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Abstract: Traffic route guidance, destination optimization, and optimal route choice are some of the approaches to
accelerate the evacuation planning process. Their effectiveness depends upon the evacuee arrival patterns at the pickup
locations and their appropriate assignment to transit-vehicles in the network. Here, the integrated evacuation network
topology is composed of two constituent sub-networks, namely, the primary and the secondary sub-networks. We are
focused on the collection of evacuees at the pickup locations of the primary sub-network from the danger zone in the
earliest arrival flow pattern, and then their assignment to the transit-vehicles in the secondary sub-network.
Transit-vehicles are provided from the bus depot in the secondary sub-network. Pickup locations are taken as the
sources for the subsequent process to minimize the overall network clearance time from the danger zone to safety. In
this paper, we have proposed an integrated optimization approach in such an integrated network to achieve theminimum
clearance time. The earliest arrival pattern respects the partial lane reversal strategy, whereas the better assignments are
based on the dominance relations concerning the evacuation duration.
Keyword — Integrated network, arrival pattern, vehicle assignment, clearance time, partial lane reversals, dominance
relations.

1. INTRODUCTION

The massive loss of human life and the socio-economic damage caused by different disasters draw increasing attention
from society and also researchers towards disaster management. Effective evacuation planning helps to save the life
of people from such disasters. In most of the large cities, many people depend on transit-vehicles. The great loss of
people in disasters is due to a lack of proper planning for transit people and vehicles rather than the disaster itself.

Mostly, evacuation planning solutions are based on network flow models. A network consists of nodes and edges.
Each node corresponds to the intersection of streets, and each edge, connecting a pair of nodes, corresponds to a road
or street segment in the region. Commodities flow between nodes, transported by edges having a capacity constraint,
which restricts the amount it can transverse and compromises the balance and flow of the process. The locations where
evacuees are situated initially are the source nodes and the safe locations where the evacuees are to be transported to
are sink nodes. The transit time is the amount of time it takes for the flow to travel through the edges. Network flows
have many applications on transportation modeling. For example, the evacuation planning problems deal with shifting
the maximum number of evacuees from disastrous areas or potential danger zones to safe destinations as quickly as
possible with utmost reliability. For dynamic network flow problems, not only the amount of flow transmitted but also
the time needed for the flow plays an important role. The flow may be auto-based, transit-based or the pedestrian
movements, and the time may be discrete or continuous. Such problems arise in many applications of the evacuation
planning problems. There has been a fair amount of work in this area, as referred by Dhamala and Adhikari (2018);
Dhamala, Pyakurel, and Dempe (2018).

The pioneering work of Ford and Fulkerson (1962) opened a wide horizon for the flow over time problems, which
seek the optimal maximum flows over time in the given time horizon T . The quickest flow problem minimizes the time
to transfer a given amount of flow value from an initial position to the destination Chen and Chin (1990). The earliest
arrival flow maximizes the amount of flow units reached a sink at each point in time simultaneously. Such a flow may
not necessarily exist in every network, though it exists for a single-source single-sink Gale (1959).
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A prominent bus-based evacuation planning problem BEPP is proposed by Bish in Bish (2011) to minimize the
time of evacuation in case of a short notice using a given number of homogeneous buses satisfying all evacuee demands,
without violating both the sink and vehicle capacity constraints. In this, the number of evacuees at the demand node
might be greater than the capacity of a bus, and it demands the split delivery within the pickup locations. But if the
number of evacuees at every source is known in terms of the integral multiples of the busloads, then it does not demand
the split Goerigk, Grün, and Heßler (2013). The majority of the evacuation planning problems in the literature had
used the homogeneous fleet of vehicles though some of them like Baou, Koutras, Zeimpekis, and Minis (2018) have
used the heterogeneous fleet of vehicles.

Pyakurel, Goerigk, Dhamala, and Hamacher (2015) explored a broad horizon to the research related to the transit-
dependent evacuation planning problem. Kathmandu, one of the densely populated city, has been considered as the
disaster region for their case study and have drawn different findings on evacuation planning problem. In such a
problem, evacuees were supposed to gather themselves from their residents, depending on the disasters scenario, to the
nearby pickup locations. The excess exterior points of the endangered region were taken as the pickup locations and
the available open spaces as the sinks. Evacuees were supposed to be brought at such sinks from the pickup locations
by using the homogeneous buses having the uniform capacity for the evacuees’ pickup.

A deterministic and a stochastic formulation are proposed by Goerigk and Grün (2014), where the exact number
of evacuees is not known in advance, although a set of possible scenarios is provided. However, after some reckoning
time, such uncertainty is removed with exact figures. The problem is to decide for each bus, whether it is better to move
right now on such uncertainties as a here-and-now bus, or to wait till the uncertainties are removed as a wait-and-see
bus. Their approach aims to minimize the total network clearance time, that is, the time needed until the last evacuee
is brought to safety.

Hua, Ren, Cheng, and Ran (2014) had presented an integrated contraflow strategy for multimodal evacuation.
Their strategy contains non-contraflow to shorten the strategic set-up time, full-lane contraflow to maximize the evac-
uation network capacity and bus contraflow to realize the transit cycle operation. Pyakurel and Dhamala (2015) had
investigated the lexicographically maximum dynamic contraflow problem in which the flow is maximized in a given
priority ordering. By introducing the continuous network contraflow approach, they have addressed different analytical
and theoretical aspects for evacuation planning problems at arbitrary and zero transit times, Pyakurel and Dhamala
(2017a). The quickest continuous contraflow problem on single-source-single-sink arbitrary networks and the continu-
ous earliest arrival contraflow problem on single-source-single-sink series-parallel networks with undefined supply and
demand have been solved in Pyakurel and Dhamala (2016). Pyakurel, Dhamala, and Dempe (2017) have considered
the value approximate earliest arrival transshipment contraflow approach for the arbitrary and zero transit in arcs. Re-
cently, the authors in Pyakurel, Nath, Dempe, and Dhamala (2019) have introduced the partial contraflow model and
addressed different issues on it with constant transit times and inflow-dependent transit times.

Here, in the integrated evacuation approach, the network topology is composed of two constituent sub-networks,
namely, the primary and the secondary sub-networks. Evacuees are collected at the pickup locations of the primary
sub-network in the earliest arrival flow pattern, and then they are assigned to the transit-vehicles, in the secondary
sub-network. It is more general than the network for the earliest arrival flow and the transit-based network, separately.
It is an integrated approach to solve for the time minimization evacuation planning problem.

The rest of this paper is organized as follows. Section 2 gives few preliminary concepts with the network topology
for the integrated evacuation planning problem. Section 3 presents an integrated evacuation scenario in three different
subsections. Firstly, we introduce the earliest arrival evacuee problem in a network of a single source and multiple
pickup locations. Considering the flow model with zero transit time, we present a polynomial-time algorithm following
the principle of temporally repeated flows to transship given flow value from the source to the pickup locations by
saving all unused arc capacities of arcs in Subsection 3.1. We study the BEPP, and prove the dominance relation of
different heuristics with respect to the evacuation duration in Subsection 3.2. Then combining these two approaches, we
present an integrated evacuation model in Subsection 3.3. The solution approach in an integrated evacuation network
is presented in Section 4. Finally, Section 5 concludes the paper.

2. PRELIMINARIES

We consider a network N , obtained by combining two of its components N1 and N2 representing a primary and a
secondary sub-network, respectively. The first part N1 contains directed two-way road segments and the partial arc
reversals is applicable. The second partN2 contains directed one-way road segments, connecting the bus depot to the
pickup locations, and undirected edges connecting such pickup locations to the sinks for the bus routing. The network
topology of such an embedded network, N = N1 ∪N2 is illustrated in Figure 1.

The primary sub-network is denoted as N1 = (s, V,A, ua, τa, Y ) with a single source s, set of auxiliary nodes
V = {v1, v2, . . . , vn}, set of pickup locations Y = {y1, y2, . . . , yn}, set of arcs A = {a | a = (s, v) ∨
(v, y) where v ∈ V, y ∈ Y }, capacity ua and transit time τa for each a ∈ A. Here, Y is also considered as
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a set of multiple sinks. The capacity ua : A → Z≥0 restricts the amount of flow on the arc and the transit time
τa : A → Z≥0 represents the amount of time to transverse the respective arc. As we consider τa to be constant for
all a ∈ A, it is assumed to be zero.

Also, secondary sub-network is denoted as N2 = (d, Y,E, τe, Z), where d is the bus depot at which a set of
transit-buses B = {b1, b2, . . . , bn} having the homogeneous bus capacity are located initially and are assigned as
required during the evacuation process. This node d does not play significant roles further on the solution procedure
as the buses do not return to it even after the completion of the evacuation plan because of risks under threat. The
set of nodes Y with respect to N1 is considered as the set of sources for N2. The set of sinks is denoted by Z =
{z1, z2, . . . , zn}. In this mixed sub-network, the set E consists of the one-way arcs e = (d, y) with y ∈ Y and the
undirected edges e = [y, z] with y ∈ Y, z ∈ Z . Transit times of the respective arcs and edges are denoted by τe ∈ Z+.

s

v1

v2

y1

y2

z1

z2

d

Figure 1: A topology of an integrated evacuation network.

3. AN INTEGRATED EVACUATION SCENARIO

In an integrated evacuation scenario, evacuees collected at the pickup locations Y in N1 are assigned to transit-buses
in the appropriate route acrossN2 and are finally sent to the sinks. In such embedding, the set Y works as the sink for
N1 but as the source in N2.

The arrivals of evacuees at different pickup locations are usually probabilistic, which are categorized by a constant
arrival rate or by a random variable that is, deterministic or stochastic, time-dependent or flow-dependent. Evacuees
have gathered themselves at different pickup locations relative to the population density of the transit-dependent people
nearby them in Pyakurel et al. (2015) with no specific arrival patterns. Pereira and Bish have considered the constant
arrival rate of evacuees at the predetermined pickup locations in Pereira and Bish (2014). However, such an assumption
is still unrealistic as the actual arrival process is probabilistic and will likely vary over time. Two of the prominent BEPP
formulations as in Goerigk et al. (2013) and Bish (2011) have considered the evacuees at the pickup locations, but these
approaches do not speak about the specific arrival patterns. However, they take into account whether the number of
evacuees is the integral multiples of the busloads or not. Such a problem BEPP is extended to a robust BEPP by
assuming that the number of evacuees is not known exactly but a set of estimates for the number of evacuees at each
source Goerigk and Grün (2014).

In this section, we are presenting the earliest arrival pattern of evacuees inN1, their assignment to vehicles inN2

and the mathematical model in N .

3.1 The earliest arrival pattern of evacuees

When preparing for an evacuation, the time it actually takes is uncertain, and hence it is preferential to plan at each
point of time to execute the maximum flow, which is offered by the earliest arrival flow. It is better-suited for evacuation
planning as it maximizes the flow of evacuees simultaneously at each instance within the given time horizon. Such an
evacuee arrival pattern is more appropriate for the integrated evacuation scenario.

An s-y flow of evacuees over time is a non-negative function f onA×R+, for given time T = {0.1. . . . , T} sat-
isfying the flow conservation and capacity constraints (1-3). The inequality flow conservation constraints allow waiting
for flow at intermediate nodes. However, the flow conservation constraints force that flows entering an intermediate
node must leave it again immediately.
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T∑
σ=τa

∑
a∈Ain

i

f(a, σ − τa)−
T∑

σ=0

∑
a∈Aout

i

f(a, σ) = 0, ∀ i ̸∈ {s, y}, (1)

θ∑
σ=τa

∑
a∈Ain

i

f(a, σ − τa)−
θ∑

σ=0

∑
a∈Aout

i

f(a, σ) ≥ 0,∀i ̸∈ {s, y}, θ ∈ T, (2)

0 ≤ f(a, θ) ≤ ua, ∀ a ∈ A, θ ∈ T. (3)

Here, Aout
i = {a = (i, j) ∈ A} and Ain

i = {a = (j, i) ∈ A} are the sets of outgoing and incoming arcs, respectively
for the node i ∈ V . For the source node s, we get the flow value be νf (s) > 0, and for the sink y the flow value
becomes νf (y) < 0, whereas

∑
i∈V νf (i) = 0. If the supply and demand on sources and sinks νf (i) is a fixed value

for all i ∈ {s, y}, then the earliest arrival evacuee problem maximizes value(νf , θ) for all θ ∈ T, as in Equation (4)
satisfying the constraints (1-3).

(νf , θ) =

θ∑
σ=0

∑
a∈Aout

s

f(a, σ) =

θ∑
σ=τa

∑
a∈Ain

y

f(a, σ − τa) (4)

We consider a flow over time problem with zero transit time function f : A× Z+ → R+.

Problem 1. Given a flow over time sub-network N1 = (s, V,A, ua, τa, Y ) with supplies at s, auxiliary nodes V , arc
capacity ua and arc transit time τa for a ∈ A. The earliest arrival evacuee problem is to find the earliest arrival of
evacuees at Y with partial arc reversal capability.

Let the reversal of an arc a = (i, j) be a′ = (j, i), then the transformed network ofN1 consists of the modified
arc capacities and constant transit times as,

ba = ba + ba′ , and τa =

{
τa, if a ∈ A
τ ′a, otherwise (5)

where an edge a ∈ A in a transformed network, if a ∨ a′ ∈ A in N1. The remaining graph structure and data are
unaltered. For the sake of simplicity, we useN1 for a transformed network, in which a and A are replaced by a and A,
respectively, in the rest of the works. In the transformed networkN1, we have solved the earliest arrival transshipment
problem with zero transit times on each arc as in Schmidt and Skutella (2014) and saved all unused arc capacity as
in Pyakurel et al. (2019).

The total flow amount out of the source s that reached to the pickup locations Y inN1 for all time up to θ′ ∈ Z+,
with zero transit times τa = 0, is given by

|νf |θ′ =

θ′∑
θ=1

|value(Y, θ)|. (6)

For the given time bound T , the value in 6 is denoted by |νf | =
∑T

θ=1 |value(Y, θ)|.
For the earliest arrival flow over time reached to Y in N1, the net amount of flow given by Equation (6) should

be maximum at every point in time within the given time horizon. Such a flow over time will simultaneously maximize
the flow that has already reached the sinks for all points in time. For details, we refer to Pyakurel and Dhamala (2017b);
Schmidt and Skutella (2014).

In the case of arbitrary transit times, no earliest arrival transshipment exists even in a one-source-two-sinks, Bau-
mann and Skutella (2009). However, every in-or out-tree with the depth of at most two always allows for the earliest
arrival transshipment for every choice of capacities and flow values for zero transit Schmidt and Skutella (2014).

Hence, the existence of such flow with zero transit times is based on the depth of the network considered. A
directed graph with exactly one path from i to j for every node i is the in-tree with root j. Likewise, the directed graph
with exactly one path from j to i for every node i is the out-tree with root j. The depth of an in-or out-tree is the
number of edges on the longest path contained in it.

Lemma 1. Consider N1 with zero transit times. Then every in-or out-tree with a depth of at most two in N1 always
allows for the earliest arrival transshipment regardless of capacities and balance values, Schmidt and Skutella (2014).
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Theorem 1. There exists an earliest arrival transshipment with zero transit times in a typeN1 network of single-source
and multi-sink, where the depth is at most two.

Proof. The earliest arrival s − y flow exists for a single-source-single-sink network as in Gale (1959). However, the
earliest arrival transshipment does not exist for arbitrary transit times, even in a single-source and double-sink network.
But from Lemma 1, the earliest arrival transshipment with zero transit times exists for all networks with a depth of at
most two, and is satisfied for the single-source and multi-sink network.

Now, Algorithm 1 is presented to solve the earliest arrival evacuee problem with zero transit times with partial arc
reversal capability in polynomial-time complexity.

Algorithm 1: The earliest arrival evacuee algorithm
Input : A flow over time sub-network N1 = (s, V,A, ua, τa, Y ) with τa = 0 for each a ∈ A.

1 Construct a transformed network N1 as in Equation 5.
2 Determine the maximum number of evacuees at every possible time instance at each Y from s as in Schmidt

and Skutella (2014).
3 For each θ ∈ T and reverse a′ ∈ A up to capacity ca − ua iff ca > ua, ua replaced by 0 whenever a /∈ A,

in N1, where ca denotes the static s− y flow value in each a ∈ A for such sub-network.
4 For each θ ∈ T and a ∈ A, if a is reversed, κa = ua − ca′ and κa′ = 0. If neither a nor a′ is reversed,

κa = ua − ca, where κa is saved capacity of a, Pyakurel et al. (2019).
Output: Earliest arrival of evacuees at Y with τa = 0 for each a ∈ A.

Theorem 2. Algorithm 1 sends the evacuees at the earliest arrival time to Y at each instances and saves the unused arc
capacity.

Proof. The construction of a transformed network for a given network in Step 1 is feasible. Steps 2 and 4 are feasible.
As there is no cycle flow in Step 2, the flow is either on arc a or a′ but never in both directions simultaneously. And
such a flow is not greater than the modified capacities of each arc in the transformed . So, Step 3 is also feasible. Hence,
Algorithm 1 is feasible.

Now, we show that Algorithm 1 gives an optimal solution. In the transformed network, we compute the maximum
number of evacuees reached to each pickup location in Y at every possible time point with zero transit times on each
arc using the algorithm of Schmidt and Skutella (2014). As in Theorem 1, there are some characteristic networks with
the depth bounded by two in which the earliest arrival flow exists. As the maximum amount of flows are assigned
from the source s across different auxiliary nodes to Y at each instance, by using Equation (6) for the maximum flow
value, it gives the evacuees at the earliest arrival time to such pickup locations at each instance. Moreover, the obtained
solution is equivalent to the solution of the earliest arrival evacuee problem in the original sub-network N1 with the
arcs reversed up to the necessary capacity as in Step 3, Pyakurel et al. (2019). The capacities of the arcs not used by the
flow after partial arc reversals are recorded in Step 4. This completes the proof.

Theorem 3. The earliest arrival evacuee problem with zero transit times can be solved in polynomial-time complexity
using Algorithm 1 in the sub-network N1.

Proof. As Steps 1, 3, and 4 of Algorithm 1 are solved in linear time, its time complexity is dominated by the time
complexity of computation of the earliest arrival evacuees at the pickup locations Y with zero transit times on each
arc as in Schmidt and Skutella (2014) in Step 2, which is solved in polynomial-time. Thus, we solve the earliest arrival
evacuee problem in polynomial-time complexity in the sub-networkN1.

Theorem 4. The earliest arrival evacuee problem having zero transit times with partial arc reversal capability follows
the principle of temporally repeated flows and can be solved in polynomial-time complexity.

Proof. The flow over time problem having zero transit times that reached to each of the pickup locations determines
the maximum number of evacuees at every possible time instance from the beginning in the primary sub-network N1

as in Schmidt and Skutella (2014). That means the earliest arrival of evacuees at Y from s with zero transit times on
the transformed network follows the principle of temporally repeated flows which is equivalent to the solution with
arc reversals capability on the original network, Pyakurel and Dhamala (2017b). It can be obtained in polynomial-time
complexity as in Theorem 3. Hence the theorem is proved.
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3.2 Assignment of vehicles

Transit-vehicles are assigned in an appropriate route across N2 to send the evacuees to the sinks. It is similar to the
BEPP as presented by Bish (2011) and Goerigk et al. (2013) to minimize the duration of evacuation by using a given
number of homogeneous buses satisfying all evacuee demands respecting the sink and vehicle capacity constraints. In
such a problem formulated as in Bish (2011), the number of evacuees at the demand node might be greater than the
capacity of a bus, and it demands the split delivery (SD) service within the pickup locations. However, the split delivery
service does not improve the solution, as illustrated in Example 1, based on Dror and Trudeau (1990).

d

y1

y2

y3

z

τ

τ

τ

5τ

5τ

5τ

ϵ

ϵ

Figure 2: An instance of evacuation network.

|B| Π & ED without SD Π & ED with SD Bound
1 d− y1 − z − y2 − z − y3 − z = 26τ d− y1 − y2 − z − y2 − y3 − z = 16τ + 2ϵ 1.625

2 d− y1 − z − y2 − z = 16τ d− y1 − y2 − z = 6τ + ϵ
d− y3 − z d− y3 − y1 − z 2.67

3 d− y1 − z = 6τ d− y1 − z = 6τ
d− y2 − z d− y2 − z 1
d− y3 − z d− y3 − z

4 d− y1 − z = 6τ d− y1 − z = 6τ
d− y2 − z d− y2 − z 1
d− y3 − z d− y3 − z

ϕ ϕ

Table 1: The split delivery does not always improve the solution in transit-based evacuation.

Example 1. Consider an evacuation network in Figure 2, where d, {y1, y2, y3}, and z are the bus depot, pickup
locations, and the sink, respectively. Consider |B| buses are located at d with a homogeneous capacity of 50 evacuees.
Let the demands at pickup locations y1, y2, and y3 be 30, 40, and 30, respectively. Consider the pickup locations are at
equal distance, τ each, from the depot and are at 5τ from the sink. Here, ϵ is used to denote that the pickup locations
are sufficiently close to each other and connected by edges. Consider the sink capacity to be 100.

The tour plan Π and the respective evacuation duration (ED) without and with SD, and their respective bounds
are shown in the second, third, and fourth columns of Table 1, where the buses were scheduled simultaneously. Here,
the bound denotes the corresponding ratio of the ED obtained in column 2 to that in column 3, for the network con-
sidered. The bound greater than 1 indicates that the SD service improves the solution. During their route assignments,
sometimes the SD service is also appropriate though it may not always improve the ED. Here, no improvement in the
solution by applying the SD service for |B| equals 3 and 4.

Here, we consider the modified version of the BEPP as in Problem 2, as formulated in Goerigk et al. (2013).

Problem 2. Let (τij)i∈Y,j∈Z be a matrix of source-sink travel times, τdi be a vector of depot-source travel times,
(i)i∈Y be a vector of evacuees number and (µj)j∈Z be a vector of sink capacities. Then the BEPP is to find a tour
plan to minimize the maximum travel times overall buses such that all the evacuees are transported to the sinks.

For this, it is assumed that the number of evacuees at every source is known in terms of the integral multiples
of the bus loads, which do not require any split delivery service. Assume that every bus has a capacity of one unit.
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Moreover, the capacity of the sink is also in terms of bus loads. The movement between a source to another source is
ignored, and the same situation is considered between the sinks. It is assumed that, the set of tours of the buses cannot
be changed any more after they start to move. Let

∑
i∈Y li and

∑
j∈Z µj be the total number of evacuees and the

total sink capacities, respectively. The maximum number of rounds R for the evacuation process is given by
∑

i∈Y li.
The nonnegative travel cost of τij on each edge e = (i, j) ∈ E is taken symmetric and satisfies the triangle inequality.

The variables τ brto and τ brback give the travel time for the vehicle b within the round r from a source to a sink, and
from that sink to another source, respectively. The binary variable xbr

ij ∈ {0, 1} denotes whether the vehicle b travels
from source i to sink j in the round r. Let Tmax be the duration of evacuation overall vehicles. The problem can be
formulated as follows.

minimize Tmax (7)

such that Tmax ≥
∑
i∈Y

∑
j∈Z

τdix
b1
ij +

∑
r∈R

τ brto +
∑
r∈R

τ brback, ∀b ∈ B, (8)

τ brto =
∑
i∈Y

∑
j∈Z

τijx
br
ij , ∀b ∈ B, r ∈ R, (9)

τ brback ≥
∑

τij [
∑
k∈Y

xbr
kj +

∑
l∈Z

xb,r+1
il − 1], ∀b ∈ B, r ∈ R− 1, (10)∑

i∈Y

∑
j∈Z

xbr
ij ≥

∑
i∈Y

∑
j∈Z

xb,r+1
ij , ∀b ∈ B, r ∈ R− 1, (11)

∑
i∈Y

∑
j∈Z

xbr
ij ≤ 1, ∀b ∈ B, r ∈ R− 1, (12)

∑
j∈Z

∑
b∈B

∑
r∈R

xbr
ij ≥ i, ∀i ∈ Y, (13)

∑
i∈Y

∑
b∈B

∑
r∈R

xbr
ij ≤ µj , ∀j ∈ Z, (14)

xbr
ij ∈ {0, 1}, ∀τ brto , τ brback, Tmax ∈ R. (15)

Constraint (8) needs Tmax to be greater than or equal to the maximal travel cost incurred by all buses, which is
to be minimized on (7). Constraints (9) and (10) are the measure of travel time for the bus b within the round r from a
source to a sink, and from that sink to the next source, respectively. Constraint (11) tells that the tours are connected
and can stop whenever they like. Constraint (12) allows a bus from a source to sink per round. Constraint (13) and (14)
are the bus capacity and shelter capacity constraints, respectively. Constraint (15) represents whether the bus b travels
from source i to sink j in the round r.

Let τij , τdi, i and µj for i ∈ Y and j ∈ Z be as in Problem 2. For k ∈ R, is there a tour plan with Tmax ≤ k,
for the complete evacuation? Regarding the complexity of such a decision version of BEPP, the following result is .

Theorem 5. The decision version of BEPP is NP-complete, even if τdi = 0 and τij = τi′j for all i, i′ ∈ Y and
j ∈ Z.

During the solution of BEPP, authors in Goerigk et al. (2013) have presented the branch and bound algorithms
with four different upper bounds and three lower bounds for time, three branching rules to minimize the number
of branches, and two tree reduction strategies to avoid the equivalent branches. Upper bounds are constructed in
polynomial-time complexity by four heuristics. Among them, the first three heuristics are based on a greedy distribution
of tours on buses with precomputed tour lists, and the last one uses an iterative way without any precomputed tour
lists.

1. Heuristic H1: Initially, a set of tours (i, j) for i ∈ Y and j ∈ Z is to be constructed for each source node i
and li ≥ 0 from i to the nearest sink j with µj > 0 resulting li → li − 1 and µi → µj − 1 such that li should
vanish. One of the randomly chosen tours from the tour list is assigned to a transit-vehicle with the minimum
total travel cost. It is continued in a similar fashion to have a complete evacuation.

2. Heuristic H2: Initially, a set of all possible tours (i, j) for i ∈ Y and j ∈ Z is to be constructed and is sorted
on non-decreasing cost provided by li, µj > 0. Such a set of tours sorted until l or µ vanishes. The initially
available transit-vehicle is assigned to the tour with the highest cost, and then it continues the next expensive
tour, and so on. It is based on the longest processing time first rule as in Pinedo (2008).

1813­713X Copyright © 2020 ORSTW



34 Iswar, Urmila, Tanka: Time minimization evacuation planning problem

IJOR Vol. 17, No. 1, 27-39 (2020)

3. HeuristicH3: For the precomputed tour list (i, j) for i ∈ Y and j ∈ Z havingmin{di′j′}with li′ > 0, µj′ > 0
for all i′ and j′ as in heuristicH2, transit-vehicles are assigned by reversing the set of such tours for each vehicle.
For the assignment of such vehicles, the long tour may have a long return tour, which might be beneficial. But,
the vehicles having a long tour need not have a long return tour at the end. It is a simple modification of H2
and needs no guarantee for the improvement of the solution.

4. Heuristic H4: This begins with the best possibility to bring one evacuee back from the sink to the source and
is continued iteratively. For this, let Y and Z be the available sources and sinks, respectively, provided for li > 0
and µj > 0. Let tbi be the distance of the current position of the vehicle to the source and offsetb be the distance
of the vehicle b ∈ B, which is already planned. Initially, for all the vehicles in the depot, we get tbi = τi and
offsetb = 0. In such a case, the best possibility to assign the vehicle is with a minimum possible value of the sum
of offsetb, τi and τij , which is given by min{τi + τij}, same as the minimum total travel cost. Updating the tbi
for each li → li − 1 and µj → µj − 1 in an iterative procedure for the next assignment, and so on, the feasible
solution is obtained in minimum possible time.

All three lower bounds are also computed with polynomial-time complexity. The first lower bound is based on the
estimation of the travel times from sources to sinks and from sinks to sources, respectively. The second lower bound
is based on the fact that the lower bound for the maximum travel time is the average travel time. To address this, the
objective is to minimize the sum of travel times and has been formulated by replacing the relations (7) and (8) by,

minimize
∑
i∈Y

∑
j∈Z

τdix
b1
ij +

∑
b∈B

∑
r∈R

τ brto +
∑
b∈B

∑
r∈R

τ brback (16)

The third lower bound is the simplification of model formulation, assuming that sinks are far away from the dangerous
zone, and the pickup locations Y are nearby with negligible distances between such pickups. Consider all the pickups
be at y0 as the super pickup node with ly0

=
∑

i∈Y li. Let the sinks j ∈ Z and the depot d are at a distance of τj
and τd respectively from y0, where τj = mini∈Y τij , for (i, j) ∈ E and τd = mini∈Y τi. Here, τd is the same for all
vehicles available in the network and can be neglected. Let ybj be the number of tours for the vehicle b from y0 to sink
Z and zbj be the number of tours for the vehicle b from sink Z to y0, then the model as in Equations (7-15), can be
reformulated as:

minimize Tmax (17)

such that Tmax ≥
∑
j∈Z

τj(y
b
j + zbj), (18)

∑
b∈B

∑
j∈Z

ybj ≥ ly0
, (19)

∑
b∈B

ybj ≤ µj , ∀j ∈ Z, (20)∑
b∈B

zbj = xb
j − 1, ∀j ∈ Z, (21)

ybj , z
b
j ∈ N,∀b ∈ B, j ∈ Z, (22)

Tmax ∈ R. (23)

By analyzing these four heuristics used to construct the feasible solutions on their upper bounds, we have proved The-
orems 6 and 7, with respect to their dominating relations. Here, the dominance on heuristics is followed with respect
to the superiority of having minimum evacuation duration for their better performance in the network considered. A
solution S1 is said to dominate another solution S2 if the solution S1 is either no worse than S2 or is strictly better
than S2 for the objective considered. Example 2 verifies the dominating relations of these heuristics.

Theorem 6. Heuristic H1 dominates heuristics H2 and H3 in evacuation duration.

Proof. The shortest processing time first dispatching rule is superior over the longest processing time first dispatching
rule in minimizing the total completion time criteria, Pinedo (2008). Nevertheless, the longest processing time first
dispatching rule balances the loads on the network and does not guarantee the optimality. Hence, H1 dominates H2
and H3 with respect to the evacuation duration, where H3 is a simple modification of H2.

Theorem 7. Heuristic H4 dominates heuristics H2 and H3 in evacuation duration.
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Proof. Heuristic H4 is initialized with tbi = τi and offsetb = 0 for all vehicles in the depot and gives the minimum
initialization on the vehicle assignment with respect to the rest with min{τi + τij}, i.e. the same as the minimum total
travel cost as in H1. Routes are considered iteratively with the best possibility to have the link (j, i) for each route (i, j)
considered for the better choice of minimum evacuation time for their to-distance and back-distance than that for such
distances with respect to H2 and H3. The updated tbi in each iteration with li → li − 1 and µj → µj − 1 minimizes
the route assignment to have a feasible solution in minimum time. Hence, heuristic H4 dominates H2 and H3 both.

Example 2. Let the pickup locations Y be at a distance τdi =
[
1 3

]
from d, and the transit times to the sinks Z

from Y be τij =
[
3 1
5 2

]
. Consider a scenario with the demands at Y as li = (2, 1) and capacity of Z as µj = (2, 3),

respectively.
For the given data in Figure 3, we construct the tour plans Π using heuristics H1, H2, H3, and H4 and calculate

the corresponding ED as represented in the second, third, fourth, and fifth columns of Table 2, respectively. It shows
that heuristic H1 dominates heuristics H2 and H3 (as proved in Theorem 6). Similar result holds in case of heuristic
H4 as well (cf. Theorem 7).

This also helps to estimate the threshold number of the transit-vehicles. Here, the threshold number for |B| is 3
as for |B| = 4, the fourth bus is left with no tour.

d

y1

y2

z1

z2

1

3

3

1

5

2

Figure 3: An instance of bus assignment problem.

|B| Π & ED w.r.t. H1 Π & ED w.r.t. H2 Π & ED w.r.t. H3 Π & ED w.r.t. H4
1 τ1 + 3τ12 + 2τ22 = 8 τ2 + τ21 + 3τ11 τ1 + 2τ12 + τ11 τ1 + 3τ12

+τ12 = 18 +2τ21 = 16 +2τ22 = 8

2 τ1 + τ12 + 2τ22 = 6 τ2 + τ21 τ2 + τ21 = 8 τ1 + τ12 + 2τ22 = 6
τ1 + τ12 τ1 + 2τ11 + τ12 = 8 τ1 + 2τ12 + τ11 τ1 + τ12

3 τ1 + τ12 τ2 + τ21 = 8 τ2 + τ21 = 8 τ1 + τ12
τ1 + τ12 τ1 + τ11 τ1 + τ11 τ1 + τ12
τ2 + τ22 = 5 τ1 + τ12 τ1 + τ12 τ2 + τ22 = 5

4 τ1 + τ12 τ2 + τ21 = 8 τ2 + τ21 = 8 τ1 + τ12
τ1 + τ12 τ1 + τ11 τ1 + τ11 τ1 + τ12
τ2 + τ22 = 5 τ1 + τ12 τ1 + τ12 τ2 + τ22 = 5
ϕ ϕ ϕ ϕ

Table 2: Tour plan Π with evacuation duration ED w.r.t. different heuristics.

Note that, heuristic H1 construed with precomputed tour lists and assigned to the closest sink approach, and
heuristic H4 constructed iteratively without any precomputed tour lists and assigned as above, are very closed to each
other and are dominating the rest. However, for the vehicle assignment in N2, we prefer H4 as it does not require
precomputed tour list.

3.3 A mathematical model in an integrated network

For large scale disasters with a sufficiently large number of evacuees, all the evacuees may not arrive at Y at the same
time, and it requests certain waiting time at Y before to start the bus assignment in N2. It is obvious that those who
are delivered to Y earlier will have comparatively more waiting time. Meanwhile, for the evacuees, waiting at Y is
comparatively better than to be at s. On the other hand, buses available at d request a certain time to be assigned to
Y and are given by τdi. Hence the effective waiting time in N can be denoted by Ω = max{

∑
ωi, τdi}, for ωi be

the waiting at yi ∈ Y . To address this in an integrated evacuation network, where the evacuees collected in N1 are
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to be assigned in N2, the objective function given by Equation (8) is modified. For this, let Tmax be the duration of
evacuation overall vehicles, then the integrated evacuation planning problem can be reformulated as follows:

minimize Tmax (24)

such that Tmax ≥ Ω+
∑
r∈R

τ brto +
∑
r∈R

τ brback ∀b ∈ B. (25)

with the constraints (9− 15). (26)

Constraint (25) needs Tmax to be greater than or equal to the maximal travel cost incurred by all vehicles and is to be
minimized in (24). Other constraints are the same as in Equations (9-15).

For the solution of our integrated model, we adopt the branch and bound algorithm of Goerigk et al. (2013)
in which the computation of upper bounds, lower bounds, branching rules, and reduction strategies are described in
Subsection 3.2. However, based on the effective waiting time at each pickup locations, the objective as in Equation (16)
in the second lower bound becomes

minimize Ω+
∑
i∈Y

∑
j∈Z

τdix
b1
ij +

∑
b∈B

∑
r∈R

τ brto +
∑
b∈B

∑
r∈R

τ brback (27)

Whereas, for the third lower bound, the relations (17) and (18) can be replaced by

minimize Tmax (28)

such that Tmax ≥ Ω0 +
∑
j∈Z

τj(y
b
j + zbj) (29)

where, Ω0 = max{ω0, τj}, for ω0 be the waiting time for the earliest arrival of evacuees at the super pickup node y0.
As the problem (24-26) is not easier than the problem (7-15), we state the following result.

Theorem 8. The decision version of the integrated evacuation planning problem is NP-complete.

4. SOLUTION IN AN INTEGRATED EVACUATION NETWORK

In this section, we deal with an integrated evacuation networkN . As discussed in Subsection 3.2, the number of evac-
uees at each pickup location is given, but their approach does not speak about the arrived pattern at Y . The main aim
of our work is to present an analytical investigation of an appropriate network flow model and give an efficient solution
algorithm, as considered in Subsection 3.1 that provides information on the number of evacuees arriving at the pickup
locations for the BEPP. Evacuees are collected on the earliest arrival flow pattern from s. Such evacuees at Y are con-
sidered as the supplies forN2 and are to be assigned to the available transit-vehicles in an integrated evacuation network.

Problem 3. Given an evacuation network N = (s, d, V, Y,A,E, ua, τa, τe, Z), having supplies and demands at s
and Z , respectively. The transit-vehicle assignment problem is to assign the vehicles for evacuees transshipment with
minimum clearance time.

Algorithm 2: The transit-vehicle assignment algorithm for minimum clearance time.
Input : An embedded evacuation network N = (s, d, V, Y,A,E, ua, τa, τe, Z).

1 In N1 = (s, V,A, ua, τa, Y ), consider Y as the sinks and determine the earliest arrival of evacuees for
τa = 0 at different Y from s, by using Algorithm 1.

2 Assign the transit-vehicles from d to N2 = (d, Y,E, τe, Z) for the supplies provided by Step 1 at Y , as
guided by the dominant vehicle assignment approach as in Subection 3.2.

3 Stop, if all the supplies at each of Y are fulfilled, respecting the capacity constraints of Z .
4 Otherwise, return to Step 2.
Output: Transit-vehicle assignment with the minimum clearance time from s → Z .

Theorem 9. The transit-vehicle assignment algorithm as in Algorithm 2 gives the dominating solution for the transit-
vehicle assignment problem as in Problem 3 with minimum clearance time.
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Proof. Step 1 is feasible, since N1 is constructed in which the earliest arrival flow of evacuees exists for τa = 0. As
N2 is embedded in N1 for the appropriate vehicle assignment in N , Step 2 is feasible. Feasibility of Step 3 is obvious
as the flow respects the supplies as well as the demands in the network N . Step 4, is of course, feasible. Hence, the
algorithm is feasible.

Now, we show that Algorithm 2 gives a dominating solution. The maximum amount of flows are assigned from s
across different auxiliary nodes to Y inN1, as in the form of the earliest arrivals of evacuees by using Algorithm 1. So,
it gives the maximum possible flow of evacuees at each instance in the earliest arrival time and saves the unused capacity
by Theorem 2. These resulting flows of such evacuees arrived at Y are taken as an input in N2 for the transit-vehicle
in the subsequent evacuation process with the dominating vehicle assignment approach as in Subsection 3.2. Such an
assignment of vehicles is continued until the last evacuee on such pickup locations reached to the sinks without violating
their capacities. Hence, the resulting vehicle assignment in the integrated evacuation network gives the dominating
solution with minimum clearance time. Hence, the theorem is proved.

s

v1

v2

y1

y2

z1

z2
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1

5

2

Figure 4: An instance of an integrated evacuation networkN
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Figure 5: An instance of an integrated evacuation system with partial arc reversal inN1.

Example 3. Consider an instance of integrated evacuation system in N , as in Figure 4. Consider a scenario with 12
units of evacuees at s, and with the pickup demands 8 and 4 for y1 and y2, respectively. Let the capacity of the sinks
be 6 and 10 for z1 and z2, respectively.

Each of the paths s− v1 − y1, s− v2 − y1 and s− v1 − y2 can be assigned with 1 unit of flow as the earliest
arrival flow of evacuees at zero transit time. Such flow is temporally repeated as in Theorem 4 and will collect 8 and 4
units of flows at y1 and y2, respectively, after 4-time units. Similarly, for the arc reversal capability, 2 units of flow can
be assigned on each of the above-mentioned paths at zero transit time and are also temporally repeated. It can collect
8 and 4 units of flows at y1 and y2 respectively after 2-time units by using Algorithm 1 and also helps to improve the
waiting instance.

We seek to find an optimal tour plan of this scenario using the dominating vehicle assignment approach as de-
manded by heuristic H4 (cf. Subsection 3.2), without violating the demands and the capacity constraints. Let the
transit-vehicles be located at the depot d. Then their respective Tmax on N , without and with arc reversal capability in
N1, can be estimated as 41 and 39, respectively for |B| = 1.
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Here, we have Tmax is 7 and 5 respectively, concerning to without and with arc reversal capability, for all |B| ≥ 12.
It also gives the threshold number of transit-buses. Moreover, the saved capacities obtained from partial arc reversals
are shown along with the dotted arcs in Figure 5.

5. CONCLUSIONS

A solution of an evacuation planning problem is preferential to plan within the available time horizon to execute the
maximum flow in each possible time unit and is offered by the earliest arrival flows. The earliest arrival flow does not
exist in the network with multiple sinks for general transit times. Under some characterizations, some of the specific
networks always permit for the earliest arrival transshipments regardless of all choices of the capacities and balances in
zero transit times.

In our work, we are focused on the new and better-suited form of arrival pattern of evacuees in the earliest arrival
flow pattern for the integrated evacuation planning problem. It will maximize the arrival of evacuees at every possible
instance at the pickup locations with zero transit times from a source. We present a polynomial-time earliest arrival
evacuee algorithm following the principle of temporally repeated flows to solve the earliest arrival evacuee problem
with zero transit times and partial arc reversal capability. Such evacuees collected at different pickup locations of the
primary sub-network are considered as the supplies during the subsequent evacuation process of vehicle assignment
for the secondary sub-network. The partial arc reversal approach for the collection of evacuees also reduces the waiting
instances at different pickup locations by collecting them earlier and helps to improve the solution of our integrated
evacuation model. The assignment of transit-vehicles in such an integrated evacuation network is also carried in a dom-
inating solution approach for the minimum evacuation duration. Different analytical issues are addressed to improve
the performance of the evacuation in an integrated framework, though the problem itself, in general, is challenging. Its
extensions for the arbitrary time setting and their different approximation approaches, including the experimentation
and different case studies closer to the real scenarios, are the further research interests.
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