scope of control, i.e., whether the objective is to monitor the within cycle or between cycle variation. Since a growth
curve can be considered as a special type of (process) profile, the methods of profile monitoring may be used for
monitoring the between cycle variation. However, in order to use these methods, it is necessary to have data in a
suitable format. Presently, profile monitoring using control charts is an active area of research and numerous papers
have been published on this subject (e.g. Woodall, Spitzner, Montgomery, and Gupta (2004); Mahmoud and Woodall
(2004); Vaghefi, Tajbakhsh, and Norrosona (2009); Park et al. (2012)). But the number of published literature on
monitoring within cycle variation is very limited ( Chakraborty and Mandal (2015); Shore, Benson-Karhi, Malamud,
and Bashiri (2014); Zhu et al. (2014)).

3. APPROACH AND DATA

3.1 Approach

The literature review as above suggests that a growth process can be subjected to either active or passive regulation.
However, the approach of active regulation is not considered for the present process due to the large variation in its
growth behavior (see Figure 3). Of course, a part of this variation can be attributed to the variation of initial melting
point of the oil, but its contribution cannot be examined due to the non-availability of relevant data on initial melting
point. Having decided to continue with the existing practice of passive regulation, the following approach is adopted
to determine the three parameters of the control system.

(1) :Development of the growth model for the active hydrogenation phase.

(2) :Construction of the control chart based on the growth model.

(3) :Development of the model for the amount of growth during cooling.

(4) :Development of the model for growth failure.

(5) :Determination of the first sampling point (t1) based on the failure model and specifying a distribution of melting
point at t1 (note that the melting point of a batch of oil at time t = 0 is unknown).

(6) :Estimation of the cooling limits based on the growth model and the power of detection of a dead batch by the
control chart.

(7) :Determination of the other sampling points using all the information as above.

Strictly speaking, the control limits of the chart, the cooling limits as well as the sampling points are to be determined
together for optimal performance. However, the advantage of the above simple structure is that the control chart can
be used as an independent tool. The cooling limits estimated separately to simplify the solution procedure. Thus, the
main optimization problem is related to the last step, which is formulated as a Stochastic Dynamic Program (SDP) and
a simulation based optimization method is used to find the optimal solution.

3.2 Growth data

The growth data that is collected from the past Quality Control records of the process are observations on (MPij , tij),
where MPij is the melting point of the jth sample of the ith batch (collected at time tij ), i = 1, 2, · · ·n(= 50),
j = 1, 2, · · ·ni(≤ 6). Note that tkj is not necessarily the same as tlj for k ̸= l. Thus, the data that is available is
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scanty and is in the form of a highly unbalanced panel data. The growth of melting point for these fifty batches till the
beginning of cooling is shown in Figure 3.
In addition, the time (t0) at which fresh catalyst is added for the first time to a batch is also noted.

4. METHODOLOGY

The complete methodology is discussed under three subsections. The first subsection describes the main elements of
the system. This is followed by a description of various aspects related to the formulation of the problem and the last
subsection gives the solution methodology.

Figure 3: Growth curves of fifty sample batches till the beginning of cooling

4.1 Main elements of the system

The main elements of the system that are described in this section are the growth model, the failure model, the control
chart for detection of dead batches and the distribution specifying the initial condition.

4.1.1 Process model for the active hydrogenation phase

In an earlier work, Chakraborty and Mandal (2015) have shown that the growth of melting point (MP) during hydro-
genation can be described by the first order model given by

d(MP )/dt = k(MPeq −MP ) (1)

where k is the growth coefficient and MPeq is the equilibrium melting point. Approximating (1) by the forward
difference equation, the process may be modeled as a random model with variable drift

MPt+∆t = MPt +G|(MPt,∆t) (2)

where the growth G during a time interval∆t is the variable drift component and is given by

G = d0(∆t)− d1(MPt)(∆t) (3)

Now, using the growth data as above, it is a straightforward task to estimate the parameters of (3) following the method
of multiple regression. However, it is to be noted that the estimates of growths thus obtained will be biased since
G|(MPt,∆t) > G|(MPt,∆t) +G|(MPt+∆t1 ,∆t2),∆t = ∆t1 +∆t2. In other words, since the value of∆t will
vary in practice, the estimated growth path becomes dependent on the sampling scheme. Clearly, this is undesirable.
Accordingly, the amount of growth, i.e., G|(MPt,∆t) is estimated following an innovative method of instrumental
variable estimation. The details of this method are given in Chakraborty and Mandal (2018). Here we present only the
final model in a compact form:

E(GI) = 0.0805 + 0.9089G1

G1 = −0.0482 + 1.21819I

I =

k∑
i=1

gi, gi = 0.852(∆t)− 0.4563(MPS)(∆t),MPS = (MP − 38.488)/1.082 (4)

∆t =

k∑
i=1

∆ti,∆ti<k = 0.5,∆tk = (∆t− 0.5(k − 1)) < 0.5

SN(GI) = 113.091− 2.85(MP ) + 2.57(t− t0) = 10 log(E(GI)/σ(GI))2
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whereMPS is the standardized value ofMP , t0 is the time of first catalyst addition and I is the instrumental vari-
able that is constructed from the observed growth data. The mean, signal-to-noise ratio and standard deviation of
G|(MPt,∆t) are represented by E(GI), SN(GI) and σ(GI) respectively. It is to be noted that the above model is
developed using growth data of only genuine active intervals, i.e., the intervals which are followed by another interval of
positive growth without addition of fresh catalyst. Also, for the sake of accuracy, the model will be used for estimating
growth within an interval of 0.5 ≤ ∆t ≤ 1.5hour.

4.1.2 Control chart for detection of dead batches

The control chart is developed based on the process model given by (4), which defines the in-control state of the
process. Next, an individual control chart is constructed based on the control statistic

Q = (G− ĜI)/σ̂ (5)

where the estimates ĜI and σ̂ are obtained from the process model (4). The other details of the chart including its
power of detecting dead batches are given elsewhere ( Chakraborty and Mandal (2018)). Here we only note that the
center line of the chart is zero and the lower and upper control limits are placed at -2.35 and 2.6 respectively. If a point
falls below the lower control limit, then it is considered as a signal for a dead batch and fresh catalyst needs to be added
to the batch for its recovery. On the other hand, if a point falls above the upper control limit then the process engineer
has to make his or her own subjective judgment for regulating the process.
The above control chart has good power of detecting a dead batch with∆t = 1 hour. It is also found that the power of
detection becomes negligible with∆t ≤ 30minutes and the detection becomes almost certain with∆t ≥ 75 minutes.

4.1.3 Distribution of growth during cooling

Let the amount of growth during cooling be denoted by y′ and the cooling decision be based on the sample drawn at
time t′ Since there is a measurement lag of twenty minutes, we have

MPf = MPt′ +∆MPlag + y′ = MPt′+lag + y′ (6)

whereMPf is the final melting point of the batch and lag = 1/3 hour. Now, assuming that a batch is active through-
out the growth process, the estimates ofMPt′+lag|(MPt′ ,∆t = lag) are obtained from the process model (2), where
G is given by (4). These estimates are then substituted in (6) to obtain the estimates of y′. However, it is observed
that the growth during cooling is zero in as many as six out of the forty seven batches considered for developing the
process model (4). Excluding these six batches, the estimates of y′ > 0 gives a very good fit to the two-parameter
Weibull distribution (Figure 4). Thus, the followingmixture of Bernoulli andWeibull is specified as the distribution of y′,

f(y′) =

{
p′, y′ = 0

(1− p′)g(y′), y′ > 0
(7)

where p′ is the probability of no growth during cooling (= 6/47) and f and g are the probability density functions. The
density g(y′) of the Weibull distribution is given by

g(y′) = (β/α)(y′/α)β−1 exp[−(y′/α)β ], α > 0, β > 0, y′ > 0 (8)

and its mean and variance are given by

µ′ = αΓ(1 + 1/β), σ2[Γ(1 + 2/β)− Γ2(1 + 1/β)] (9)

Now, since the estimate of the shape parameter (β̂) is 1.504 and that of the scale parameter (α̂) is 0.588 (see Figure 4),
we have (µ̂′) and (σ̂′2) Further, it can be easily shown that

E(y′) = (1− p)µ′ and Var(y′) = (1− p′)(p′µ′2 + σ′2) (10)

which gives the estimates of mean and variance of y′ as 0.4628 and 0.144 respectively. These estimates are used later
for finding the cooling limits.
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Figure 4: Weibull probability plot of y′ > 0

4.1.4 Distribution of failure time

It is found from the control chart that seven out of the fifty sample batches can be considered as dead. Thus, the
failure data consists of seven interval-censored and forty right-censored observations. It is also noted that the failure
time (td) and the time of first catalyst addition t0 are exceptionally high for a few batches. This suggests that the
process has remained idle for some time, perhaps due to some process problems like malfunctioning of the vacuum
pump. Consequently, instead of td , it is decided to model the distribution of (td − t0). The methods of estimating
the parameters of a life distribution based on censored data are available in many books on reliability (e.g. Meeker and
Escobar, 1998). Here the commercial software MINITAB is used for developing the failure model. It is seen from
Figure 5 that the Log-normal distribution gives a good fit to the observations on (td − t0). The least square estimates
of the location and scale parameters of the distribution are also shown in this figure.

4.1.5 Initial condition

The initial melting point of a batch is neither measured nor known. The earliest a sample has been drawn in the
fifty sample batches is at t = 1.75 hour. However, it is important to detect the status of a batch as early as possible
for controlling the process efficiently. The failure distribution developed in the previous section suggests that the
probability of a batch failure before 1.5 hour is nearly zero. Therefore, it is decided to take the first sample at t = 1.5
hour. Next, the distribution of melting point at t = 1.5 hour is obtained as follows. Let, for a given batch, the melting

Figure 5: Lognormal probability plot of failure time (td − t0)

point of the first sample drawn at t1 > 1.5 be denoted byMP1. Then the desired estimateMP0 is obtained by solving
E(MP |(MP0,∆t = t1 − 1.5)) = MP1 Also, considering the risk of extrapolation and the fact that the estimates of
growth obtained from (4) will be poor with∆t > 2 hours, the backward extrapolation is limited only to those batches
for which t1≤3.5. The distribution of the estimates thus obtained is shown in Figure 6. It is seen that the distribution
is negatively skewed. Although the sample size here is very small, it appears that a stable distribution at t = 1.5 hour
may not exist. But, for developing the control scheme, it is necessary to specify a reasonable initial distribution that
will be valid under a wide range of operating conditions. Also, for the purpose of simulation, it is preferable to have a
bounded distribution. Considering the above, the following truncated normal distribution is specified as the distribution
ofMPt=1.5,

MPt=1.5

∩
TN(36.8, 2, 32, 39.6) (11)
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where the parameters signify that a normal distribution with mean 36.8 and standard deviation 2 is truncated at 32 and
39.6. The mean and standard deviation of the above distribution are very close to the mean and standard deviation of
the observed distribution (Figure 6).

Figure 6: Histogram of melting point at t1 = 1.5 hour

4.2 Problem formulation

4.2.1 State variables

Let S0 represents the true status of a batch being hydrogenated, i.e., S0 = Active,Dead. The observed status of
the batch is defined similarly and is denoted by S1. However, since the observation on S1 is made by a control chart,
it will be unrealistic to neglect the error involved in this measurement. So let the four possible scenarios related to
this measurement be denoted by S = s1, s2, s3, s4, where s1 = Deadanddetected, s2 = Deadbutundetected,
s3 = Activeandnotidentifiedasdead, and s4 = Activebutidentifiedasdead. The quality cost associated with a
particular growth path is evaluated taking all these four possible scenarios into account.
The measurement error associated withMP is included in the variance of its estimate.

4.2.2 Cost function

Let the total quality cost (C) associated with a growth path (ω) be given by

C(ω) = CP (ω) + CE(ω) (12)

where CP is the path cost and CE is the end cost. The path cost CP has two components,

CP = C1 + C2 (13)

whereC1 is the cost of sampling and testing andC2 is the failure cost. Further, the failure cost also has two components
- detection cost (Cd), i.e., the cost of delay in detecting a dead batch and the cost of recovering (Cr) a batch that has
been identified as dead, whether rightly or wrongly. Thus, we have

C2 = Cd + Cr (14)

Now, let a batch that becomes dead at time td is detected at the jth sample. Since there is a measurement lag of twenty
minutes, the delay in detection or the failure time (FT ) is given by FT = tj + lag − td. It is possible that a batch
may fail between (tj , tj + lag) after it is decided to cool the batch based on the sample drawn at tj . There is a cost (in
the form of loss of information) associated with such failures too but such costs (being very small) are not taken into
account.
The cost of recovery is assumed to be proportional to RT , the time lost in making arrangement for addition of fresh
catalyst. It is estimated that RT is approximately 10 minutes per failure. The cost of catalyst is not considered since
the catalyst remains in the system (recycled). Further, it is assumed that a batch can become dead at most once before
cooling.
The end cost is the quality loss component and is assumed to be given by the quadratic loss function

CE = λ(MPf − 40.5)2 (15)

where λ is the loss coefficient and 40.5 is the target forMPf . It is to be noted that if a dead batch is not recovered
before cooling, thenMPf is the same as the melting point at td, otherwise it is given by (6).
The total cost of quality for a batch is then given by

C =C1
(NS + 1) +C2

(FT +RT ) + λ(MPf − 40.5)2 (16)
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where c1 is the cost of sampling and testing per sample, NS is the number of samples drawn till cooling and c2 is the
hourly cost of downtime. The economics of the process suggests that c2 is approximately 100 times of c1 and λ is
approximately 3.5 times of c2. Thus, the cost function becomes

C(ω) = (NS + 1) +

NS(ω)∑
j=1

[100(aj lj + bj(RT ))] + 350(MPf − 40.5)2 (17)

where tj , j = 1, 2, · · · , NS are the time points at which the samples are drawn till cooling and aj = 0, if the batch is
active at tj and 1, otherwise. The failure time lj for the jth interval (tj−1, tj) is given by

lj =

{
tj + lag − td, if tj−1 < td ≤ tj [i.e., Sj = s1 or s2]

tj − tj−1, if td < tj−1 [i.e., Sj−1 = s2]
(18)

Also, bj = 1 if Sj = s1 or s4 andMPj < MPC , whereMPC is the cooling limit.

4.2.3 Penalty function

It has already been noted in Section 1 that the constraints on bothMPC and nmax cannot be satisfied simultaneously.
There will be instances ofMPj being less thanMPC at j = nmax. So it is decided to treat the limit on nmax (= 6)
as a soft constraint, where nmax includes the last sample taken at the end of the cooling phase. Thus, for the purpose
of optimization, the following penalty function is added to the original cost function [Equation (17)],

Cp(ω) =

{
100(NS(ω)− 5)3, if NS > 5

0, otherwise (19)

4.2.4 Mathematical formulation of the problem

Let, for a given batch, the sampling intervals are defined by ∆tj = tj − tj−1, j = 2, 3, · · · , NS. Also let A,D and
R be the set of all active, dead and recovered intervals respectively, i.e., A contains the intervals in which no failure
occurs, D contains those intervals in which the batch fails at time tj−1≤td≤tj , and R is the set of intervals in which
the control chart gives an out-of-control signal. For a given batch, the setD is either empty or has at most one element
(by assumption). Further, the variable t0 is generalized to t0j to consider the time of fresh catalyst addition for each
interval. The SDP can now be formally stated as follows:

Minimize E[C(ω) + Cp(ω)]

subject to

(i) ti = 1.5.

(ii) The distribution ofMP at t1 is given by (13).

(iii) At t1, S0 = Active.

(iv) MPj = MPj−1 +Gj , j = 2, 3, · · · , NS,
Gj

∩
N(µj , σj), where µj and σj are given by (6) with

∆t = tj − tj−1, j ∈ A,
= td − tj−1, j ∈ D,

t0j = 0, j − 1 ∈ R,
= 1, otherwise.

(v) The distribution of td − t0 is given in Figure 6.

(vi) The mapping S0j → S1, j = 2, 3, · · · , NS is obtained by the control chart.

(vii) MPNS > MPC , where the cooling limitsMPC are to be specified.

(viii) MPf = MPt′+lag + y′ where the distribution of y′ is given by (9).

(ix) lag = 1/3

(x) 0.5 ≤ ∆tj ≤ 1.5; ∆0.5 if j − 1 ∈ R
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It may be noted from the last constraint that the length of the sampling intervals post recovery has been limited to
thirty minutes. This is to have some safeguard against the possibility of greater variation in growth behaviour of the
process when fresh catalyst is added for the second time, particularly when such additions are made unnecessarily. In
other words, the controller operates in the safe mode post recovery. This is similar to the control schemes proposed
by Mozumder, Saxena, and Collins (1994) and Sachs, Hu, and Ingolfsson (1995), where the control chart is used for
selecting an appropriate mode of drift control

4.3 Solution methodology

In principle, the SDP can be solved to determine the cooling limits and the sampling intervals simultaneously. However,
in order to simplify the solution procedure, the cooling limits are determined separately. Such an approach has an added
advantage. If the cooling limits are found to be too low (say < 39.50◦C), then it will be necessary to put a constraint
onMPC and then solve the SDP. This is because if a batch becomes dead immediately after cooling then the end cost
cannot be evaluated properly by the quadratic loss function in such cases. The losses are expected to be much higher
than that given by the loss function. An independent exercise to find the cooling limits will then be helpful in specifying
a suitable constraint onMPC , if needed.
However, in the present case, the standalone cooling limits obtained from an independent exercise are judged to be
satisfactory. These limits are then used for finding the optimal sampling intervals.

4.3.1 Optimal cooling limits

Let the present state of the process be denoted byMPt. Then the determination of cooling limit involves a comparison
of cost of cooling a batch at the present state with that of going ahead by one more step. The minimum permissible
step size is chosen as half an hour so that the limits remain close to the target. Thus, the determination of cooling limit
becomes a single stage stochastic optimization problem with only two alternatives - start cooling atMPt or continue
hydrogenation for another thirty minutes. Of course, the costs will vary depending on whether the batch, at time t,
is identified as active or dead. If it is identified as dead, then the options are either to start cooling at MPt without
recovering the batch or to recover it and then continue hydrogenation for thirty minutes.
The scenario tree for the case when the batch at (MP, t) is identified as active by the control chart is shown in Figure
7. The two simplifying assumptions made in constructing the scenario tree are as follows: (i) The control chart cannot
detect a dead batch if the sample is drawn less than half an hour after the occurrence of death and (ii) Second sample
detection of growth failure is certain. It is already noted in the section describing the control chart that these two
assumptions are very reasonable. Thus, the expected total cost of cooling atMPt is given by (see Figure 7)

E(TC1) = (1− p1)CA + p1CD

where p1 , by virtue of assumption (i) above, is approximately the probability of a batch becoming dead in the interval
(t–0.5, t+ lag), given that it is active at t–0.5.
On the other hand, instead of cooling at (t+ lag) if it is decided to continue hydrogenation for another thirty minutes
then the expected cost is given by (see Figure 7)

E(TC2) = (1− p1)[p2CAD + (1− p2)CAA] + p1CDA

where p2 is the probability of failure in the interval (t+ lag, t+ lag+0.5), given that the batch is active at (t+ lag).
The cost variables (CA, CD, · · · , CDA) involved in the above two equations are described in Table 1.
To illustrate, let us consider the cost component CA, which is given by

CA = C1 + Cd + Cr + CE = 350[E(MPf − 40.5)2)]

= 350[E(MPf+lag) + E(y′ − 40.5)2 + V (MPt+lag) + V (y′)]

where E(MPt+lag) and V (MPt+lag) are obtained from (6) and E(y′) and V (y′) are obtained from (10). The other
costs are evaluated similarly.
The desired optimal cooling limit for a given t is given by the minimum melting point at which E(TC2) becomes
greater than E(TC1).
The scenario tree for the case of a dead batch, i.e., when S = s1, s4 is constructed similarly. Here the first two branches
at (t + lag) correspond to the batch being genuinely dead or it is a false alarm. It may be noted that the probability
of a false alarm at the lower limit of the control chart (= -2.35) is very low (< 1%). Hence this branch can be ignored
without having any significant impact on the final results. However, here no such approximation is made for computing
the expected costs. The method of computation remains the same as before.
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Table 1: Cost variables for determining the cooling limits

Cost Description Cost component*
variable C1 Cd Cr CE

CA
Expected cost of cooling an active 0 0 0 α2E(MPf − 40.5)2

batch at (t+ lag) MPf = MPt+lag + y′

CD
Expected cost of cooling a dead batch 0 0 0 α2E(MPf − 40.5)2

at (t+ lag) MPf = MPt

CAA
Expected cost of cooling an active 1 0 0 α2E(MPf − 40.5)2

batch after hydrogenation for 0.5 hour MPf = MPt+lag+0.5 + y′

CAD

Expected cost of cooling a dead batch
1 0.25α1 0 α2E(MPf − 40.5)2

MPf = MPt+lag+0.25
after hydrogenation for 0.5 hour given
that it was active at the beginning

CDA

Expected cost of cooling a recovered
2 α1(0.5 + lag) k1(RT )

α2E(MPf − 40.5)2

batch after hydrogenation for 0.5 hour MPf = MPt+0.5 + y′

given that it failed 0.5 +RT hour before t0 = 0
*C1 =Sampling cost, Cd = Detection cost, Cr = Recovery cost, CE = End cost, α1 = 100, α2 = 350

Figure 7: Scenario tree showing the possible states at the time of cooling when a batch is identified as active based on
the sample drawn at time t

4.3.2 Optimal sampling intervals

It is obvious from the above formulation of the SDP that even if the cooling limits are specified beforehand, some
sort of approximation needs to be made for determining the optimal sampling intervals. Therefore, the method of
ApproximateDynamic Programming (ADP) is used for solving the SDP. Powell (2010) has classified the approximations
comprising the body of ADP into four categories: (i) Myopic cost function approximation, (ii) Look-ahead policy (iii)
Policy function approximation and (ii) Value function approximation. For example, the specification of t1 = 1.5 hour
can be thought of as an outcome of the myopic cost function approximation. The optimal sampling intervals are
obtained following a policy function approximation described below.
Policy functions. The policies chosen for determining the sampling intervals (DT ) are as follows:

P1 : DT = k1(PT ), 0 < k1 ≤ 1 (20)
P2 : DT = k2(PT ), 0 < k2 = b0 + b1(MPt) + b2(t− t0), 0 < k2 ≤ 1 (21)

where PT is the predicted time to reach the melting point of 400◦C from the present state of MPt and k1, k2 are
shrinkage factors. The predicted time is obtained from the process model (4). However, in order to satisfy the constraint
0.5 ≤ ∆t ≤ 1.5, the final sampling intervals are obtained as

∆t = 1.5, if DT > 1.5

= 0.5, if DT < 0.5

= DT, otherwise
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Thus the task now reduces to finding the optimal values of the parameters of the policy functions. As already noted, a
simulation based optimization strategy is used for estimating the parameters of the policy functions.

Simulation algorithm. The high level diagram of the simulation process is shown in Figure 8 and a summary of
the simulation algorithm is given below. The algorithm is implemented in R.

Step 1: Generate a random initial MP from (11). t = 1.5

Step 2: Generate a random failure time td

Step 3: Compute DT using (20) or (21). UseDT = 0.5 for a recovered batch

Step 4: Predict MP at t = t+DT

Step 5: Determine status of the batch using the control chart

Step 6: Go to step 8 ifMP ≥ MPC , otherwise continue

Step 7: Recover batch, if the control chart gives a dead signal

Step 8: Compute quality cost components for the interval and go to step 3

Step 9: Generate a random y′ from (7)

Step 10: Compute final melting point, the end cost and the penalty cost

Figure 8: High level diagram of the simulation process

Optimization of the parameters of P1 and P2. The parameter k1 of P1 is optimized in a straightforward manner.
The average of C(ω) is computed based on 25000 samples for a series of values of k1 with a step size of 0.05. The
value of k1, at which the average becomes minimum, is the desired solution.
However, the estimation of the parameters of P2 is not such a simple task. The method of Experimental Regression
Analysis proposed by Taguchi (1987) is used for this purpose. In this method, the parameter space in which the optimal
is expected to lie is systematically searched using a statistical design to locate the optimum. At the first iteration, the
levels of the factors (parameters) cover the entire space that needs to be searched. In subsequent iterations the levels
of the parameters are selected around the best levels of the previous iteration. The process ends when there is no
significant improvement in response. Here, a 33 design is used for the purpose of experimentation. For the first
iteration, the total cost is evaluated based on 2000 samples and the sample size is increased gradually to 25000 for the
last (4th) iteration.

5. RESULTS

5.1 Cooling limits

The cooling limits are obtained following the methodology described above. The comparison of costs for the two
options when a batch is identified as active is shown in Table 2. The corresponding cooling limits are also indicated
in this table. A similar table is constructed for determining the cooling limits when a batch is identified as dead. The
cooling limits thus obtained are summarized in Table 3. It is seen from this table that the cooling limit increases with
the increase in t. This is to be expected since the variance of melting point decreases with the increase in t (see the SN
function in (4)). The cooling limit for a dead batch is the highest for obvious reason of zero growth during cooling for
a dead batch.
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Table 2: Comparison of costs for determining the cooling limits* (active batches)

t
Cost of cooling atMPt Cost of continuing hydrogenation

MP MP
39.6 39.7 39.8 39.9 40.0 39.6 39.7 39.8 39.9 40.0

2 78.9 65.9 57.8 56.2 79.2 74.5 72.4 73.2 76.7
3 76.6 63.8 55.9 52.9 54.8 68.9 65.3 64.4 66.3 70.9
4 87.9 72.4 61.9 56.4 56.0 74.3 68.9 66.4 66.7 69.9
5 121.7 98.5 80.7 68.3 61.2 92.0 84.2 79.3 77.3 78.2
6 153.1 122.8 98.2 79.4 66.2 106.5 97.5 91.3 88.1 87.9
7 172.8 138.1 109.3 86.4 69.4 114.9 105.4 98.9 95.2 94.6
8 184.2 147.0 115.7 90.5 71.2 119.6 110.0 103.2 99.4 98.6
*The melting points corresponding to the bold faced numbers are the cooling limits

Table 3: Cooling limits

Active batch Dead batch
1.5 ≤ t ≤ 2.5 2.5 < t ≤ 3.5 3.5 < t ≤ 4.5 t > 4.5 All t

39.6 39.7 39.8 39.9 40.1

5.2 Optimal policies

Figure 9 shows the plot of E[C(ω)] versus k1. It is obvious from this figure that the optimal value of k1 is 0.75. The
expected cost for k1 < 0.5, which are much higher than that for k1 = 0.5, are not shown in this figure.
The optimal policy P2 turns out to be simpler than specified, since the optimal value of b1 is found to be zero. The
optimal shrinkage factor k2 is given by k2 = 0.65 + 0.02(t–t0).

Figure 9: Optimal shrinkage factor k1 for minimum cost

5.3 Comparison of performance of P1, P2 and the existing procedure

Table 4 summarizes the performance of the two policies (optimized) and the existing procedure. It is seen that there
is no significant difference in performance between P1 and P2. However, since the performance of P2 is found to
be numerically better than P1 with respect to all the three important parameters, namely total cost, cycle time and
% detection of dead batches, the policy P2 is recommended for implementation. Next, the performance of P2 is
compared with that of the existing system (E). It is seen that the proposed policy is far superior to the existing one.
A comparison of the individual cost and other elements reveals the following: (i) The similarity of the penalty cost of
P2 and E suggests that the concern related to the workload of the testing laboratory has been addressed adequately.
(ii) The sampling cost of P2 is marginally higher than that of E. This is to be expected since an extra sample is taken
at t = 1.5 hour for every batch. However, the additional information provided by this extra sample about the growth
behavior of the process over a larger range of t is likely to be very valuable in developing a better process model in
future. (iii) Both the failure and recovery cost of the existing system is significantly higher than that of P2. This also
indicates the effectiveness of the control chart (compared to the existing naive approach) in detecting a dead batch. (iv)
Most importantly, the optimal system P2 is expected to reduce the quality loss by about 46% from the present level.
However, even under P2, the quality loss remains the main contributor to the total cost (64.2%). Therefore, the future
improvement effort should be directed towards reduction of this component. (v) The policy P2 is also expected to
reduce the cycle time by more than half an hour, which is very significant from the point of view of production cost.
This reduction in cycle time is a combined effect of lower failure time, less overshooting of the final melting point and
recovery of the extremely slow growing batches.
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Table 4: Comparison of performance of P1, P2 and the existing system

Item Average
P1 P2 Existing

Total cost 80.54 79.03 128.95
Penalty cost 8.56 8.9 6.38
Sampling cost 4.34 4.34 3.6
Failure cost 15.47 14.57 20.29
Recovery cost 1.46 1.46 4.26
End cost 51.71 50.76 94.42

Mean (MPf ) (40.49) (40.48) (40.71)
MSE (MPf ) (0.148) (0.145) (0.27)
Cycle time* (3.47) (3.39) (4.0)
% Detection (71.76) (75.51) -
*From t0 to the beginning of cooling

5.4 Look-up table

In order to facilitate the implementation ofP2, a two-way look-up table giving the values of∆t for various combinations
ofMP and t is prepared. An abridged version of the same is shown in Table 5.

Table 5: Look-up table for ∆t in minutes (when the batch is identified as active*)

MP T
1.5 2.5 3.5 4.5 6

32-38.5 90
38.6 87 90 90 90 90
38.8 79 82 84 86 90
39.0 70 72 74 76 79
39.2 59 61 63 65 67
39.4 54 56 58 59 61
39.6 41 42 43 44 46

39.8-39.9 30
*Use ∆t = 30 for a recovered batch

6. CONCLUSION

An integrated control system is proposed for controlling the final melting point of a batch of partially hydrogenated
edible oil taking the effect of growth failures into account. The approach proposed is fairly general and can be used in
many other similar situations. It can also be generalized to situations where the growth rate is slowed down deliberately
towards the end of process for achieving better control of the end state.
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