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Abstract: This paper proposes a supply chain-transport supernetwork equilibrium (SC-T-SNE) model, which takes
into account inventory costs incurred due to the uncertainty of product demands. The model is also a modified version
of supply chain network equilibrium models, dealing with a supernetwork explicitly integrating supply chain networks
(SCNs) with a transport network. The inventory costs are estimated based on the probability distributions for rep-
resenting the demand fluctuations, where wholesalers’ and/or retailers’ preference for inventory can be represented
by setting the threshold. Decentralized decision-making processes and interactive behaviors among such entities as
manufacturers, wholesalers, retailers, consumers (demand markets), freight carriers, and transport network users are
incorporated within the model. These are formulated as variational inequality problems, and the equilibrium conditions
governing the supernetwork and the solution procedures to the variational inequality problems are represented. Results
of the model, as applied to a hypothesized supernetwork, reveal that the increased variability of consumers’ demands
would decrease the amount of products transacted between the entities and the efficiency of SCNs. Numerical tests
using the model also show that the information sharing between wholesalers and retailers about such variable nature
of the demands could enhance the efficiency of SCNs with the distribution channels on them being changed. Further-
more, it is indicated that the magnitudes of the effects attained from the information sharing might be comparable to
those obtained by the improvement of capacity in congested links on the road network.
Keyword — Uncertainty, Inventory, Supply chain, Transport network

1. INTRODUCTION

A supply chain is a network of linkages between various economic entities for the passage of products from production
to consumption, including manufacturers, wholesalers, retailers, consumers, and freight carriers. Supply chain man-
agement (SCM) has recently become a crucial long-term strategy for businesses(Mentzer, De Witt, Keebler, Min, &
Nix, 2003), since it was firstly coined by Oliver and Webber (1982). The fundamental objective of SCM is to develop
effective networks among companies and/or organizations including inventory control. That is, to create efficient
supply chain networks (SCNs), even though the definition of SCM and its concept can somewhat vary (Christopher,
1992; Cooper & Ellram, 1993; Ellram, 1991; Kopczak, 1997; Lee & Billington, 1992; Towill, Naim, & Wikner, 1992).
Decisions relating to goods distribution and freight transport are typically made looking over the entire SCNs, as SCM
is positively implemented by companies for remaining competitive. Consequently, the comprehension of what occurs
on the SCNs, namely, to describe the behavior of economic entities in the SCNs and the resulting flow of products,
allows administrators and planners to understand the mechanism of the generation of products as well as to explore
the effects of transport- and logistics-related measures. These can also encourage companies to recognize the necessity
and effectiveness of such measures.
Supply chain network equilibrium (SCNE) models can be used as a tool for describing what happens on multi-tiered
SCNs, incorporating decentralized decision-making by multiple agents on the SCNs and their behavioral interaction.
The SCNE model, developed first by Nagurney, Dong, and Zhang (2002), can provide several important outputs, such
as the amount of the products produced by manufacturers, that transacted and distributed between the entities involved
in an oligopolistic three-tiered SCN (i.e., manufacturers, retailers, and consumers), and the prices of the products. The
SCNE model has then been expanded to consider uncertain demands (Dong, Zhang, & Nagurney, 2010; Liu & Nagur-
ney, 2013; Qiang, Ke, Anderson, & Dong, 2013; Zhou, Chan, & Wong, 2018), electronic commerce (Nagurney, Cruz,
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Dong, & Zhang, 2005; Zhao & Nagurney, 2008), reverse SCNs (Hammond & Beullens, 2007; Nagurney & Toyasaki,
2005; Toyasaki, Daniele, & Wakolbinger, 2014; Yamada, Russ, Castro, & Taniguchi, 2009), corporate social respon-
sibility (Cruz, 2008; Cruz & Matsypura, 2009), production capacity constraints (Hamdouch, 2011; H. Y. C. R. Meng
Q., 2009), the behaviour of raw material suppliers (Cruz & Liu, 2011; Yang, Wang, & Li, 2009), corporate financial
risks (Liu & Cruz, 2012; Liu & Wang, 2018), competition between supply chains (Nagurney, 2010; Nagurney, Saberi,
& Shukla, 2015; Nagurney & Shukla, 2017; Nagurney & Yu, 2012; Rezapour & Farahani, 2010), humanitarian relief
(Nagurney, Flores, & Soylu, 2016), and has currently developed into a dynamic approach (Daniele, 2010)Cruz and Liu
(2011); Hamdouch (2011); Liu and Nagurney (2012); Saberi, Cruz, Sarkis, and Nagurney (2018); Zhou et al. (2018).
These existing SCNE studies, however, have not dealt with the endogenous decision-making process for determining
transport costs and fares (i.e., carriage); therefore, its direct effects on the traffic conditions in a transport network has
not properly been identified. The existing SCNE models do not focus on the reciprocal influences of the behavioral
changes in the SCNs and the traffic conditions in the transport network. Accordingly, these models would not always
be suitable for estimating the impact of freight transport measures to be implemented on the behavior of each entity
on the SCNs.
Having further developed the SCNEmodel by integrating SCNs with a transport network,Yamada and Febri (2015); Ya-
mada, Imai, Nakamura, and Taniguchi (2011) propose a supply chain–transport supernetwork equilibrium (SC-T-SNE)
model. The SC-T-SNE model describes the behavior of six entities within a supernetwork as shown in Fig. 1, including
manufacturers, wholesalers, retailers, freight carriers, consumers (i.e., demand markets), and transport network users.
The model allows for endogenously determining transport costs based on freight carriers’ decision-making, since the
behavior of transport network users including freight vehicles is incorporated within it. The mutual effects between
the behavioral changes in the SCNs and the transport network can also be identified, especially the effects of the traffic
conditions in the road network on the behavior of the entities on each SCN and vice versa. To enhance the applicability
of the model, the behavior of wholesalers and the facility costs for manufacturers, wholesalers, retailers, and freight
carriers are also embedded within the model, which are not taken into consideration in the existing SCNE models.
The SC-T-SNE is more oriented to SCNs as compared to the existing transport network models (Crainic, Florian, &
Leal, 1990; Fernandez, Joaquin de Cea, & Alexandra, 2003; Friesz, Tobin, & Harker, 1983; Guelat, Florian, & Crainic,
1990; Harker & Friesz, 1986; Yamada et al., 2009), as the relationship between traffic flow and goods movement can
be elucidated, looking over the entire SCNs. Although the existing SCNE studies (Hamdouch, 2011; Liu & Nagurney,
2012; Nagurney, 2006; Nagurney, Liu, Cojocaru, & Daniele, 2007) state that the SCNE can be reformulated and solved
as transport network equilibrium problems, this indicates that the SCNE can be treated as mathematically equivalent to
the transport network equilibrium. However, unlike the SC-T-SNEmodel, such SCNE studies disregard the integration
of SCNs with a transport network and provide the equilibrium conditions of an SCN instead of showing those of a
supply chain-transport supernetwork.
Inventory control is one of the most crucial functions for SCM, and therefore, there has been a lot of research under-
taken on inventory management (Sherbrooke, 2004; Tiexin, Jingbo, & Tao, 2008), since Harris (1913) introduced the
economic order quantity model. Most of them, however, are optimization models for a company or a group of com-
panies to determine the optimal amount of products for inventory and ordering. The paper focuses on an inventory
model based on the uncertain demands for products (i.e., risk of customer demand fluctuations), which is termed the
stochastic inventory model, where the Poisson distribution or the normal distribution is generally utilized as a proba-
bility distribution for representing the demand variation (Chiang & Benton, 1994).Browne and Zipkin (1991); Hala and
EI-Saadani (2006); Hariga and Ben-Daya (1999) provide a comprehensive overview of the stochastic inventory models.
Existing research on SCNE models with inventory costs being generated by the uncertainty of demands (Dong et al.,
2010; Liu & Nagurney, 2013; Qiang et al., 2013; Zhou et al., 2018) are inappropriate to deal with a variety of proba-
bility distributions. Multiperiod SCNE models (Cruz & Liu, 2011; Daniele, 2010; Hamdouch, 2011; Liu & Nagurney,
2012; Saberi et al., 2018) also take into account inventory costs with dynamically variable demand functions, which are
however, not involving uncertainty in each period.
The highlight of the paper is to present the SC-T-SNE model taking into account the inventory costs being induced
by the uncertain demands, even though the model is not a multiperiod one. As compared to the SC-T-SNE model
proposed by Yamada and Febri (2015); Yamada et al. (2011), the model presented in the paper explicitly incorporates
inventory costs, and consequently, is more realistic, practical, and useful for companies, administrators and planners.
Characterized by the availability of a wider variety of probability distributions for representing the demand fluctuations,
this model can facilitate the broader application than the existing SCNEmodels with inventory costs (Dong et al., 2010;
Liu & Nagurney, 2013; Qiang et al., 2013; Zhou et al., 2018). The mutual effects between the behavioral changes in
SCNs and a transport network, namely, the effects of the traffic conditions in the transport network on the activities
of each agent on the SCNs and vice versa, can also be investigated in this model, taking into account the endogenous
decision-making process for determining transport fares (i.e., carriage) and costs. These are allowed by the model han-
dling the SC-T-SNE.
The rest of the paper is organized as follows. In the following section, the formulation of the SC-T-SNEmodel is given
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Figure 1: Supply chain-transport supernetwork

with the inventory costs being produced by the uncertainty of product demands, deriving the optimality conditions
for the decision-makers. The governing equilibrium conditions are then presented, and the endogenous price variables
are also discussed in this section. In Section 3, the qualitative properties of the solutions are provided. The solution
procedures to the variational inequality problems formulated in the previous section are also outlined. The model is
then tested and applied to a hypothetical supernetwork in Section 4, where several case studies are carried out for in-
vestigating the influence of the uncertain demands on goods movement and the efficiency of SCNs in comparison with
the effects of the improvement of the road network. Finally, in Section 5, the methodologies, results, and analyses in
the paper are summarised.

2. THE SUPPLY CHAIN–TRANSPORT SUPERNETWORK EQUILIBRIUM MODEL WITH UNCER-
TAIN PRODUCT DEMANDS

In this section, the SC-T-SNE model with uncertain demands for products is formulated for a supernetwork, where
SCNs for various different products are involved in a transport network, which is assumed to be a road network
in this paper. Here, Y kinds of oligopolistic four-tier SCNs lie on the transport network, each providing product
y(y = 1, ..., Y ). As depicted in Fig. 2, the SCN for product y consists of my manufacturers, with a typical manufacturer
denoted by iy;ny wholesalers, with a typical wholesaler denoted by jy; oy retailers, with a typical retailer denoted by
ky;uy freight carriers, with a typical freight carrier denoted by hy , and consumers associated with r demand markets,
with a typical demand market denoted by l. Manufacturer iy(iy = 1, · · · ,my) on the SCN for product y is involved in
its production, which can then be purchased by wholesaler jy(jy = 1,…, ny), who, in turn, sell the product to retailer
ky(ky = 1,…, oy). Then, the retailer offers the product to consumers in demand market l(l = 1, · · · , r). Each
market possesses a demand function for an individual product. Product y is transported by freight carrier hy(hy =
1, · · · , uy). The links in the SCNs represent those for transport/transaction. The inventory costs resulted from the
uncertain demands are to be incurred by both the wholesalers and retailers.
The manufacturers, wholesalers, retailers, and demand markets in Y kinds of SCNs exist on the nodes in the transport
network. More than one decision-maker cannot deal with the same kind of product at a single node in the transport
network. Each node on the transport network can generate and attract the trips of freight vehicles, since the products
are transacted and distributed among the decision-makers on it. Other traffic rather than the freight vehicles can also
be generated from and attracted at any node in the transport network.

2.1 Notations for the model

The model inherently involves a lot of variables and parameters. Therefore, firstly, the notations majorly used for the
model are summarised as below. The equilibrium solution is denoted by “∗” in the subsequent formulation of themodel.

2.1.1 Decision variables

qp
y

hywyzy : Amount of product y transacted/transported from entity wy to entity zy by freight carrier hy using path py
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Figure 2: Supply chain network

Q1y : uymynye1y-dimensional vector with component hyiyjyp1y denoted by qp
1y

hyiyjy representing shipments of
product y between manufacturers and wholesalers

Q2y : uynyoye2y-dimensional vector with component hyjykyp2y denoted by qp
2y

hyjyky representing shipments of
product y between wholesalers and retailers

Q3y : uyoyre3y-dimensional vector with component hykylp3y denoted by qp
3y

hykyl representing shipments of product
y between retailers and demand markets

Q1 : S1-dimensional vector with components: Q11, · · · , Q1Y (S1 =
∑Y

y=1(u
ymynye1y))

Q2 : S2-dimensional vector with components: Q21, · · · , Q2Y (S2 =
∑Y

y=1(u
ynyoye2y))

Q3 : S3-dimensional vector with components: Q31, · · · , Q3Y (S3 =
∑Y

y=1(u
yoyre3y))

ρ4yl :Market price of product y at demand market l

ρ4y : r-dimensional vector for product y with component l denoted by ρ4yl

ρ4 : rY -dimensional vector with component ly denoted by ρ4yl

X : e5e6e4-dimensional vector with component rsprs denoted by xprs
rs

xprs
rs : Traffic volume of passenger cars between r and s using path prs

crs : Travel cost incurred between r and s

2.1.2 Inventory costs and uncertainty

swyzy (•) : Inventory cost generated between entity wy and entity zy

qswyzy : Expected inventory quantity generated between entity wy and entity zy

ξwyzy (•) : Coefficient of inventory cost between wy and zy

K1 : Number of classes in the probability distribution used for estimating qsjyky

K2 : Number of classes in the probability distribution used for estimating qskyl

Ky
3 : Number of classes in the probability distribution used for representing the demand of product y at demand
markets

L1 : Class number when ωM
jyky =

∑uy

hy=1

∑
p2y=E2y q

p2y

hyjyky .

L2 : Class number when ωR
kyl =

∑uy

hy=1

∑
p3y=E3y q

p3y

hykyl .
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ωU
wyzy : Class mark of classU in the probability distribution used for estimating qswyzy (U=M(M=1,· · · ,K1)or= R(R =

1, · · · ,K2))

ωV y

l : Class mark of class V y(V y = 1, · · · ,K3y ) in the probability distribution used for representing the demand of
product y at demand market l

pUwyzy : Probability of class U in the probability distribution used for estimating qswyzy

pV
y

l : Probability of class V y in the probability distribution used for representing the demand of product y at demand
market l

q0wyzy : Left endpoint of class 1 in the probability distribution used for estimating qswyzy

qU1
wyzy : Right endpoint of class U1 in the probability distribution used for estimating qswyzy (U1 = K1orK2)

ωy
l : Random variable representing the demand fluctuations for product y at demand market l

ω̄ : Expected value of the demand fluctuations for product y at demand market l

2.1.3 Other variables, functions, sets, and parameters

O : Set of origins for all the traffic in the transport network (∀O ⊆ V )

S : Set of destinations for all the traffic in the transport network (∀S ⊆ V )

G(V,A) : Transport network with the set of nodes V and that of links A

δw
yzy

a,py : Binary value of 1 if link a is contained in path py between entity wy and entity zy ; 0 if it is otherwise

drs(•) : Traffic demand function between r and s

tp
y

wyzy (•) : Travel time on path py between wy and zy

ta(xa) : Travel time on link a

xa : Traffic volume on link a

ρ1iyjy : Price charged for product y by manufacturer iy to wholesaler jy

ρ2jy : Sales price charged for product y by wholesaler jy to retailers

ρ3ky : Sales price charged for product y by retailer ky to consumers

ρThywyzy : Carriage charged by freight carrier hy for transporting product y between entity wy and entity zy (T = 5:
between manufacturer iy and wholesaler jy , T = 6: between wholesaler jy and retailer ky , T = 7: between
retailer ky and demand market l)

fiy (•) : Production cost of manufacturer iy for product y

gwy (•) : Facility cost of entity wy

cwyzy (•) : Transaction cost for product y incurred between entity wy and entity zy (excluding transport cost incurred
between wy and zy)

cwy (•) : Handling cost of entity wy

cp
y

hywyzy (•) : Unit operation cost (per transport volume) of freight carrier hy for transporting product y from entity wy to
entity zy using path py

dyl : Demand function of product y at demand market l

η : Operation cost for a freight vehicle per unit of time

ζ : Value of time for passenger cars

ι : Capacity of a freight vehicle

κ : Average loading factor of a freight vehicle

ν : Passenger car equivalent
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2.2 The behavior of manufacturers and their optimality conditions

The total costs incurred by manufacturer iy are equal to the sum of his production cost, facility cost, transaction cost,
and transport cost. His revenue, in turn, is equal to the price that the manufacturer charges for the product (and the
wholesalers are willing to pay) times the total quantity of products obtained/purchased from the manufacturer by the
wholesalers.
Let E1y(= Eiyjy ) be the set of paths for transporting product y between manufacturer iy and wholesaler jy on the
transport network, and dim p1y = e1y is given to path p1y(= piyjy ) ∈ E1y between OD pair (iy , jy)(iy ∈ O, jy ∈ S)
. The behavior of manufacturer iy dealing with product y is formulated below as a profit maximization problem.

Max

ny∑
jy=1

ρ1∗iyjy

uy∑
hy=1

∑
p1y∈E1y

qp
1y

hyiyjy − fiy (Q
1y)− giy (Q

1y)−
ny∑

jy=1

ciyjy (Q
1y)

−
uy∑

hy=1

ny∑
jy=1

ρ5∗hyiyjy

∑
p1y∈E1y

qp
1y

hyiyjy (1)

subject to qp
1y

hyiyjy ≤ 0 ∀hy, jy, p1y (2)

Assuming that production cost functions, facility cost functions and transaction cost functions for each manufacturer
are continuously differentiable and convex as well as that the manufacturers compete in a noncooperative fashion (see
Nagurney et al., 2002), the optimality conditions for all manufacturers for all kinds of products can simultaneously be
expressed as the following variational inequality: determine Q1∗ ∈ RS1

+ , which satisfies:

Y∑
y=1

uy∑
hy=1

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

[
∂fiy (Q

1y∗)

∂qp
1y

hyiyjy

+
∂giy (Q

1y∗)

∂qp
1y

hyiyjy

+
∂ciyjy (Q

1y∗)

∂qp
1y

hyiyjy

+ ρ5∗hyiyjy − ρ1∗iyjy

]

×
[
qp

1y

hyiyjy − qp
1y∗

hyiyjy

]
≤ 0 ∀Q1 ∈ RS1

+ (3)

In this derivation, as in the succeeding derivation of inequalities (8), (13), (17), and (26), the prices charged are not
considered variables. Instead, they can be treated as endogenous variables in the complete equilibrium model (i.e.,
inequality (32)) (Dong et al., 2010; Hammond & Beullens, 2007; Nagurney et al., 2002).

2.3 The behavior of wholesalers with uncertain product demands and their optimality conditions

The wholesalers are involved in transactions both with the manufacturers and with the retailers. Let E2y(= Eiyky )
denote the set of paths for transporting product y between wholesaler jy and retailer ky on the transport network,
and p2y(= pjyky ) ∈ E2y (dim p2y = e2y) be the path traveled between OD pair (jy, ky) in it. The behavior of
wholesaler jy dealing with product y is formulated with the following criterion of profit maximization.

Max ρ2∗jy
uy∑

hy=1

oy∑
ky=1

∑
p2y∈E2y

qp
2y

hyjyky − cjy (Q
1y)− gjy (Q

1y) (4)

−
oy∑

ky=1

sjyky (Q2y)−
oy∑

ky=1

cjyky (Q2y)−
uy∑

hy=1

oy∑
ky=1

ρ6∗hyjyky

∑
p2y∈E2y

qp
2y

hyjyky −
my∑
iy=1

ρ1∗iyjy

uy∑
hy=1

∑
p1y∈E1y

qp
1y

hyiyjy

subject to
uy∑

hy=1

oy∑
ky=1

∑
p2y∈E2y

qp
2y

hyjyky ≤
uy∑

hy=1

my∑
iy=1

∑
p1y∈E1y

qp
1y

hyiyjy (5)

qp
1y

hyiyjy ≥ 0∀hy, iy, p1y, qp
2y

hyiyjy ≥ 0∀hy, ky, p2y (6)

The objective function (4) represents that the difference between the revenues minus all the costs generated (i.e., han-
dling cost, facility cost, inventory cost, transaction cost, and transport cost) and the payout to the manufacturers should
be maximized. Constraint (5) simply expresses that the retailers cannot purchase more of the product from a wholesaler
than is available in stock.
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The handling cost is required for temporal storage of shipments, while the inventory cost includes expenses for
inventory-related storage, disposal, and the associated labor, expressed as the product of a coefficient of inventory
cost given in advance and the expected amount of inventory. As Fig. 3 indicates, the demand for product y of re-
tailer ky on wholesaler jy (i.e., the amount of the product transacted between them) is assumed to follow a probability
distribution ψjyky , and an inventory threshold is set at

∑uy

hy=1

∑
p2y∈E2y q

p2y

hyjyky . Assuming that an excess supply
(i.e., inventory) occurs when the product demand between jy and ky falls below the inventory threshold (Fig. 4), the
expected amount of inventory can be estimated as the expected value of inventory quantity to be generated. Preference
for inventory can be changed by relocating the threshold on the probability distribution. The threshold is positioned at
a smaller amount of the product transacted (on the horizontal axis in Fig. 3) for inventory-averse wholesalers, while at a
larger amount for stockout-averse wholesalers. In the case of the inventory-averse, both the inventory cost and the ex-
pected amount of inventory can be diminished, but the amount of the product transacted,

∑uy

hy=1

∑
p2y∈E2y q

p2y

hyjyky

, is likely to decrease due to the lower-positioned inventory threshold, causing the revenues to decline. Although the
cost incurred for stockout is not explicitly considered in this model, the stockout-averse wholesalers can increase their
revenues through the increased amount of the product transacted, by setting the threshold at a larger amount, which,
in turn, lead to the increase in inventory cost in comparison with the inventory-averse case. As such, safety stock can
be taken into consideration, if the threshold is set at a larger amount.
The shape of the probability distribution ψjyky is influenced by the probability distributions of consumers’ demands,
which are assumed to be continuous, as illustrated in Section 2.5 (also see the examples in Section 4). As is mentioned
in Section 2.5, the demands fluctuate even in the same market price, and their variability depends on the quantity of
the demands (see Fig. 5 in Section 2.5). Therefore, wholesaler jy cannot deterministically foresee a single probability
distribution of the demand of retailer ky on wholesaler jy , but can only perceive that the amount of the product that the
retailer will purchase varies in response to the sales price offered and fluctuates even in the same sales price (specifically,
parameters of the probability distribution representing the demand of retailer ky on wholesaler jy , such as its mean and
variance, vary) as well as that the magnitudes of the fluctuation depend on the amount of the retailer’s demand. The
wholesalers are only able to determine in advance the relative location of the inventory threshold on the probability
distribution, since the amount of the products consumed at demand markets results from the behavioral interactions
among all economic entities on the SCNs (see variational inequalities (17) and (32) derived hereafter).
Discretely approximated, as shown in Fig. 4, the inventory cost can be derived as follows. Here, the relationship

Figure 3: The probability distribution of demand of retailer ky on wholesaler jy for product y

Figure 4: The probability distribution of the amount of inventory generated between jy and ky

between q0jyky and
∑uy

hy=1

∑
p2y∈E2y q

p2y

hyjyky in probability distribution ψjyky is required to be made clear (Fig. 3).
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sjyky (Q2y) = ξjyky (qsjyky )qsjyky = ξjyky (qsjyky )

L1∑
M=1

 uy∑
hy=1

∑
p2y∈E2y

qp
2y

hyjyky − ωM
jyky

 pMjyky (7)

= ξjyky (qsjyky )

L1∑
M=1

 uy∑
hy=1

∑
p2y∈E2y

qp
2y

hyjyky −
{
q0jyky +

(
2M − 1

2K1

)(
qK1

jyky − q0jyky

)} pMjyky

= ξjyky (qsjyky )

L1∑
M=1

 uy∑
hy

∑
p2y∈E2y

qp
2y

hyjyky −
{(

2K1 − 2M + 1

2K1

)
q0jyky +

(
2M − 1

2K1

)
qK1

jyky

} pMjyky

ξjyky (•) is established so that inventory cost function sjyky (•) is continuously differentiable and convex. Assuming
that the handling cost functions, facility cost functions, and transaction cost functions are also continuously differ-
entiable and convex as well as that the wholesalers compete with one another in a noncooperative manner, seeking
to determine their optimal shipments from the manufacturers and to the retailers, the optimality conditions for all
wholesalers for all kinds of products simultaneously coincide with the solution of the following variational inequality:
determine (Q1∗, Q2∗, γ∗) ∈ RS1+S2+nY

+ satisfying:

Y∑
y=1

uy∑
hy=1

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

[
∂cjy (Q

1y∗)

∂qp
1y

hyiyjy

+
∂gjy (Q

1y∗)

∂qp
1y

yiyjy

+ ρ1∗iyjy − γ∗jy

]
×
[
qp

1y

hyiyjy − qp
1y∗

hyiyjy

]
Y∑

y=1

uy∑
hy=1

ny∑
jy=1

oy∑
ky=1

∑
p1y∈E1y

[
−ρ2∗jy +

∂sjyky (Q2y∗)

∂qp
2y

hyjyky

+
∂cjyky (Q2y∗)

∂qp
2y

hyjyky

+ ρ6∗hyjyky + γ∗jy

]
×
[
qp

2y

hyjyky − qp
2y∗

hyjyky

]

+

Y∑
y=1

ny∑
jy=1

 uy∑
hy=1

 my∑
iy=1

∑
p1y∈E1y

qp
1y∗

hyiyjy −
oy∑

ky=1

∑
p2y∈E2y

qp
2∗

hyjyky

×
[
γjy − γ∗jy

]
≥ 0

∀(Q1, Q2, γ) ∈ RS1+S2+nY
+ (8)

Here, the term γiy is the Lagrange multiplier associated with constraint (5), and γy is an n-dimensional vector with
component jy denoted by γiy , whereas γ is an nY -dimensional vector with component y denoted by γY .

2.4 The behavior of retailers with uncertain product demands and their optimality conditions

The retailers, in turn, are involved in transactions with the wholesalers, since they wish to attain the product for their
retail outlets, as well as with the consumers who are the ultimate purchasers of the product. Given path p3y(= pkyl) ∈
E3y(dim p3y = e3

y

) used between OD pair of (ky, l)(ky ∈ O, l ∈ S) on the transport network, whereE3y(= Ekyl)
is the set of paths between retailer ky and demand market l, the behavior of retailer ky who deals with product y and
seeks a maximum profit can be formulated as follows:

Max ρ3∗ky

uy∑
hy=1

r∑
l=1

∑
p3y∈E3y

qp
3y

hykyl − cky (Q2y)− gky (Q2y)

−
r∑

l=1

skyl(Q
3y)−

r∑
l=1

ckyl(Q
3y)−

uy∑
hy=1

r∑
l=1

ρ7∗hykyl

∑
p3y∈E3y

qp
3y

hykyl −
ny∑

jy=1

ρ2∗jy

uy∑
hy=1

∑
p2y∈E2y

qp
2y

hyjyky (9)

subject to
uy∑

hy=1

r∑
l=1

∑
p3y∈E3y

qp
3y

hykyl ≤
uy∑
h=1

ny∑
jy=1

∑
p2y∈E2y

qp
2y

hyjyky (10)

qp
2y

hyjyky ≥ 0 ∀hy, jy, p2y, qp
3y

hykyl ≥ 0 ∀hy, l, p3y (11)

The objective function (9) indicates that the difference between the revenues minus all the costs generated and the
payout to the wholesalers should be maximized. Constraint (10) also represents that consumers cannot purchase more
of the product from a retailer than is available in stock.
In the same manner as the case of the wholesalers, inventory cost skyl(Q

3y) can also be estimated as the product of a
coefficient of inventory cost and the expected amount of inventory as demonstrated in Eq. (12), where the relationship
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between q0kyl and
∑uy

hy=1

∑
p3y∈E3y q

p3y

hykyl must be identified.

skyl(Q
3y) = ξkyl(q

s
kyl)q

s
kyl = ξkyl(q

s
kyl)

L2∑
R=1

 uy∑
hy=1

∑
p3y∈E3y

qp
3y

hykyl − ωR
kyl

 pRkyl (12)

= ξkyl(q
s
kyl)

L2∑
R=1

 uy∑
hy=1

∑
p3y∈E3y

qp
3y

hykyl −
{
q0kyl +

(
2R− 1

2K2

)(
qK2

kyl − q0kyl

)} pRkyl

= ξkyl(q
s
kyl)

L2∑
R=1

 uy∑
hy=1

∑
p3y∈E3y

qp
3y

hykyl −
{(

2K2 − 2R+ 1

2K2

)
q0kyl +

(
2R− 1

2K2

)
qK2

kl

} pRkyl

Assuming that the inventory cost coefficient is provided beforehand as well as that the demand for product y in market
l follows probability distribution ψkyl with its inventory threshold being set at

∑uy

hy=1

∑
p3y∈E3y q

p3y

hykyl , an excess

supply arises when the demand between ky and l is lower than
∑uy

hy=1

∑
p3y∈E3y q

p3y

hykyl . The position of the thresh-
old in the probability distribution implies the preference for inventory. The probability distribution is assumed to be
continuous, which is influenced by the probability distributions of the product demands in markets (see the examples in
Section 4), though it is discretely approximated in estimating inventory cost skyl(Q

3y) . As is explained in Section 2.5,
the demands vary in response to market prices, and their variability is dependent on the amount of the demands (see
Fig. 5 in Section 2.5). Thus, like the wholesalers, the information that retailer ky has is that the probability distribution
of the product demand of market l on retailer ky fluctuates in response to the demand in the market. The retailers can
only determine beforehand the relative position of the inventory threshold on the probability distribution.
ξkyl(•) is established such that skyl(•) is a continuously differentiable and convex function of qp

3y

hykyl . The handling
cost functions, facility cost functions, and transaction cost functions are also assumed to be continuously differentiable
and convex. The retailers are assumed to compete with one another in a noncooperative manner, seeking to determine
their optimal shipments from the wholesalers and to the demand markets. The optimality conditions for all retailers
for all kinds of products can simultaneously be formulated as the following variational inequality problem: determine
(Q2∗, Q3∗, δ∗) ∈ RS2+S3+oY

+ which satisfies:

Y∑
y=1

uy∑
hy=1

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

[
∂cky (Q2y∗)

∂qp
2y

hyjyky

+
∂gky (Q2y∗)

∂qp
2y

hyjyky

+ ρ2∗jy − δ∗ky

]
×
[
qp

2y

hyjyky − qp
2y∗

hyjyky

]
Y∑

y=1

uy∑
hy=1

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

[
−ρ3∗ky +

∂skyl(Q
3y∗)

∂qp
3y

hykyl

+
∂ckyl(Q

3y∗)

∂qp
3y

hykyl

+ ρ7∗hykyl + δ∗ky

]
×
[
qp

3y

hykyl − qp
3y∗

hykyl

]

+

Y∑
y=1

oy∑
k=1

 uy∑
hy=1

 ny∑
jy=1

∑
p2y∈E2y

qp
2y∗

hyjyky −
r∑

l=1

∑
p3y∈E3y

qp
3∗

hykyl

× [δky − δ∗ky ] ≥ 0 (13)

∀(Q2, Q3, δ) ∈ RS2+S3+oY
+

Here, the term δky is the Lagrange multiplier associated with constraint (10), and δy is an o-dimensional vector with
component ky denoted by δky , while δ is an oY -dimensional vector with component y denoted by δy .

2.5 The consumers in the demand markets with variable product demands and the equilibrium conditions

The behavior of consumers located at the demandmarkets is described in this section. The consumers take into account
the price charged for the product by the retailers in making their consumption decisions. The demand function is
assumed to be continuous, and the following equilibrium (complementarity) conditions hold for demand market l.

ρ3∗ky

{
= ρ4y∗l if qp

3y

hykyl

∗
> 0

≥ ρ4y∗l if qp
3y

hykyl

∗
= 0

(14)

dyl (ρ
4y∗)

{
=
∑uy

hy=1

∑oy

ky=1

∑
p3y∈E3y q

p3y

hykY l

∗
if ρ4y∗l > 0

≤
∑uy

hy=1

∑oy

ky=1

∑
p3y∈E3y q

p3y

hykY l

∗
if ρ4y∗l = 0

(15)

Conditions (14) state that, in equilibrium, if the consumers in demand market l purchase product y from retailer ky ,
then the price charged by the retailer for product y is equal to the price that the consumers are willing to pay for it. If
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Figure 5: Demand function and its variability in demand market l

the price exceeds the price the consumers are willing to pay at the demand market, then there will be no transaction
between the retailer and demand market pair. Conditions (15) state, in turn, that if the equilibrium price the consumers
are willing to pay for product y in the demand market is positive, then the quantities purchased of the product from the
retailers will be precisely equal to the demand for that product in the market. If the equilibrium price in the demand
market is zero, then the shipments to that demand market may exceed the actual demand.
As Fig. 5 illustrates, it is assumed that demand function dyl (•) holds for d̂

y
l (ρ

4y, ω̄y
l ) , namely for the expected value

of probability distribution d̂yl (ρ
4y, ωy

l ) , which is a probability distribution of product y in demand market l when the
market price is ρ4y .

dyl (ρ
4y) = d̂yl (ρ

4y, ω̄y
l ) =

Ky
3∑

V y=1

d̂yl (ρ
4y, ωV y

l )pV
y

l (16)

The probability distributions of consumers’ demands are assumed to be continuous so that their variability hinges on
the amount of the products consumed. In equilibrium, conditions (14) and (15) will have to hold for all demand markets
for all kinds of products, and these, in turn, can also be expressed as a variational inequality problem, and given by:
determine (Q3∗, ρ4∗) ∈ RS3+rY

+ , such that

Y∑
y=1

uy∑
hy=1

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

[
ρ3y∗k − ρ4y∗l

]
×
[
qp

3y

hykyl − qp
3y

hykyl

∗]
+

Y∑
y=1

r∑
l=1

 uy∑
hy=1

oy∑
ky=1

∑
p3y∈E3y

qp
3y

hykyl − dyl (ρ
4y∗)


×
[
ρ4yl − ρ4y∗l

]
≥ 0 ∀(Q3, ρ4) ∈ Rs3+rY

+ (17)

2.6 The behavior of freight carriers and their optimality conditions

The freight carriers are not only decision-makers in the SCNs but transport network users. A road network is assumed
as a transport network with two kinds of user groups: freight vehicles operated by the freight carriers on the SCNs and
other vehicles (this can simply be called “passenger car” hereafter). The node for the generation of passenger cars (i.e.,
node of their origin) is expressed with r ∈ O , and those for their attraction (i.e., node of their destination) with s ∈ S .
The path prs ∈ Ers between OD pair (r, s) , where Ers is the set of paths between r and s , is given as dim prs = e4

. The number of origin nodes for passenger cars is represented as e5 , and that of destination nodes as e6 .
Travel time on a path (i.e., path cost) varies depending on the traffic volume for each OD pair and the amount of the
products transacted (i.e., the amount of the products produced, distributed or transported). The path travel time affects
the amount of the products transported on the SCNs through freight carriers’ decision-making, and consequently, the
demand for freight transport vacillates.

1813­713X Copyright © 2020 ORSTW



11

The freight carriers are also profit-maximizers, and the optimization problem for freight carrier hy is given as below:

Max
my∑
iy=1

ny∑
jy=1

ρ5∗hyiyjy

∑
p1y∈E1y

qp
1y

hyiyjy +

ny∑
j=1

oy∑
ky=1

ρ6∗hyjyky

∑
p2y∈E2y

qp
2y

hyjyky

+

oy∑
ky=1

r∑
l=1

ρ7∗hykyl

∑
p3y∈E3y

qp
3y

hykyl − ghy (Q1y, Q2y, Q3y)−
my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

qp
1y

hyiyjyC
p1y

hyiyjy (Q
1, Q2, Q3, X∗)

−
ny∑
j=1

oy∑
ky=1

∑
p2y∈E2y

qp
2y

hyjykyC
p2y

hyjyky (Q
1, Q2, Q3, X∗)−

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

qp
3y

hykylC
p3y

hykyl(Q
1, Q2, Q3, X∗) (18)

subject to qp
1y

hyiyjy ≥ 0∀iy, jy, p1y, qp
2y

hyjyky ≥ 0 ∀jy, ky, p2y, qp
3y

hykyl∀k
y, l, p3y (19)

The facility cost is required for the operation, improvement, and maintenance of facilities owned by the freight carriers.
The operation cost is generated by the operation of freight vehicles, including their fixed costs. The unit operation
costs can be formulated as follows:

Cp1y

hyiyjy (Q
1, Q2, Q3, X∗) =

ηtp
1y

iyjy (Q
1, Q2, Q3, X∗)

ικ
(20)

Cp2y

hyjyky (Q
1, Q2, Q3, X∗) =

ηtp
2y

jyky (Q1, Q2, Q3, X∗)

ικ
(21)

Cp3y

hykyl(Q
1, Q2, Q3, X∗) =

ηtp
3y

kyl(Q
1, Q2, Q3, X∗)

ικ
(22)

The path travel times can also be derived as below:

tp
1y

iyjy (Q
1, Q2, Q3, X∗) =

∑
a∈A

ta(xa)δ
iyjy

a,p1y (23)

tp
2y

jyky (Q
1, Q2, Q3, X∗) =

∑
a∈A

ta(xa)δ
jyky

a,p2y (24)

tp
3y

kyl(Q
1, Q2, Q3, X∗) =

∑
a∈A

ta(xa)δ
kyl
a,p3y (25)

If the facility cost functions and operation cost functions are continuously differentiable and convex, the optimality
conditions for all freight carriers for all kinds of products can simultaneously be formulated as the following variational
inequality problem: determine (Q1∗, Q2∗Q3∗) ∈ RS1+S2+S3

+ satisfying:

Y∑
y=1

uy∑
hy=1

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

[∂ghy (Q1y∗
, Q2y∗

, Q3y∗
)

∂qp
1y

hyiyjy

+ Cp1y

hyiyjy (Q
1∗ , Q2∗ , Q3∗ , X∗)

+ qp
1y

hyiyjy

∂Cp1y

hyiyjy (Q
1∗ , Q2∗ , Q3∗ , X∗)

∂qp
1y

hyiyjy

+

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

qp
2y

hyjyky

∂Cp2y

hyjyky (Q1∗ , Q2∗ , Q3∗ , X∗)

∂qp
1y

hyiyjy

+

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

qp
3y

hykyl

∂Cp3y

hykyl(Q
1∗ , Q2∗ , Q3∗ , X∗)

∂qp
1y

hyiyjy

− ρ5
∗

hyiyjy

]
×
[
qp

1y

hyiyjy − qp
1y∗

hyiyjy

]

+

Y∑
y=1

uy∑
hy=1

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

[∂ghy (Q1y∗
, Q2y∗

, Q3y∗
)

∂qp
2y

hyiyjy

+ Cp2y

hyjyky (Q
1∗ , Q2∗ , Q3∗ , X∗)

+ qp
2y

hyjyky

∂Cp2y

hyjyky (Q1∗ , Q2∗ , Q3∗ , X∗)

∂qp
2y

hyjyky

+

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

qp
1y

hyiyjy

∂Cp1y

hyiyjy (Q
1∗ , Q2∗ , Q3∗ , X∗)

∂qp
2y

hyjyky

+

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

qp
3y

hykyl

∂Cp3y

hykyl(Q
1∗ , Q2∗ , Q3∗ , X∗)

∂qp
2y

hyjyky

− ρ6
∗

hyjyky

]
×
[
qp

2y

hyjyky − qp
2y∗

hyjyky

]
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Y∑
y=1

uy∑
hy=1

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

[∂ghy (Q1y∗
, Q2y∗

, Q3y∗
)

∂qp
3y

hykyl

+ Cp3y

hykyl(Q
1∗ , Q2∗ , Q3∗ , X∗)

+ qp
3y

hykyl

∂Cp3y

hykyl(Q
1∗ , Q2∗ , Q3∗ , X∗)

∂qp
3y

hykyl

+

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

qp
1y

hyiyjy

∂Cp1y

hyiyjy (Q
1∗ , Q2∗ , Q3∗ , X∗)

∂qp
3y

hykyl

+

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

qp
2y

hyjyky

∂Cp2y

hyjyky (Q1∗ , Q2∗ , Q3∗ , X∗)

∂qp
3y

hykyl

− ρ7
∗

hykyl

]
×
[
qp

3y

hykyl − qp
3y∗

hykyl

]
≥ 0 (26)

∀(Q1, Q2, Q3) ∈ RS1+S2+S3

+

2.7 The passenger car traffic on the road network and the equilibrium conditions

The behavior of passenger cars is assumed to follow the user equilibrium traffic conditions with variable demands
Beckmann, McGuire, and Winsten (1955); Patriksson (1994). Thus, the demand for passenger cars in a given OD pair
varies, depending on the travel cost (i.e., travel time) on its shortest path. In this case, the behavior of passenger cars in
the road network is formulated as below:{
ζtprs

rs (Q1∗, Q2∗, Q3∗, X∗) = c∗rs if xprs
rs

∗ > 0

ζtprs
rs (Q1∗, Q2∗, Q3∗, X∗) ≥ c∗rs if xprs

rs
∗ = 0

(27)

drs(c
∗
rs)

{
=
∑

prs∈Ers
xprs
rs

∗ if crs∗ > 0

≤
∑

prs∈Ers
xprs
rs

∗ if crs∗ = 0
(28)

where

tprs
rs (Q1, Q2, Q3, X) =

∑
a∈A

ta(xa)δ
rs
a,p (29)

xa =
∑

prs∈Ers

δrsa,prs
xprs
rs + v

 ∑
p1y∈E1y

δi
yjy

a,p1y

qp
1y

hyiyjy

ικ
+

∑
p2y∈E2y

δj
yky

a,p2y

qp
2y

hyjyky

ικ
+

∑
p3y∈E3y

δk
yl

a,p3y

qp
3y

hykyl

ικ

 (30)

Conditions (27) represent the equilibrium conditions known as Wardrop’s first principle (Wardrop, 1952). The path
costs (i.e., path travel times) spent on all the paths in a given OD are equal and lower than or equivalent to the path
costs on any unused path. Conditions (28) show the requirements to be fulfilled for OD traffic demand with price
formulations (Nagurney, 1999), implying that traffic volume of passenger cars for an OD will be precisely equal to the
traffic demand for it if its minimum travel cost is positive, while the traffic volume for it may exceed the actual demand
if its minimum travel cost is zero.
Conditions (27) and (28) hold only for passenger car traffic, while freight traffic follows the product flow determined
by variational inequality (26). The traffic volume on a link is obtained by adding the passenger car volume on the link
and the converted value of the products transacted among the entities on the SCNs into the passenger car volume (see
Eq. (30)). As Eqs. (29) and (30) indicate, the path travel time of passenger cars is subject to the path traffic volume of
freight vehicles. Objective function (18) and Eqs. (20)-(25), (29) and (30) demonstrate that the amount of the products
distributed in the SCNs (i.e., the amount of the products produced, transacted, or transported) is influenced by the
traffic volume of passenger cars. The model likewise allows the freight vehicles and passenger cars to be treated as
multiclass users.
Conditions (27) and (28) must hold for all OD pairs in equilibrium. Hence, these conditions are equivalent to obtaining
(X∗, c∗rs) ∈ Re5e6e4+e5e6

+ which satisfies:∑
r∈R

∑
s∈S

∑
prs∈Ers

[
ζtprs

rs (Q1∗, Q2∗, Q3∗, X∗)− c∗rs
]
× [xprs

rs − xprs
rs

∗]

+
∑
r∈R

∑
s∈S

 ∑
prs∈Ers

xprs
rs

∗ − drs(c
∗
rs)

× [crs − c∗rs] ≥ 0 ∀(X, crs) ∈ Re5e6e4+e5e6

+ (31)

The SC-T-SNE model adopts a static approach for estimating traffic flow (e.g., daily traffic volume), since such an
approach has typically been utilized for traffic flow analyses (Bell & Iida, 1997; Patriksson, 1994). However, unlike
passengers, products may be transported during night time. In that case, the model should be extended so that it can
incorporate the dynamic nature of SCNs (Daniele, 2010) and transport networks (Friesz, Bernstein, Smith, Tobin, &
Wie, 1993).
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2.8 The equilibrium conditions of the supply chain-transport supernetwork with uncertain product demands

In equilibrium, all manufacturers have achieved optimality for all kinds of products (cf. (3)); all wholesalers have
achieved optimality for all kinds of products (cf. (8)); all retailers have achieved optimality for all kinds of products
(cf. (13)); all freight carriers have achieved optimality for all kinds of products (cf. (26)); equilibrium conditions for
all demand markets hold for all kinds of products (cf. (17)), and, finally, equilibrium conditions for all OD pairs of
passenger car traffic hold (cf. (31)). Moreover, the product flows (as well as that transported) between the distinct tiers
of the decision-makers on each SCN coincide. This is explicitly stated in the following definition:
Definition 1 (Supply chain–transport supernetwork equilibrium). The equilibrium state of the supply chain-transport
supernetwork is one where the optimality conditions (3), (8), (13), and (26) and the equilibrium conditions (17) and (31)
hold simultaneously so that no decision-maker has any incentive to alter his decisions.
Under this definition, since the product flows (as well as that transported), market prices, path traffic volume, and path
costs (i.e., path travel time) will have to satisfy the sum of optimality conditions (3), (8), (13) and (26) and conditions
(17) and (31), the following theorem can be established.
Theorem 1 (Variational inequality formulation). The equilibrium conditions governing the supply chain-transport su-
pernetwork model are equivalent to the solution to the variational inequality problem given
by: determine (Q1∗, Q2∗, Q3∗, γ∗, δ∗, ρ4∗, X∗, c∗rs) ∈ RS1+S2+S3+uy+oy+r+e5e6e4+e5e6 satisfying:

Y∑
y=1

uy∑
hy=1

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

[∂fiy (Q1y∗)

∂qp
1y

hyiyjy

+
∂giy (Q

1y∗)

∂qp
1y

hyiyjy

+
∂ciyjy (Q

1y∗)

∂qp
1y

hyiyjy

+
∂cjy (Q

1y∗)

∂qp
1y

hyiyjy

+
∂gjy (Q

1y∗)

∂qp
1y

hyiyjy

+
∂ghy (Q1y∗, Q2y∗, Q3y∗, X∗)

∂qp
1y

hyiyjy

+ Cp1y

hyiyjy (Q
1∗, Q2∗, Q3∗, X∗) + qp

1y

hyiyjy

∂Cp1y

hyiyjy (Q
1∗, Q2∗, Q3∗, X∗)

∂qp
1y

hyiyjy

+

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

qp
2y

hyjyky

∂Cp2y

hyjyky (Q1∗, Q2∗, Q3∗, X∗)

∂qp
1y

hyiyjy

+

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

qp
3y

hykyl

∂Cp3y

hykyl(Q
1∗, Q2∗, Q3∗, X∗)

∂qp
1y

hyiyjy

− γ∗jy
]
×
[
qp

1y

hyiyjy − qp
1y∗

hyiyjy

]
Y∑

y=1

uy∑
hy=1

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

[∂cky (Q2y∗)

∂qp
2y

hyjyky

+
∂gky (Q2y∗)

∂qp
2y

hyjyky

+
∂sjyky (Q2y∗)

∂qp
2y

hyjyky

+
∂cjyky (Q2y∗)

∂qp
2y

hyjyky

+
∂ghy (Q1y∗, Q2y∗, Q3y∗)

∂qp
2y

hyjyky

+ Cp2y

hyjyky (Q
1∗, Q2∗, Q3∗, X∗) + qp

2y

hyjyky

∂Cp2y

hyjyky (Q1∗, Q2∗, Q3∗, X∗)

∂qp
2y

hyjyky

+

ny∑
jy=1

oy∑
ky=1

∑
p1y∈E1y

qp
1y

hyiyjy

∂Cp1y

hyiyjy (Q
1∗, Q2∗, Q3∗, X∗)

∂qp
2y

hyjyky

+

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

qp
3y

hykyl

∂Cp3y

hykyl(Q
1∗, Q2∗, Q3∗, X∗)

∂qp
2y

hyjyky

+ γ∗jy − δ∗ky

]
×
[
qp

2y

hyjyky − qp
2y∗

hyjyky

]

+

Y∑
y=1

uy∑
hy=1

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

[∂skyl(Q
3y∗)

∂qp
3y

hykyl

+
∂ckyl(Q

3y∗)

∂qp
3y

hykyl

+
∂gkyl(Q

1y∗, Q2y∗, Q3y∗)

∂qp
3y

hykyl

+ Cp3y

hykyl(Q
1∗, Q2∗, Q3∗, X∗) + qp

3y

hykyl

∂Cp3y

hykyl(Q
1∗, Q2∗, Q3∗, X∗)

∂qp
3y

hykyl

+

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

qp
1y

hyiyjy

∂Cp1y

hyiyjy (Q
1∗, Q2∗, Q3∗, X∗)

∂qp
3y

hykyl

+

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

qp
2y

hyjyky

∂Cp2y

hyjyky (Q1∗, Q2∗, Q3∗, X∗)

∂qp
3y

hykyl

+ δ∗ky − ρ4y∗l

]
×
[
qp

3y

hykyl − qp
3y∗

hykyl

]
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+

Y∑
y=1

ny∑
j=1

 uy∑
hy=1

 my∑
iy=1

∑
p1y∈E1y

qp
1y∗

hyiyjy −
oy∑

ky=1

∑
p2y∈E2y

qp
2y∗

hyjyky

×
[
γjy − γ∗jy

]

+

Y∑
y=1

oy∑
ky=1

 uy∑
hy=1

 ny∑
j=1

∑
p2y∈E2y

qp
2y∗

hyjyky −
r∑

l=1

∑
p3y∈E3y

qp
3y∗

hykyl

× [δky − δ∗ky ]

+

Y∑
y=1

r∑
l=1

 uy∑
hy=1

oy∑
ky=1

∑
p3y∈E3y

qp
3y∗

hykyl − dyl (ρ
4y∗)

×
[
ρ4yl − ρ4y∗l

]
+
∑
r∈R

∑
s∈S

∑
prs∈Ers

[
ζtprs

rs (Q1∗, Q2∗, Q3∗, X∗)− c∗rs
]
× [xprs

rs − xprs∗
rs ]

+
∑
r∈R

∑
s∈S

 ∑
prs∈Ers

xprs∗
rs − drs(c

∗
rs)

× [crs − c∗rs] ≥ 0 (32)

∀(Q1, Q2, Q3, γ, δ, ρ4, X, crs) ∈ RS1+S2+S3+nY+oY+rY+e5e6e4+e5e6

The proof to Theorem 1 is similar to that established by Hammond and Beullens (2007); Nagurney et al. (2002). With
some algebraic manipulation, variational inequality (32) is noticed to be the sum of inequalities (3), (8), (13), (17), (26) and
(31). The converse also needs to be demonstrated to see if the solution to (32) is, in fact, an equilibrium as per Definition
1. This can be undertaken as follows: To inequality (32) add the terms+ρ1∗iyjy − ρ1∗iyjy and +ρ5∗hyiyjy − ρ5∗hyiyjy to the
term in the first set of brackets preceding the multiplication sign, add the terms+ρ2∗jy − ρ2∗jy and +ρ6∗hyjyky − ρ6∗hyjyky

to the term preceding the second multiplication sign, and add the terms +ρ3∗ky − ρ3∗ky and +ρ7∗hykyl − ρ7∗hykyl to the
term preceding the third multiplication sign. The variational inequality supplemented with these terms turns into the
sum of inequalities (3), (8), (13), (17), (26) and (31) without changing the value of variational inequality (32).

2.9 Retrieving the price variables

The price variable ρ1∗iyjy can be retrieved from the eventual solution by Eq. (33), setting qp
1y

hyiyjy > 0 in inequality (3).

ρ1∗iyjy =
∂fiy (Q

1y∗
)

∂qp
1y

hyiyjy

+
∂giy (Q

1y∗
)

∂qp
1y

hyiyjy

+
∂ciyjy (Q

1y∗
)

∂qp
1y

hyiyjy

+ ρ5∗hyiyjy (33)

The equilibrium solutions of γ and δ can be derived from inequality (32), and price ρ2∗jy can also be obtained by finding
a qp

2y

hyjyky in inequality (8) as follows:

ρ2
∗

jy =
∂cjyky

(
Q2y∗)

∂qp
2y

hyjyky

+ ρ6∗hyjyky + γ∗jy (34)

Also, if qp
3y

hykyl in inequality (13), the price ρ
3∗
ky can be derived as Eq. (35).

ρ3
∗

ky =
∂ckyl

(
Q3y∗)

∂qp
3y

hykyl

+ ρ7∗hykyl + δ∗ky (35)
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Likewise, the carriage charged by freight carrier hy for transporting product y can be obtained from inequality (26) as
follows:

ρ5∗hyiyjy =

∂ghy (Q1y∗
, Q2y∗

, Q3y∗
)

∂qp
1y

hyiyjy

+ Cp1y

hyiyjy (Q
1∗ , Q2∗ , Q3∗ , X∗) + qp

1y

hyiyjy

∂Cp1y

hyiyjy (Q
1∗, Q2∗, Q3∗, X∗)

∂qp
1y

hyiyjy

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

qp
2y

hyjyky

∂Cp2y

hyjyky (Q1∗, Q2∗, Q3∗, X∗)

∂qp
1y

hyiyjy

+

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

∂Cp3y

hykyl(Q
1∗, Q2∗, Q3∗, X∗)

∂qp
1y

hyiyjy

(36)

ρ6∗hyjyky =

∂ghy (Q1y∗, Q2y∗, Q3y∗)

∂qp
2y

hyjyky

+ Cp2y

hyjyky (Q
1∗, Q2∗, Q3∗, X∗) + qp

2y

hyjyky

∂Cp2y

hyjyky (Q1∗, Q2∗, Q3∗, X∗)

∂qp
2y

hyjyky

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

qp
1y

hyiyjy

∂Cp1y

hyiyjy (Q
1∗, Q2∗, Q3∗, X∗)

∂qp
2y

hyjyky

+

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

∂Cp3y

hykyl(Q
1∗, Q2∗, Q3∗, X∗)

∂qp
2y

hyjyky

(37)

ρ7∗hykyl =

∂ghy (Q1y∗, Q2y∗, Q3y∗)

∂qp
3y

hykyl

+ Cp3y

hykyl(Q
1∗, Q2∗, Q3∗, X∗) + qp

3y

hykyl

∂Cp3y

hykyl(Q
1∗, Q2∗, Q3∗, X∗)

∂qp
3y

hykyl

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

qp
1y

hyiyjy

∂Cp1y

hyiyjy (Q
1∗, Q2∗, Q3∗, X∗)

∂qp
3y

hykyl

+

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

∂Cp2y

hyjyky (Q1∗, Q2∗, Q3∗, X∗)

∂qp
3y

hykyl

(38)

3. QUALITATIVE PROPERTIES AND SOLUTION ALGORITHMS

This section highlights the existence and uniqueness of the solution to variational inequality (32). Its solution procedures
are also outlined. For ease of reference, assuming that
Z ≡

(
Q,Q2, Q3, γ, δ, ρ4, X, crs

)
, F (Z) ≡

(
F p1y

hyiyjy , F
p2y

hyjyky , F
p3y

hykyl, Fjy , Fky , F y
l , F

prs
rs , Frs

)
hy = 1, · · · , uy; iy = 1, · · · ,my; jy = 1, · · · , ny; ky = 1, · · · , oy; l = 1, · · · , r; y = 1, · · · , Y ;
p1y = 1, · · · , e1y; p2y = 1, · · · , e2y; p3y = 1, · · · , e3y; r = 1, · · · , e5; s = 1, · · · , e6; prs = 1, · · · , e4 , as
well as that the specific components of F are given by the functional terms preceding the multiplication signs in (32),
variational inequality problem (32) can be rewritten in standard variational inequality form: determine Z∗ ∈ B , where

B ≡
{(
Q1, Q2, Q3, γ, δ, ρ4, X, crs

)
|
(
Q1, Q2, Q3, γ, δ, ρ4, X, crs

)
∈ RS1+S2+S3+nY+oY+rY+e5e6e4+e5e6

+

}
(39)

satisfying

⟨F (Z∗) , Z − Z∗⟩ ≥ 0, ∀Z ∈ B (40)

Here, the term ⟨•, •⟩ represents the inner product in N -dimensional Euclidean space.

3.1 Existence of the solution

The feasible region B is not always compact, even if F in inequality (40) is continuous. Therefore, it is not easy to derive
the existence of a solution from the assumption of continuity of the functions. However, it is possible to impose a weak
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condition on B to guarantee the existence. Let

Bb =
{(
Q1, Q2, Q3, γ, δ, ρ4, X, crs

)
|0 ≤ Q1 ≤ b1; 0 ≤ Q2 ≤ b2; 0 ≤ Q3 ≤ b3; 0 ≤ γ ≤ b4;

0 ≤ δ ≤ b5; 0 ≤ ρ4 ≤ b6; 0 ≤ X ≤ b7; 0 ≤ crs ≤ b8

}
(41)

where b = (b1, b2, b3, b4, b5, b6, b7, b8) ≥ 0,

and Q1 ≤ b1; Q2 ≤ b2; Q3 ≤ b3; γ ≤ b4; δ ≤ b5; ρ4 ≤ b6; X ≤ b7; crs ≤ b8

means that qp
2y

hyjyky ≤ b2; qp
3

hyky ≤ b3; γjy ≤ b4; δky ≤ b5; ρ4yl ≤ b6; xpn
rs ≤ b7; crs ≤ b8

for all iy, jy, ky, l, hy, r, s, p1y, p2y, p3y and prs .

Bb is a bounded closed convex subset of RS1+S2+S3+nY+oY+rY+e5e6e4+e5e6

+ , and consequently, the following
variational inequality admits at least one solution of Zb ∈ Bb , as F is continuous:

⟨
F
(
Zb
)
, Z − Zb

⟩
≥ 0 ∀Zb ∈ Bb (42)

Following Theorem 4.2 in Kinderlehrer and Stampacchia (1980) (see also Theorem 1.5 in Nagurney (1999)), Lemma 1
can hold as below:
Lemma 1. Variational inequality (40) (and (32) as well) admits a solution if and only if there exists a b > 0 such that
variational inequality (42) admits a solution in Bb with

Q1 < b1; Q2 < b2; Q3 < b3; γ < b4; δ < b5; ρ4 < b6; X < b7; crs < b8 (43)

Under the conditions in Theorem 2 described below, the existence of a solution to the original variational inequality
problem is guaranteed by Lemma 1, since it is possible to construct b1, b2, b3, b4, b5, b6, b7 and b8 arge enough so
that the restricted variational inequality (42) will satisfy the condition of boundedness implied in (43). (Hammond &
Beullens, 2007; Nagurney & Zhao, 1993; Yamada et al., 2011).
Theorem 2. Suppose there exist positive constantsH , I and N(H < I) such that,

∂fiy
(
Q1y

)
∂qp

1y

hyiyjy

+
∂giy

(
Q1y

)
∂qp

y

hyiyjy

+
∂ciyjy

(
Q1y

)
∂qp

1y

hyiyjy

+
∂cjy

(
Q1y

)
∂qp

1y

hyiyjy

+
∂gjy

(
Q1y

)
∂qp

1y

hyiyjy

+
∂ghy

(
Q1y, Q2y, Q3y

)
∂qp

1y

hyiyjy

+ Cp1y

hyiyjy

(
Q1, Q2, Q3, X

)
+ qp

1y

hyiyjy

∂Cp1y

hyiyjy

(
Qy, Q2, Q3, X

)
∂qp

1y

hyiyjy

+

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

qp
2y

hyjyky

∂Cp2y

hyjyky

(
Qy, Q2, Q3, X

)
∂qp

1y

hyjyky

+

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

qp
3y

hykyl

∂Cp3y

hykyl

(
Q1Q2, Q3, X

)
∂q

p1y

hykyl

≥ I ∀Q1 with qp
1y

hyiyjy ≥ N ∀hy, iy, jy, p1y (44)

∂ky

(
Q2y

)
∂q

p2y

hyjyky

+
∂gky

(
Q2y

)
∂q

p2y

hyjyky

+
∂sjyky

(
Q2y∗)

∂q
p2y

hyjyky

+
∂cjyky

(
Q2y

)
∂q

p2y

hyjyky

+
∂ghy (Q1y, Q2y, Q3y)

∂q
p2y

hyjyky

+ Cp2y

hyjyky

(
Q1, Q2, Q3, X

)
+ qp

2y

hyjyky

∂Cp2y

hyjyky

(
Q1, Q2, Q3, X

)
∂qp

2y

hyjyky

+

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

qp
1y

hyiyjy

∂Cp1y

hyiyjyjy

(
Q1, Q2, Q3, X

)
∂qp

2y

hyjyky

+

oy∑
ky=1

r∑
l=1

∑
p3y∈E3y

∂Cp3y

hykyl(Q
1, Q2, Q3, X)

∂qp
2y

hyjyky

≥ I

∀Q2 with qp
2y

hyjyky ≥ N ∀hy, jy, ky, p2y (45)
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∂skyl

(
Q3y∗)

∂qp
3y

hykyl

+
∂ckyl

(
Q3y

)
∂qp

3y

hykyl

+
∂ghy

(
Q1y, Q2y, Q3y

)
∂qp

3y

hykyl

+ Cp3y

hykyl

(
Q1, Q2, Q3, X

)
+

qp
3y

hykyl

∂Cp3y

hykyl

(
Q1, Q2, Q3, X

)
∂qp

3y

hykyl

+

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

qp
1y

hyiyjy

∂Cp1y

hyiyjy (Q
1, Q2, Q3, X)

∂qp
3y

hykyl

+

ny∑
jy=1

oy∑
ky=1

∑
p2y∈E2y

qp
2y

hyjyky

∂CP 2y

hyjyky (Q1, Q2, Q3, X)

∂qp
3y

hykyl

≥ I ∀Q3 with qp
y

hykyI ≥ N ∀hy, ky, l, p3y (46)

dyl
(
ρ4y
)
≤ N ∀ρ4y with ρ4yl ≥ H, ∀l, y (47)

tprs
rs

(
Q1, Q2, Q3, X

)
≥ R ∀X with xprs

rs > N, ∀r, s, prs (48)
drs (crs) ≤ N ∀crs ≥ H, ∀r, s (49)

then variational inequality (32) (and (40) as well ) admits at least one solution.
Proof. Follows using analogous arguments as the proof of existence in Yamada et al. (2011) (see also Hammond and
Beullens (2007); Nagurney and Zhao (1993)).

3.2 The uniqueness of the solution

It is also crucial to investigate the uniqueness of the solution in order to guarantee the convergence of an algorithm
used to solve any variational inequality problem. Firstly, the following lemma is established.
Lemma 2. The vector function F that enters the variational inequality (40) (and (32) as well) is strictly monotone, with
respect to

(
Q1, Q2, Q3, ρ4, X, crs

)
, namely

⟨F (Z)− F (Z ′) , Z − Z ′⟩ ≥ 0, ∀Z,Z ′ ∈ B (50)

where

(i) fiy , giy , ciyjy , cjyky , cjy , gjy , ghy , cky , gky , sjyky and skyl are convex functions, Cp1y

hyiyjy , C
p2y

hyjyky , C
p3y

hykyl

are non-decreasing convex functions, dyl and drs are monotone decreasing functions, and t
prs
rs is a monotone

increasing function; and

(ii) one of the families of these convex functions is a family of strictly convex functions, and dyl , drs and t
prs
rs are

strictly monotone.

Proof. See the proof in Nagurney et al. (2002). According to Kinderlehrer and Stampacchia (1980); Nagurney (1999),
a solution to variational inequality (40) (and (32) as well) is unique if vector function F (Z) is strictly monotone. The
theorem can therefore be derived as follows (Nagurney et al., 2002):
Theorem 3. Under the condition of Lemma 2, there is a unique shipment pattern ofQ1∗, Q2∗, Q3∗ , a unique market
price vector of ρ4∗ , a unique traffic flow pattern ofX∗ and a unique travel cost vector of c∗rs satisfying the equilibrium
conditions of the supernetwork. In other words, if variational inequality (40) (and (32) as well) admits a solution, then
that is the only solution in

(
Q1, Q2, Q3, ρ4, X, crs

)
.

3.3 The algorithm

Amodified projection method can be used to solve variational inequality (32) (e.g., Nagurney et al., 2002). This method
is based on Lipschitz continuity condition for F (Z) and involves complicated procedures where the step size must be
set in advance with unknown Lipschitz constant. Accordingly, this study applies the solution procedures proposed by
Q. Meng, Huang, and Cheu (2007) as outlined below to avoid such difficulties.

STEP 1: As Z is non-negative, variational inequality (32) (and (40) as well) can be converted into an equivalent comple-
mentarity problem: determine Z∗ satisfying

Z∗ ≥ 0, F (Z∗) ≥ 0, ⟨F (Z∗) , Z∗⟩ ≥ 0, ∀Z ∈ B (51)

STEP 2: Using Fischer-Burmeister function Fischer (1992) of ϕ : R2 → R+ (see Eq. (52)), a non-negative real-valued
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function is defined as Eq. (53).

ϕ(w, v) = [
√
w2 + v2 − (w + v)]2 (52)

ψ(Z) =

Y∑
y=1

uy∑
hy=1

my∑
iy=1

ny∑
jy=1

∑
p1y∈E1y

ϕ
(
qp

1y

hyiyjy , F
p1y

hyiyjy (Z)
)

+

Y∑
y=1

uy∑
hy=1

ny∑
jy=1

oy∑
kY =1

∑
p2y∈E2y

ϕ
(
qp

2y

hyjyky , F
p2y

hyjyky (Z)
)

+

Y∑
y=1

uy∑
hy=1

oy∑
kY =1

r∑
l=1

∑
p3y∈E3y

ϕ
(
qp

3y

hykyl, F
p3y

hykyl(Z)
)
+

Y∑
y=1

ny∑
jy=1

ϕ (γjy , Fjy (Z))

+

Y∑
y=1

oy∑
ky=1

ϕ (δky , Fky (Z)) +

Y∑
y=1

r∑
l=1

ϕ
(
ρ4

y

l , F
y
l (Z)

)
+
∑
r∈R

∑
s∈S

∑
prs∈Ers

ϕ (X,F prs
rs (Z)) +

∑
r∈R

∑
s∈S

ϕ (crs, Frs(Z)) (53)

STEP 3: Complementarity conditions (51) can also be converted into an equivalent unconstrained nonlinear optimization
problem of minψ(Z) .

STEP 4: The optimization problem is solved using the Quasi-Newton method.

As stated in Q. Meng et al. (2007), the existence of a solution to this optimization problem can be verified with Theorem
2 described above. Geiger and Kanzow (1996) demonstrated that any stationary point of the unconstrained minimiza-
tion problem is its global minimum under the conditions where F (Z) is monotone and continuously differentiable.
The existence of an accumulation point can be guaranteed based on the function form of (52) and (53), and hence, the
solution obtained using the Quasi-Newton method turns into a global minimum.

4. NUMERICAL EXAMPLES

4.1 Problem definition and the base case

Numerically tests using the SC-T-SNEmodel developed are then undertakenwith a hypothesized supply chain-transport
supernetwork as shown in Fig. 6, for validating its performance and calibrating its parameter values. The model is also
numerically tested to investigate the influence of the variable nature of consumers’ product demands as well as to explore
the effects of information sharing between wholesalers and retailers about the demands. The following assumptions
are made for these numerical tests:

- The supernetwork illustrated in Fig. 6 is comprised of a transport network and two kinds of SCNs.

- The transport network is an urban road network.

- The economic activities from production to consumption on the SCNs are completed within this urban area.

- The supernetwork consists of 9 nodes and 36 links, where the link lengths (i.e., distances) are 1 (for link numbers
3, 4, 7, 8, 9, 10, 15, 16, 23, 24, 27, 28, 29, 30, 33, and 34),

√
2 (for link numbers 11, 12, 19, and 20) and (for the

remaining links), respectively.

- Two kinds of products (i.e., products 1 and 2) are only manufactured, transacted, and transported.

- The products are independently consumed with each other and transported by trucks traveled on the road net-
work.

- The SCN for each product is comprised of two manufacturers, two wholesalers, two retailers, three demand
markets, and one freight carrier.

- The demand markets are located at nodes 3, 5, and 7.

- The SCN for product 1 has the manufacturers at nodes 1 and 9, wholesalers at nodes 2 and 8, and retailers at
nodes 4 and 6; while that for product 2 contains the manufacturers at nodes 1 and 9, wholesalers at nodes 4 and
6, and retailers at nodes 2 and 8.
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- The generation/attraction nodes for passenger car traffic are nodes 1, 5, and 9.

- Each entity on the SCNs constitutes an origin or destination point for the trucks transporting the products.

The model is also applicable to inter-regional transport networks, since it is revealed that the traffic flow of passenger
cars can affect freight flow in such networks (Yamada et al., 2009), even though the tests undertaken in the paper
focus only on the urban road network. However, it would be more appropriate to extend the model to intermodal or
multimodal situations if applied to the inter-regional case (Arnold, Peeters, & Thomas, 2004; Yamada et al., 2009).
Both the functional forms and parameter values of fjy , cjy , cky , ciyjy , cjyky , ckyl, gjy , gky , ghy , dyl , ι, κ, η, ν, ζ and
ta are determined so that the existence and uniqueness of the solutions are ensured. These settings are also based on
existing studies (Nagurney et al., 2002; Patriksson, 1994; Yamada et al., 2011,?). For simplicity, the functional forms and
parameter values of the two kinds of products are set identically (i.e., the same functional forms and parameter values
are used for both y = 1 and y = 2).

Figure 6: Supernetwork investigated
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dyl = 1000− 3.0ρ4yl (59)

The other parameters are set as ι = 8; κ = 0.43; η = 5; ν = 2; ζ = 1; C0,a = 120 for all a; t0,a = 0.8 for
a = 3, 4, 7, 8, 9, 10, 15, 16, 23, 24, 27, 28, 29, 30, 33and34; t0,a = 1.6 for a = 11, 12, 19 and 20; and t0,a = 1.13
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for a = 1, 2, 5, 6, 13, 14, 17, 18, 21, 22, 25, 26, 31, 32, 35 and 36. For the OD demand of passenger car traffic, drs =
120 − 1.0c∗rs is given to all OD pairs. The following modified BPR function is employed as a link cost function ta,
which is required for estimating the path travel time on the road network:

ta(xa) = t0,a

{
1 + 2.62(xa/Ca)

5
}

(60)

where t0,a denotes the free travel time on link a, and the traffic capacity on link a is represented by Ca.
Passenger car equivalent (PCE) for trucks is utilized for estimating link travel times. Here, it is set at 2 as commonly
applied in Japan to the traffic conditions where the percentage of heavy vehicle traffic is 30% of the total in a two-lane
road with a gradient of 3% or less. The average loading factor of the trucks is set at 43%, based on an annual statistical
report on road-based freight transport in Japan. It is almost impossible to enumerate all possible paths for all OD pairs
on the transport network due to the considerable number of combinations of links. Thus, the paths to be used in the
calculation are limited to those with a length not exceeding 1.5 times that of the shortest path for each OD pair.
The demand of product y in market l is assumed to comply with normal distribution
d̂yl (ρ

4y, ω̄y
l ) ∼ N

(∑1
hy=1

∑2
ky=1

∑
p3y∈E3y q

p3y

hykyl, (σ
y
l )

2
)
, where σy

l = ιyl
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hykyl .

Here, ιyl is a coefficient of variation (CV) for a mean value of
∑1

hy=1

∑2
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∑
p3y∈E3y q

p3y

hykyl and exogenously given.

The product demand on retailer k in market l is assumed to obeyN
(∑uy

hy=1

∑
p3y∈E3y q

p3y

hykyl, (σ
y
l )

2
)
, which is nec-

essary for estimating the inventory cost of retailer k. The demand of retailer k on wholesaler j is also assumed to follow
the normal distributionN

(∑1
hy=1

∑
p2y∈E2y q

p2y

hyjyky , σ2
ky

)
with σky = ιky

∑1
hy=1

∑
p2y∈E2y q

p2y

hyjyky , where ιky

is a CV for a mean value of
∑1

hy=1

∑
p2y∈E2y q

p2y

hyjyky and given as ιky =
√∑3

l=1 (ι
y
l )

2 . Thus, the inventory costs
incurred by the wholesalers are affected by the demands in the markets. The discrete approximation method is applied
to each case within a range of ±3σy

l (or ±3σky ), which is a 99% confidence interval of the normal distribution. Both
the functional forms of ξjyky (qsjyky ) and ξkyl(q

s
kyl) are made such that the uniqueness and existence of the solutions

are ensured. Hereafter, the inventory threshold of
∑1

hy=1

∑
p2y∈E2y q

p2y

hyjyky (and
∑1

hy=1

∑
p3y∈E3y q

p3y

hykyl as well)
is set at the mean value of the probability distribution used. The functional forms and parameter values required for
computing the inventory costs are provided below.

K1 = 31, K2 = 31, ιyl = 0.1 (61)
L1 = L2 = 16 (62)
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)2
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(65)

q0kyl = (1− 3ιyl )
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pRkyl =
6

K2

√
2π

exp

(
−4.5

(
2R−K2 − 1

K2

)2
)

(67)

ξjyky (qsjyky ) = 30qsjyky , ξkyl(q
s
kyl) = 30qskyl (68)

The values of ιky and ιyl are set based on the actual data on retailers (FSA, 2011). The parameters and probability density
functions for the expected amount of inventory can be expressed with Eqs. (61)-(67), since the inventory threshold is
assigned as the mean value of the demand complying with the normal distribution. Here, on the basis of Eqs. (7), (12),
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(61)-(68), the inventory costs can be derived as below.

sjyky (Q2y) =

[
1.4× 10−2 ×

16∑
M=1

(16−M)× exp(−0.019(M − 16)
2
)

]2
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Since the model entails many functional forms and parameters, unrealistic results might be obtained depending on their
settings. Therefore, in order to make the hypothetical numerical examples represent the situation as realistic as possible,
the functional forms and parameter values used in the model are calibrated using the results of an interview survey to
a logistics company and the data on logistics costs observed by type of industry (JILS, 2006) as well as on road traffic
flow (MLIT, 2005).
Based on the adjusted functional forms and parameter values (hereafter, referred to as Case 0), the estimated ratio of
logistics costs (i.e., the sum of handling cost, inventory cost and carriage) to the total sales exhibits a good agreement
with that actually observed for all types of industries, as can be seen in Fig. 7. The ratio of facility cost to operation
cost for the freight carriers is estimated to be 1:11 in Case 0, which is identical to the results of the interview survey to
a logistics company in Japan. The same results were confirmed for both products.
The percentage of freight vehicles on the transport network is calculated to be 49% on average for all the links in Case 0,
whilst the road traffic census in Japan (MLIT, 2005) reports that those are 47% on national expressways, 41% on urban
expressways, and 33% on national highways, respectively. The average congestion rate (i.e., volume- capacity ratio) of
all the links is estimated to be 0.69 in this case, whereas those reported by that census are 0.78 for urban expressways
and 0.72 for the national highways (MLIT, 2005). These results do not necessarily verify that the case study is capable
of fully representing realistic situations, but such attempts are crucial to enhance the reliability of the results estimated.
The amount of the products transacted (i.e., that transported or distributed) in Case 0 is listed in Table 1, which shows
the same results for both products 1 and 2 with the total amount of products being 272, except that the values of
the retailer-market transaction are switched between retailers 1 and 2. The inventory costs to the wholesalers account
for 44% of their total logistics cost (handling for 33% and carriage for 24%), whereas those to the retailers for 19%
(handling for 52% and carriage for 29%). The producer surplus gained in both SCNs is 16639, and 4107 is the consumer
surplus estimated for both SCNs, making the total surplus be 20746. The producer surplus can be computed as the
sum of profits gained by the decision-makers on the SCNs excluding the demand markets, whilst the consumer surplus
can be calculated as follows:∫ ρ4y,0

l

ρ4y∗
l

dyl (ρ
4y
l )dρ4yl (71)

where ρ4y,0l represents the market price of product y in demand market l when dyl (ρ
4y
l ) = 0 . The total travel time in

Figure 7: Ratio of logistics costs to sales for product 1 by industries

the transport network in Case 0 is estimated to be 6766, including 3861 for passenger cars and 2905 for trucks.

4.2 Influence of demand variability

This section examines the influence of the variability of product demands on the total surplus as well as on the total
amount of the products transacted (i.e., that produced, distributed or transported) among the economic entities involved
in. Assuming that both the demand in each market and the retailer’s demand on each wholesaler obey the normal
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Table1 Amount of product 1 transacted in Case 0

distribution as in Case 0, the rates of change in the total amount of the products transacted and total surplus are
depicted in Fig. 8, with the value of ιyl being altered from Case 0 ( ιyl = 0.1 in Case 0). The results for product 1 are
only provided below, but similar results have been obtained for product 2.
The total amount of the product transacted among the entities and the total surplus decrease, as the value of ιyl (and ιky

as well), namely, the variance of consumers’ demands, increases. This is consistent with the results indicated by Serel
(2009) in the case of price-sensitive stochastic demands. A similar tendency was observed for both the producer surplus
and consumer surplus. This implies that the increased demand variability brings about a reduction in the efficiency of
SCNs. The price of the product ascended as the value of CV (ιyl ) increases at any market. The decline in the total
amount of the products transacted and the increase in the purchase price lead to a decrease in the consumer surplus.
Furthermore, Fig. 9 displays that the inventory costs incurred by the wholesalers and retailers significantly increase as
the CV becomes larger.
The total travel time on the transport network decreases, along with an increase in the value of CV. Conversely, with

Figure 8: Changes in total surplus and total amount of products due to demand variability

Figure 9: Changes in expected inventory costs due to demand variability

a decrease in the value of CV, the total travel time increases. In the case of ιyl = 0.05 , the total travel time increases
by 9% for passenger cars, by 23% for trucks and by 15% for all kinds of vehicles, respectively, as compared to those in
Case 0. In contrast, in the case of ιyl = 0.12 , it reduces by 4% for passenger cars, by 11% for trucks and by 7% for
all kinds of vehicles, respectively, from Case 0. The average congestion rate on the transport network showed a similar
trend as the total travel time on it. As the demand fluctuation becomes larger, the amount of the products transacted
lessens, which results in the reduced number of truck traffic and thus improves the road traffic environment. Although
this improvement enhances the efficiency of SCN due to the reduced operation cost incurred by the freight carriers,
the impact of the decrease in the amount of the products transacted is overwhelming; and as a result, the efficiency of
SCN declines.
Likewise, a case study is then conducted, where the demands are random (Case 1) (i.e., the case of using the uniform
distribution for representing the probability distribution illustrated in Fig. 5). In this case, each class in the probability
distribution representing the demand at any market price has an equal probability, unlike the case of using the normal
distribution (Case 0). Both the demand in the market and that of the retailer on the wholesaler are assumed to follow
the uniform distribution within a range of ±3σy

l (or ±3σky ) used for the normal distribution in Case 0, where Eqs.
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(61)-(64) and (66) are applied.
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1

K1
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1
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(72)
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As for both kinds of products in Case 1, the amount of the products transacted (i.e., that transported or distributed)
between the entities decreases by 56%, and the total surplus reduces by 50%, as compared to Case 0. The results suggest
that the amount of the products transacted decreases, and the efficiency of SCNs lowers, if the demands fluctuate more
randomly even in the same range of variability.

4.3 Effects of information sharing

Case 0 presumed that the variance in the demands of the retailers on the wholesalers was greater than that of consumers
in the markets, that is, the uncertainty suffered by the decision-makers upstream in the SCNs was larger than that by
those downstream. Hence, in Case 2, a numerical test is carried out with ιk1 being equal to ι1l , which involves that
wholesaler 1 and retailer 1 for product 1 share the information about the demands in the markets.
It can be seen from Table 2 that the amount of product 1 transacted between wholesaler 1 and retailer 1, who share
the information on the consumers’ demands, increases. The SCN for product 1 exhibits a 3% increase in the amount
of the product transacted, a 3% increase in producer surplus, a 6% increase in consumer surplus, and a 3% increase
in the total surplus, respectively, as compared to Case 0. The distribution channel of ”manufacturer 1→ wholesaler 1
→ retailer 1 ” appears to dominate. On the other hand, there is no significant change that happened from Case 0 for
product 2.
Table 3 compares the amount of the products transacted, producer surplus, consumer surplus and the total surplus
of both products combined, among the three cases of Case 0, Case 1 and the case with the increased capacity of two
congested links (i.e., links 3 and 34 in Fig. 6) by 10% from Case 0. The effects of information sharing about the
demands on the efficiency of SCNs is found to be equal to or greater than the case of a 10% capacity increase in the
congested links, even though the partial information of the entire SCNs is only shared.

Table2 Amount of products transacted in Case 2 (Products 1 and 2 separately)

Table3 Amount of products and surpluses (Products 1 and 2 combined)

Case 0 Case2
Link Capacity 100% 110% 100%

Amount of Products 544 549 550
Producer Surplus 33278 33560 33727
Consumer Surplus 8214 8387 8419
Total Surplus 41491 41946 42146
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5. CONCLUSIONS

Supply chain analyses have been interdisciplinarily undertaken in terms of production, distribution, transport, logistics,
and marketing. However, there has been no research on the interactions between the behavior of economic entities on
SCNs and the traffic conditions in a transport network, except for the SC-T-SNE model proposed by Yamada et al.
(2011). The SC-T-SNE model explicitly integrates the SCNs with the transport network, and consequently, is useful
for administrators and planners to comprehend the mechanisms of the generation of goods distribution and investigate
the effects of freight transport measures to be implemented as well as for companies to appreciate the influence of such
measures.
The model presented in the paper extended the SC-T-SNE model to allow the inventory costs incurred due to the
uncertainty of consumers’ demands to be taken into consideration. Therefore, the model is more realistic, practical,
and useful for companies, administrators, and planners than the existing SC-T-SNE model. Characterized by the avail-
ability of a wider variety of probability distributions for representing the demand fluctuations, this model can facilitate
the broader application than the existing SCNE models dealing with the uncertain demands. Inventory costs are esti-
mated based on the probability distributions, where wholesalers’ (and retailers’ as well) preference for inventory can be
represented by setting the threshold. For inventory-averse wholesalers, the threshold is set at a smaller amount of the
product transacted, while at a larger amount for stockout-averse wholesalers.
The model was then applied to a supernetwork, not only to validate the model but to explore how the demand variability
and the information sharing about it affect the amount of the products transacted (and that produced, transported or
distributed) and the efficiency of SCNs, as compared to the case of improving the congested links on the road network.
Results indicate that the increased variability would lessen the amount of the products transacted, causing deterioration
in the efficiency of SCNs while improving the road traffic environment. It is also suggested that the variable demands
with higher randomness would lead to a further decline in the efficiency of SCNs even in the same range of fluctu-
ations. In addition, the results show that the information sharing between wholesalers and retailers on the variability
of consumers’ demands could enhance the efficiency of SCNs with their distribution channels being altered, which is
likely to produce the effects almost equal to those brought about by the mitigation of traffic congestion on the road
network.
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