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Abstract: In this paper, an effective mechanism using a fleet of unmanned surface vehicles (USVs) carried by a parent
boat (PB) is proposed to complete search or scientific tasks over multiple target water areas within a shorter time .
Specifically, multiple USVs can be launched from the PB to conduct such operations simultaneously, and each USV can
return to the PB for battery recharging or swapping and data collection in order to continue missions in a more extended
range. The PB itself follows a planned route with a flexible schedule taking into consideration locational constraints
or collision avoidance in a real-world situation. Assuming that each target has a value, this research investigates how to
route these USVs, including their schedules to rendezvous with the PB, so that they can maximize the total collected
target values from the operation in a limited amount of time. We use a multi-layered time-space network to describe the
USVs and PB movement over time and give an integer programming (IP) formulation for the coverage path planning
problem. To further shorten the computational time, we propose the Iterative Clustering Heuristic (ICH) to firstly
cluster the workspace, calculate the path for each USV to visit targets and meet with the PB for range extension. To
evaluate the performance of the proposed IP model and ICH, test cases are designed based on a real-world scenario,
as well as families of simulated grid-like networks. Based on the computational analysis of different USV area sizes,
targets covered, and operation time-bound increments, the proposed heuristic ICH can solve larger sized cases faster
than the IP commercial solver with higher quality results.
Keyword — Coverage Path Planning, Integer Programming, Time-Space Network, Unmanned Surface Vehicle

1. INTRODUCTION

Since unmanned surface vehicles (USVs) are now heavily relied upon for surveillance, intelligence, search, and rescue
(Campbell, Naeem, & Irwin, 2012), the difficulties related to finding effective routing for their operations can be sig-
nificantly affected by the chaotic nature of the wake region downstream of the ship stern as well as the sea conditions
during the time of the incident. Several aspects have to be considered, such as the number of units needed for the
operation and the coordinates of the targets. This operation is conducted in an environment where different types of
services to be performed at some target areas with known coordinates by different types of vehicles. Although USVs
are fast and mobile, their range of movement is limited due to smaller fuel or battery bank. Thus a larger ship, we call
as a parent boat (PB), is needed to serve as a mobile refueling or recharging station for launching and receiving USVs.
This operation can be described as a joint operation problem of a PB with multiple USVs or as a two-echelon problem.

The created model is intended to represent the corresponding problem and illustrate how differences in the
number of USVs between each iteration and network structure can affect the time required to complete a task. In
addition, we hope to find sufficient routing to perform the operations while considering USV battery capacity in a case
of a PB path that is predetermined where targets can be covered in a limited amount of operating time. Understanding
the time needed and the resources are very important for the decision-maker. Since the expected computational results
will consume a lot of time, the numerical evaluations of the optimization model will be used to illustrate different cases
in simulated networks and networks based on real data. These cases are then used to analyze how parameter changes
can affect the performance of the proposed IP mathematical formulations and the heuristic.
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To perform the search task for each USV with consideration on the energy consumption, efficient path planning
is needed. Traditional path planning algorithms, such as those based on the Traveling Salesman Problem (TSP), are
not ideal for this kind of problem since such formulations only consider the distances traveled but ignore the energy
or range constraint due to the limited fuel or battery capacity. Therefore, this research mainly analyzes other energy-
based optimization methods utilizing Energy Efficient Coverage Path Planning, another formulation that considers the
energy consumption characteristics of drones in path planning optimization. We not only consider the energy consumed
when traveling between consecutive waypoints (similar to the TSP), but we also consider the energy consumed by the
USV when it has to return to the recharging facility (e.g., a PB). The mathematical model is structured based on an
Integer Linear Programming (IP) model. A linear energy consumption model allows for linear energy consumption
constraints, which are required to derive a compatible result with some optimization solvers such as GUROBI. While
several approaches are available for solving this problem, none appear to consider energy consumption as a function in
their programming. Routes found using the above approaches may be infeasible for operation scenarios with batteries
that are larger than necessary or too heavy to carry. Therefore, this research may complement research such as energy
analysis-based research intended to find multiple USV capabilities related to conducting path planning combining the
concept of a two-echelon routing orienteering problem with the concept of coverage path planning. Another point is
that by analyzing the PB path in specific cases, this research can be used to evaluate a PB path decision that has been
made beforehand and provide better decision making for the user in securing as many targets as possible in a limited
time.

For the second perspective considering the number of PBs and USVs, most of the related research in a joint
operation considers only cases of one-one operation. On the other hand, this research, which focuses on multiple
USVs, may provide a better insight into managing multiple USVs and the computational time needed to do so, which
is a weakness in research on joint operation path planning. The network in our model is constructed as follows: The
PB follows a predetermined path, although the exact movement and the time of the movement are not yet known.
USVs need to meet with the PB to have their batteries recharged. The rest of this paper is organized as follows: in
Section 2, we provide some results of previous studies and related theories that support our research. The problem
definitions and formulations, including the initial mathematical models, are explained in Section 3. Section 4 explains
the heuristic developed for this research. Section 5 explains the computational experiments for the simulated grid-like
networks and a real-world network, with a summary of the computational analyses. Section 6 provides the conclusions
and suggestions for future research.

2. LITERATURE REVIEW

Among the literature on two-echelon location-routing problems (2E-LRPs) and its variants, two echelons interact
through an intermediate set of tasks, wherein our case will be the recharging mechanism for the USV. The first echelon
(the PB), consists of a primary and intermediate set of tasks related to assisting the USVs, and the second echelon (the
USVs) consists of the intermediate battery consumption management and the targets rescued. The main question then
is how to synchronize the flows of the two echelons at the intermediate facilities. Synchronization is important due to
the limited operating time available for these vehicles. Two-echelon joint operation of unmanned vehicles is defined as
having an operation of multiple unmanned vehicles supported by the main vehicle. Similar studies that have been done
previously include a joint operation discussed by Garone, Naldi, Casavola, and Frazzoli (2010) about a class of carrier
vehicles in which a slow carrier with an infinite operating range cooperates with a faster carrier vehicle that has only a
limited range in which to operate.

Another similar study to the present study was conducted byMirhedayatian, Crainic, Guajardo, andWallace (2019).
They address a new variant of the 2E-LRP that considers synchronization of transshipment and a sequence of delivery
and pickup activities by using a primary vehicle and a secondary vehicle. Based on their research, larger instances of data
may take a long time to solve since the synchronization problem is a difficult optimization problem. This is because it
combines two NP-hard problems, the facility location problem and the vehicle routing problem, especially in the case
of a larger instances problem. The results obtained with commercial solvers show that only very small instances are
solved optimally, and larger instances cannot be solved with a feasible solution. Another example of joint operation
research can be observed from the truck-drone synchronization discussed in Ferrandez, Harbison, Weber, Sturges, and
Rich (2016). They added that it is easier to contrast the total time, cost, and energy involved in a hub configuration
(star-distance) with truck-only delivery using a TSP route. However, refuel constraints were not considered in this
research, which proves to be a good example, since refueling issues can make a joint operation more complex and may
potentially be encountered with any vehicle, especially in an uncertain environment.

From the orienteering problem perspective, Labadie, Mansini, Melechovský, and Wolfler Calvo (2012) stated
that the Team Orienteering Problem (TOP) is a known NP-hard problem that typically arises in vehicle routing and
production scheduling contexts. This review is our consideration when attempting to incorporate a vehicle routing
problem into the orienteering problem for a joint operation since this topic can be considered new in this field. El-Hajj
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and Dang (2016) presented ideas suggesting that further development of a Branch-and-Cut-and-Price type of algorithm
is a promising direction towards improving the TOP solution method. In terms of orienteering problems, Mukhina,
Visheratin, and Nasonov (2019) state that the majority of problems related to orienteering can be defined using three
core components: targets, constraints, and scoring functions. The fourth core component, the algorithm, utilizes other
components to generate the best solution for a specific problem. Based on this knowledge, we organize this research
based on this structure to develop the optimal solution to the proposed problem considering the fuel consumption for
each USV and the synchronization to the PB. In the present research, each target will be clustered based on its location.
This was done previously by Yahiaoui, Moukrim, and Serairi (2019) to visit a set of targets with minimum travel time.
These aspects are important because, due to the nature of the time-space network in this problem, the computational
time of the proposed IP model is expected to be lengthy.

Derived from coverage planning, the Coverage Path Planning is the process of defining a path that passes over
given points of an area of interest while avoiding obstacles (Galceran & Carreras, 2013). Based on this definition, our
research can be categorized as coverage path planning for a given area of interest. One of the previous investigations
included one by Zhang, Zhang, Liu, and Li (2019), who presented a strategy for an intelligent search performed by a
USV. Before the start of the operation, global path planning was carried out based on prior information, such as the
initial position of the USV, the predicted position of the target, and the range of the search area. An example of this
prior information is a grid method used to plot the selected targets in a given area. Given an already decomposed
area, each USV is going to be deployed to search for the optimal routing path. Some examples of these optimization
techniques were performed by Avellar, Pereira, Pimenta, and Iscold (2015) on minimum time coverage of ground areas
using multiple drones and Cruz-Chávez, Rodríguez-León, Rivera-Lopez, and Cruz-Rosales (2019) on vehicle planning
with time windows. Both of these studies used an optimal coverage method as area decomposition technique and the
Vehicle Routing Problem (VRP) to optimize the problem based on their area decomposition. Based on this research,
VRP programming may be used as a feasible option for a multi-vehicle related problem, especially for coverage path
planning for multiple vehicles, as in this research.

Based on Zhang et al. (2015), the use of a time-space network is very effective for multi-vehicle problems. A
time-space network is also a standard method used for slot allocation problems that consider spatial and temporal
requirements. The time-space network shows the position of an individual in time and space. Therefore, our approach
will adapt it to the grid-based method to generate the optimal result. After decomposition, then the optimization step
can be started.

3. MODEL DESCRIPTION

Our primary objective is to plan a route for a joint operation to service (or cover) the targets during a given period of
time. To do this, we need to plan a grid network area for the USVs to operate in. Based on these generated grids, a
feasible path to achieving the optimal result can be generated for the PB, and this path will be used as the workspace
for the operational movement of the PB. To define a route for the USV, we need to divide the free workspace area into
several waypoints. The mechanism for the routing of each vehicle is constructed using a time-space network. In this
problem, there are two types of workspaces. The first is the USV workspace, which is exclusively for the USV, and the
second is the PB workspace space, which is accessible to both the PB and the USV. Under actual conditions, the USV
may roam freely in its workspace. To make a USV route, it is necessary to decompose the USV area into sub-regions.
We use a grid-based method involving a decomposition technique that divides the airspace into a virtual uniform grid
cell. Suppose that we have already done the preprocessing step and obtained the grid map for the PB area and USV
area. We can transform this grid map into a network by changing the virtual cells into nodes and the connections
between each cell into an arc. As for the PB workspace, the nodes represent the potential places for the PB to launch
the USV, and the arcs represent the route. We then combine these two workspaces. Figure 1 shows the network for
the combined operation of the PB and USVs.

Notice that in the network shown in Figure 1, there are arcs connecting the two workspaces. From a USV routing
perspective, these arcs turn two distinct workspaces into one workspace. However, from a PB routing perspective, it
only accesses the PBworkspace but not the USVworkspace. An important point here is that the PB is required to follow
the predetermined path when the exact movement is still unknown. There are multiple reasons for this mechanism.
A PB path is not as flexible as a USV path due to the size of PB, the locations of the harbors, and the need to avoid
collisions with the other ship. This network then has similarity in terms of properties with the two-echelon routing
problem network. We can use this concept to design our mathematical models. In order to record both the time and
battery power consumption of the USVs, together with the PB movement at each time period, we use a time-space
network. Figure 2 shows the results of the transformation from the original network into the time-space network.

The time-space network in our model limits the possibility of subtours, and provides detailed USV routing and
energy status at any time and place, as suggested by Zhang et al. (2015). In summary, we attempt to model a combined
PB and USV operation to cover specifically designated target areas. To build the proposed model, we use several
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Figure 1: The schematic network for combined PB and USV operations

Figure 2: Schematic diagram of the proposed model

methods. To model how the USV performs its task, we use a coverage path planning method. We adopt the two-
echelon routing problem concept since we will determine the route for the PB (first echelon) and the USV (second
echelon). By combining the coverage path planning and the two-echelon routing problem, the model for the combined
PB and USV operation can be developed. We also use a time-space network to track the movement of the USV at each
time point, including its energy consumption and the movement of the PB.

An example of a case with one PB and multiple USVs is as follows: Suppose that we have a given area that is
already decomposed into a 4x4 grid size. Based on this workspace, suppose that 3 sets of nodes: the PB path nodes,
the USV nodes, and the target nodes, are given. As shown in Figure 3, with node 1, 2, 3, and 4 as nodes on the PB
predetermined path, all the other nodes considered as USV area nodes, and nodes 11, 5, 6, and 7 are considered as
the targets. Each target has its own service time (si) representing the required time for completing a task there, and a
collected value (Di) after the task has been completed. The use of a grid network simplifies the USV movement. In
particular, we assume a USV can only access from a node to its neighboring node at one time. The region ranges for
node 1 comprises cells 11, 2, and 5, and the area range for node 9 is all cells adjacent to it (cells 8, 7, and 10). These
ranges determine the USV movement. For example, if a vehicle is located in node 1, the USV will only be able to scan
cells 11, 2, and 5. To simplify this problem, we assume to use only one USV in this example. Based on its battery
capacity and energy consumption, there are specific options that the USV will have to consider doing the operations,
such as staying in the same node or moving back to the PB, in order to reach a target. Information for the traversal
time (tij ) of all arcs are known beforehand. Here in our illustrative example, we assume that all the service time on a
target si and the travel time tij on an edge (i, j) consume 1 unit of time.

Suppose the PB, together with the USV, starts from node 1. The USV has its maximum battery capacity and a
limited time to operate, and its operating time equals 10. We seek the route that gives the optimal collected target values
within 10 units of time. We can try to solve the problem manually. For the first iteration, suppose we make the USV
move with the PB from the source to node 1 and then launch the USV in node 1. During the 10-unit planning horizon
based on the manual calculation, going to nodes 5, 6, and 7 can give us a higher total objective value than visiting target
11, as shown in Figure 5. This is the nature of the orienteering problem in our research, where we want to obtain the
highest total collected values as possible in a limited amount of time. Therefore, target 11 could not be retrieved by
t=10, but when we extend the planning horizon to be t=18, the optimal route will change, as shown in Figure 6.

In particular, both the USV and PB start from node 1. Each USV is able to reach targets 5, 6, and 7, stay in each
target for 1 unit of time, and then return to the PB path (node 2) to continue the operation before t=10. In this routing,
there are several possibilities that each USV can take to reach the target. For example, the USVs can take off at node 2
and reach targets 5, 6, and 7 in this order, but then the total operating time will become 11. On the other hand, once
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Figure 3: Area Information: illustration

Figure 4: A time-space network structure

Figure 5: Model results in 10 units of time

the operation time-bound is set to be 18, after the USV and the PB meet in node 2 at t = 8, the USV can be launched
to visit target 11 and collect higher values in total.

Since both USVs and the PB are starting from node 2, the total maximum time needed for every variable to
return to the sink node now requires 18 total units of time. This gave us multiple possibilities of how the modeling
can be used to find the optimal time needed for operations as well as to generate the optimum time required if the
time is limited based on the importance of each target. Facing this situation, we can use the proposed mathematical
programming-based approach. After dividing the size of the grid and the number of nodes in the system, we create the
time-space network based on the area of space that we intend to analyze.

Let G = (V,A) be an undirected graph, where V is the set of all nodes, including one main depot (node i = 1)
and one destination (node i = n). Let Vp be a subset of V representing the rendezvous nodes in the PB path workspace,
and Vu is a subset of V representing the cells in the USV workspace, which is acquired from the preprocessing step.
Each rendezvous node in the PB space represents a location where the PB can stop to launch a USV.

A set of targets VT , residing at |VT | different locations, where each target i ∈ VT is associated with an importance
value (Di). The PB workspace and the USV workspace may overlap each other. Let Ri = {j|dij ≤ γ, j ∈ V } be a
set of nodes adjacent (i.e., accessible in 1 unit of time) from node i ∈ V . Let A be the set of all edges, whose subset
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Figure 6: Model results in 18 units of time
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}
∪
{
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′
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′
)|i′ ∈ Vp

}
is a set of

staying edges (self-loop) that indicate that the USV stays at a node i” ∈ Vu to perform the service or to wait at a node
i
′ ∈ Vp when necessary. The PB will only move along edges in Ap, while the USV can move along all other edges. We
introduce the following assumption for our mathematical programming model:

1. The service times and values for all target cells (nodes) and traversal time for all edges are known constants.

2. The targets are evenly distributed in the USV workplace.

3. The PB can only traverse edges in its network, and the PB path is known beforehand.

4. When the USVs return to the PB, each USV can charge its battery and start the next routing immediately. The
time for charging the battery is short and negligible.

We summarize the mathematical notations, including the parameters, variables, and sets in Table 1. We aim to route
k USVs to visit some targets, with support from a PB, to maximize the collected target values within a limited time
T . Equation (1) defines the objective function, where wi is the decision variable determining whether the target i is
serviced (i.e., covered).

max
∑
i∈VT

Diwi (1)

The flow balance constraint (2) defines the movement for PB on the PB path.∑
(i,j)∈Ap∪Asink∪As

yijt −
∑

(j,i)∈Ap∪Asource∪As

yji(t−∆ji) = 0 ∀i ∈ Vp, t ∈ T (2)

The flow balance constraint (3) defines the movement for each USV k. Note that a USV can appear in any node in V .∑
(i,j)∈Ap∪Au∪As∪Ac

xkijt −
∑

(j,i)∈Ap∪Au∪As∪Ac

xkji(t−∆ji)
= 0 ∀i ∈ V, t ∈ T, k ∈ K (3)

Constraint (4) guarantees a covered target i ∈ VT requires some USV k to stay there for at least si units of time.∑
t∈T

xkiiy ≥ siwi ∀i ∈ VT , k ∈ K (4)
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Table 1: Notations for the mathematical formulations

Parameters
∆ij Travel time for passing edge (i, j),∀(i, j) ∈ A
si Service time for visit node i, ∀i ∈ VT
Di The value obtained by covering a target node i, ∀i ∈ VT
bij Battery consumptions for passing the edge (i, j) , ∀(i, j) ∈ A
B Maximum battery capacity

Decision Variables
xkijt 1, if USV k at a time t start to passing edge (i, j), ∀(i, j) ∈ A; and 0, otherwise
yijt 1, if PB at a time t start to passing edge (i, j), ∀(i, j) ∈ Ap; and 0, otherwise
zkit 1, if the PB and USV k at a time t both are at node i, and 0, otherwise
Mk
ijt 1, if the PB and USV k both move along edge (i, j) in Ap ∪As, and 0, otherwise

Rkijt 1, if the USV k needs to be recharged along edge (i, j) in Ap ∪Ac ∪As, and 0, otherwise
wi 1, if target i is covered, ∀i ∈ VT , and, 0 otherwisear
αkijt the initial battery level for USV k to move along edge (i, j) starting at time t
βkijt the ending battery level for USV k to move along edge (i, j) starting at time t

Sets
V Set of all USV and PB workplace nodes, V = Vu ∪ Vp
Vp Set of PB path nodes
Vu Set of USV workspace nodes
A Set of all workplace edges, A = Ap ∪Au ∪Ac ∪As
Ap Set of edges for the PB path, Ap =

{
(i

′
, j

′
)|i′ , j′ ∈ Vp

}
Au Set of edges for the USV workspace, Au =

{
(i”, j”)|i”, j” ∈ Vu

}
Ac Set of connecting edges between PB and USV nodes, Ac =

{
(i

′
, j”)|j” ∈ Ri′

}
∪
{
(i”, j

′
)|j′ ∈ Ri”

}
As Set of staying edges (self-loop), As =

{
(i”, i”)|i” ∈ Vu

}
∪
{
(i

′
, i

′
)|i′ ∈ Vp

}
Asink Set of ending edges connecting to the sink node ψ , Asink = {(i, ψ)|i ∈ V }
Ni Set of nodes adjacent to the node i within range γ, Ni = {j|dij ≤ γ, j ∈ V }
T Set of time periods

Constraints (5)-(6) are used to determine whether a recharge may take place (i.e., zkit = 1) or not, when both a USV
and PB move together.

Zkit ≥
∑

(i,j)∈Ap∪As∪Ac

xkijt +
∑

(i,j)∈Ap∪As

yijt − 1 ∀t ∈ T, i ∈ Vp, k ∈ K (5)

Zkit ≤

 ∑
(i,j)∈Ap∪As∪Ac

xkijt +
∑

(i,j)∈Ap∪As

yijt

 ∀t ∈ T, i ∈ Vp, k ∈ K (6)

Constraints (7)-(8) ensure that to triggerMk
ijt = 1, when both a USV and PB move along the same arc (i.e., xkijt =

yijt = 1). Mk
ijt will be used in some battery consumption equations.

Mk
ijt ≥ xkijt + yijt − 1 ∀t ∈ T, (i, j) ∈ Ap ∪As, k ∈ K (7)

Mk
ijt ≤

(
xkijt + yijt

)
/2 ∀t ∈ T, (i, j) ∈ Ap ∪As, k ∈ K (8)

Constraints (9)-(10) are used to set Rkijt = xkijtz
k
it, which equals to 1 when USV k and PB meet (i.e., zkit = 1) and

moves along edge (i, j) (i.e., xkijt = 1). This constraint is needed for the battery recharge when USV is on the PB path.

Rkijt ≥ xkijt + zkit − 1 ∀t ∈ T, (i, j) ∈ Ap ∪As, k ∈ K (9)

Rkijt ≤ (xkijt + zkit)/2 ∀t ∈ T, (i, j) ∈ Ap ∪As, k ∈ K (10)

To limit the battery capacity for a USV, constraints (11)-(13) are used to set the starting battery level (αkijt) associated
with an arc (i, j) ∈ A to be no more than the maximum capacity (B) at anytime, and αkijt becomes full in the beginning
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(i.e., xkij0 = 1) or while carried by PB (i.e., Rkijt = 1).

αkijt ≤ Bxkijt ∀t ∈ T, (i, j) ∈ A, k ∈ K (11)

αkij0 = Bxkij0 ∀t ∈ T, (i, j) ∈ Ap ∪As ∪Ac, k ∈ K (12)

αkijt ≥ BRkijt ∀t ∈ T, (i, j) ∈ Ap ∪As ∪Ac, k ∈ K (13)

Constraint (14) sets the battery consumption along an arc (i, j) ∈ Au, and (15) ignores that change when a USVmoves
with PB (i.e.,xkijt =Mk

ijt = 1).

βkijt = αkijt − bkijx
k
ijt ∀t ∈ T, (i, j) ∈ Au, k ∈ K (14)

βkijt = αkijt − bkij(x
k
ijt −Mk

ijt) ∀t ∈ T, (i, j) ∈ Ap ∪As, k ∈ K (15)

For each USV node i passed by USV k, its entering battery level equals its leaving battery level, as shown in constraint
(16). On the other hand, if USV k passes a PB node, it may be recharged (i.e.,Rkijt = 1) if necessary by constraint (17).∑

(1,j)∈Au∪Ac∪As

αkijt −
∑

(j,i)∈Au∪Ac∪As

βkji(t−∆ji)
= 0 ∀t ∈ T, i ∈ Vu, k ∈ K (16)

∑
(1,j)∈Au∪Ac∪As

(αkijt −BRkijt)−
∑

(j,i)∈Ap∪Ac∪As

βkji(t−∆ji)
≤ 0 ∀t ∈ T, i ∈ Vp, k ∈ K (17)

Both USV k and PB are set to go to the sink node by the end of the planning horizon, meaning the operation is finished,
as represented in constraints (20)-(21) ∑

t∈T

∑
(i,ψ)∈Asink

yiψt = 1 (18)

∑
t∈T

∑
(i,ψ)∈Asink

xkiψt = 1 ∀k ∈ K (19)

The domains for all variables are defined in constraints (20) - (24).

xkijt ∈ {0, 1} ∀t ∈ T, (i, j) ∈ Au, k ∈ K (20)

yijt,M
k
ijt, R

k
ijt ∈ {0, 1} ∀t ∈ T, (i, j) ∈ Ap, k ∈ K (21)

Rkijt ∈ {0, 1} ∀t ∈ T, (i, j) ∈ Ap ∪As ∪Ac, k ∈ K (22)

zkit ∈ {0, 1} ∀t ∈ T, i ∈ Vp, k ∈ K (23)
wi ∈ {0, 1} ∀t ∈ T, i ∈ VT , k ∈ K (24)

4. THE ITERATIVE CLUSTERING HEURISTIC (ICH)

Since we are dealing with an NP-hard problem, the IP formulation in Section 3 requires long computational times for
large instances, even by the state-of-the-art commercial software such as GUROBI. To calculate good solutions within
shorter computational times, we propose a heuristic approach for the joint operation model in this section. There are
three main steps in our proposed heuristic. The first step is to apply a k-means algorithm to cluster the workspace
for each USV. We determine a good sequence for those clusters based on the distance of the geometric center to the
depot. Finally, we solve the simplified IP formulation associated with each cluster to determine optimal USV routing
for target covering and rendezvousing with PB by GUROBI.
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Figure 7: The Iterative Clustering Heuristic flowchart

Figure 7 illustrates the procedures of our proposed heuristic. After the algorithm reads the problem data (i.e.,
all the information associated with nodes and arcs), we conduct a quick preliminary experiment to determine a good
number of clusters (a multiple of k). Then we apply a k-means algorithm to cluster USV nodes so that each cluster
forms a connected subnetwork of similar size (i.e., number of USV nodes including targets) and is assigned to a USV.
A good cluster visiting sequence is determined by the increasing order of the distance between the geometric cluster
center to the depot. For each cluster, we formulate a smaller IP to solve by GUROBI for the USV routes as well as
its rendezvous with PB. Finally, we connect PB nodes between clusters, as well as the USV routes inside each cluster,
which defines all the USV routes and PB route. The entire procedure contains iterative runs of node clustering and
routings for USVs. Thus we name it as an Iterative Clustering Heuristic (ICH).

4.1 Preliminary Experiments

The purpose of our preliminary experiments is to seek good parameter settings for ICH to attain a good compromise
between efficiency and effectiveness. The most time-consuming procedure in ICH is to solve routing for each USV
cluster by GUROBI. The larger a USV cluster is, the better solution we can get but with longer computational time.
Here we simulate sample grid networks, and try out the relation between the computational time and size of solving
orienteering problems by GUROBI, to determine an appropriate size (e.g., number of USV nodes) of a USV cluster.
We then use the test result to determine the number of clusters (in this paper, a multiple of k) for ICH.

For example, we may simulate a set of 6× 10 random networks containing 1× 10 PB nodes in the bottom layer
and 5 × 10 USV nodes in upper layers, randomly select some (e.g., 30 among 50) USV nodes as targets where each
target has its given service time and value. With a given battery capacity (e.g., B = 100) for each USV and the battery
consumption on each target and along each edge, we construct an orienteering problem IP formulation to test the best
routing for a USV within its range (i.e., before its battery level reaches 0). Based on the tests on simulated networks,
we can observe the average number of USV nodes (e.g., 35) to be traversed by a USV without recharging. Suppose
there are a total 300 USV nodes, and there are 5 USVs, then we may divide the USV nodes into 10 clusters. This is
because among the 5, 10, and 15 clusters, 10 clusters give the best compromise (10*35=350 is closer to 300 than 5*35
and 15*35). Figure 8 illustrates a clustering example.

Figure 8: A possible USV clustering
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4.2 USV Area Clusters

Our ICH algorithm is a divide-and-conquer heuristic. Based on the result of preliminary experiments, we have calculated
a good cluster number (k∗). We then divide the entire workspace into k∗ clusters, so that we can evenly assign k USVs
for these clusters, and solve the corresponding simplified IP model associated with each cluster for its best USV routing
by GUROBI. Since the size of each IP model is much smaller than the original IP model, as shown in Section 3, the
entire procedure requires less computational time.

Here we suggest using theK-means algorithm to determine the composition of k∗ clusters, since we assume the
targets are somewhat fairly distributed on the USV workspace. If the targets are not evenly distributed, one needs to
design better clustering methods. After the clusters are formed, we can estimate a good visiting sequence for the PB,
by the increasing order of the distance of cluster center to the depot.

4.3 Predicting Feasible Targets

ICH calculates a USV route for each cluster by solving a simplified IP model, yet it might still suffer from the computa-
tional burden. To further speed up the procedure, we have applied the GRASP (Greedy Randomized Adaptive Search
Procedure) algorithm to calculate the approximation targets that can be reached by the USVs within the time-bound in
each k∗ clusters. In particular, targets outside of the feasible area will has less priority compared to the one within the
range, thus limiting the possible movements for the USVs. It then determines a good target visiting sequence for ICH,
which then can be used as a constraint for the USV routing IP model to generate good solution quickly.

Figure 9: Illustration of predicting Targets

In Figure 9, assuming that we have obtained the clusters, we can find an initial feasible route that will cover the
targets and use the target visiting sequence as a constraint for the IP model to limit the movement of the USVs. In
feasible range 1, targets 1 and 4 are within the range, unlike targets 5, 3, 2, and 6. Therefore, we can set targets 1 or 4
to be visited first, before 5, 3, 2, and 6.

4.4 Summary

Both the clustering and the targets prediction are used to simplify the model. With the calculated USV cluster, in each
iteration, the USVs will use different datasets to solve each cluster individually. To understand this mechanism better,
Figure 10 provides an integration of the clusters shown in Figure 9. Assuming that each cluster has an identification
number (cluster 1, cluster 2, · · · , etc.), each cluster will function as a self-contained problem with a PB route as well as
USV workspace with its targets.

Figure 10 describes the simplified network results from this heuristic, with each USV assigned to a cluster where
the workspace for each USV will be limited and thus allows faster computational results. However, assigning the cluster
will make each USV’s movement less flexible than the original network. Therefore, a good design and the network
structure used in the clustering process are both important for this heuristic.

5. EXPERIMENTAL RESULTS

There are two sets of experiments in this Section. Section 5.1 provides the specifications for the computational settings
discussed. Section 5.2. describes the simulated experiments that are generated using a random network generator, while
the second case is a simulated network based on a real-world location, which is discussed in Section 5.3.
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Figure 10: Simplified network results

5.1 Technical Specifications

With the proposed problem, the model is constructed in the GUROBI optimization solver. The computational exper-
iments are conducted on a personal computer (PC). The specifications for the PC and the software used to perform
the computational experiments are shown in Table 2.

Table 2: PC Specifications

PC specifications
Operating System Microsoft Windows 10 1 x64-based
Processor Intel ® Core ™ i7-6700HQ CPU @ 2.60 GHz
RAM 16.00 GB
Software specifications
Python (Cython Compiler) Version 3.7.6
Anaconda Version Anaconda 2020.02 (64 Bit)
GUROBI Version 9.0.3

5.2 Experimental Settings for the Simulation

For the experimental cases, we mapped the area based on the grid network used for USV operations. The grid is used
to define the USV workspace used to cover points that are considered to be nodes. The example in Figure 11 shows
that a simple network is formed based on the diagonal edges between each node. The network formed follows the grid
rules, in that each node is connected to its adjacent neighbor (i.e., vertically or horizontally one-edge away) nodes.

Figure 11: A simulated grid network example

There are different types of edges used in this problem to model the connecting edges that cannot be put into the
same category as the USV area edges since they are related to the possibility of recharging the USV in the PB nodes.
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Therefore, the three types of edges are as follows: the USV area edges, the connecting edges between the PB area and
USV area, and the PB area edges. In this case, the path for the PB is known beforehand. While the exact movement
time prior to the PB having to stop is not known, the PB does not have to search for a feasible path. The illustration
for this case is shown in Figure 11. The PB path is defined as numbered nodes illustrating a predetermined path from
an origin node/area (node 9) to a destination node/area (node 12).

The scenarios are divided into three sections. In the first scenario (S1), we fix the number of targets to be 15
with random locations among the 60, 100, and 200 USV nodes, denoted by problem sets S1_60, S1_100, and S_200,
respectively. In the second scenario (S2), we fix the number of USV nodes to be 100, and generate 3 problem sets S2_10,
S2_30, S2_50 that contains 10, 30, and 50 randomly located targets. In the third scenario (S3), we fix the number of
randomly located targets to be 15 (similar to S1) from 100 USV nodes (similar to S2) with different operating time
bounds 30, 50, and 65, to form the problem sets S3_30, S3_50, and S3_65, respectively.

Each of the nine problem sets was run for ten times, which generating 90 random networks for our testing. Then,
we solve each random case by our IP model and ICH heuristics to analyze the average performance of 10 random cases
for each problem set. There were several parameters used as shown in Table 3, where |Vu| represents the number of
USV nodes; |VT | represents the number of the target nodes; |Au| is the number of USV edges, |AP | is the number
of PB edges, and |K| is the number of USVs that is set to be 2 in each case. T represents the maximum period for
the model. |Vp| represents the total number of PB nodes in which the PB path will be set as a linear path from the
origin node to the destination node, with 10 nodes in each row (|Ap| = 20). CPU represents the total computational
time necessary to obtain the solution, which becomes 3600(s) if an optimal solution cannot be found within a 1-hour
time limit. The GAP represents the relative difference in the objective value between the best-known solution and the
best-bound value. We set the battery capacity at 100 (B = 100) for all cases, and the number of ICH clusters was set
at 4. From Scenario 1 (USV nodes increment), we can conclude that due to the clustering technique, the workspace for

Table 3: Experimental results for the simulated networks

IP Model Iterative Cluster
Heuristic

Problem Set |Au| |Ap| |Vu| |Vt| |Vp| T CPU(s) GAP(%) CPU(s) GAP(%)
S1_60 230 20 60 15 10 50 3600.52 52.94 532.97 0.90
S1_100 382 20 100 15 10 50 3600.23 - 1988.43 4.80
S1_200 722 20 200 15 10 50 3600.10 - 2855.12 10.64

Problem Set |Au| |Ap| |Vu| |Vt| |Vp| T CPU(s) GAP(%) CPU(s) GAP(%)
S2_10 382 20 100 10 10 50 2707.21 0.00 434.67 0.90
S2_30 382 20 100 30 10 50 3600.00 31.75 1145.26 4.06
S2_50 382 20 200 50 10 50 3600.00 - 3600.95 31.45

Problem Set |Au| |Ap| |Vu| |Vt| |Vp| T CPU(s) GAP(%) CPU(s) GAP(%)
S3_30 382 20 100 15 10 30 2995.51 5.48 264.30 0.48
S3_50 382 20 100 15 10 50 3600.00 46.68 1167.60 1.76
S3_65 382 20 200 15 10 65 3600.00 - 3067.17 10.19

the USV in ICH was simplified and managed to lower the computational time significantly. For example, in the case of
S1_100 and S1_200, the IP model was not able to achieve a feasible solution within the 1-hour time limit. In Scenario 2
(Targets increment), as expected, increasing the targets also increased the GAP (%) in the ICH. The problem’s difficulty
is more sensitive in the number of targets (|Vt|) than the number of USV nodes (|Vu|). Note that the 31.45% GAP of
the ICH performance for solving the problem set S2_50 may be misleading. The actual GAP is better than the current
one since here we compare with an inaccurate IP model upper bound. If we extend the time limit (T), we can get a
more accurate bound, and then the GAP reported can be reduced. The boxplots on the optimality gaps by ICH for
scenarios 1, 2, and 3 are shown in Figure 12, 13, and 14, respectively.

In the case of the S1_60 (60 nodes) the GAP (%) tended to be smaller, and with each USV node added to the
network, the upper bound and the median for the cases increased exponentially. This was due to the branch-and-bound
nature of the solver, where adding more USV nodes in the same number of clusters allowed more USV nodes in the
same cluster. For example, in S1_60, there will be approximately 15 nodes in each USV’s cluster, and in S1_200 (200
nodes), there will be approximately 50 nodes in each USV’s cluster. Having more nodes in the same cluster requires
a longer search process and thus increases computational time exponentially, and the commercial solver is not able to
reach optimality as quickly as is the case with fewer USV nodes.

The same phenomenon can be observed in the target increment scenario (Cases S2). When more targets are
added to the same network, there will be multiple possibilities for total objectives values for each USV. Since the USVs
are required to search for all possible combinations, adding more targets are proven to increase both CPU (s) and the
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Figure 12: ICH GAP (%) comparisons of the scenario USV nodes (15 targets and 50 units of time)

Figure 13: ICH GAP (%) comparison of scenario targets (100 USV nodes and 50 Units of time)

GAP (%). In the S2_10 (10 targets) cases, the ICH performs the best when the GAP (%) could reach 0, where with
each additional target added to the same network, the computational time increases exponentially where S2_50 spends
more than 1-hour limit in average of each computational run. Thus, the heuristic exhibited an elevated GAP(%).

Figure 14: ICH GAP (%) Comparison of Scenario Time-Bound Operation (15 Targets and 100 USV Nodes)

In the time-bound increment cases, the nature of the branch-and-bound of the commercial solver is very im-
portant. In the cases of 30 units of time and 50 units of time, the heuristic was able to perform with optimal results.
Meanwhile, in the higher time-bound cases, each case and the search process required 65 units of time and exponen-
tially increased the computational time. Based on these simulated experimental results, we can conclude that although
the ICH is able to solve the problem faster than the IP model, it still cannot escape the curse of dimensionality. In
particular, ICH still suffers from a cluster’s size and the length of the planning horizon.

5.3 Real-world Data Experimental Setting

For the construction network of the real data, the grid network as shown in Figure 15 was taken from a real map located
in Bali province, Indonesia. Since there are two main harbors connecting Bali (Gilimanuk Harbor) and Java (Ketapang
Harbor) that can be used as the harbor for the PB, the route follows the real-world data taken from Google Maps and
are computed to the grid network composed by cells with simulated targets.

Based on the real data and the distance measurement, the size of a cell was set to be 400 m × 400 m, with a
total operating time of 35 minutes to reflect the 35 minutes of travel time required for transportation from Gilimanuk
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Figure 15: Google Map Data Conversion to Grid Network

Harbor to arrive at Ketapang Harbor. There were a total of 10 randomized targets spread along the path, with a total
of 96 blue nodes (USV area nodes). The green nodes represent the predetermined path of the PB (16 nodes), and the
red nodes represent the targets. The number of vehicles used in the model was set to 2 USVs and a PB.

Figure 16: Representation of a real-world grid network

From the network described in Figure 16., both the IP model and the ICH were implemented, with the results
obtained is shown in Table 4 below. The computational results obtained from both the IP model and the ICH heuristic
are shown in Table 4. Each of the methods was limited to a 3600 (s) maximum computational time to limit the time
spent to solve the case.

Table 4: Gilimanuk-Ketapang Experimental Results

Method GAP (%) Objective value # Opt CPU (s) Upper Bound
Iterative Clustering Heuristic 4.76 40 6 351.66 42
IP-model Commercial Solver 21.43 33 2 3601.95 42

Based on these results, the ICH method performed the best, in general, based on both the GAP (%) and CPU
(%). There were six optimal solution counts from the ICH and two optimal solution counts from the IP commercial
solver although the results obtained were not the optimal solution since the upper bound objective was not the same
as the highest objective. Applying the ICH to this structure did result in solving the problem much faster compared to
the IP model since within the 1-hour time limit, the IP model only found two solutions. In comparison, the ICH was
able to find six solutions ten times faster than the IP model. This means that the use of the ICH method as a heuristic
with the intention of solving the problem faster with good performance is effective, and in these settings, it is the best
result that can be obtained. The details of the routing for each USV are shown in Figure 18.

From the computational results shown in Figure 17, in 35 units of time, 6 numbers of 10 targets are saved. USV
1 retrieved targets 70, 15, and 10 with total objective values of 23, and USV 2 retrieved targets 6, 118, and 102 with
total objective values of 17. Recharging occurred four times with drone 1 at time 12 at nodes 49-50 and at time 14 at
nodes 50 → 51, and recharging occurred with drone 2 at time 14 at nodes 50 → 61 and at time 32 at nodes 80 → 79.
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Figure 17: Representation of a real-world grid network

These computational results prove that the IP mathematical formulations are able to solve the problem and to provide
the detailed movement of each USV as well as the PB. The number of times recharging occurs for each USV and the
location the PB is required to move with the USVs, as well as which targets can give the highest total objective values
for the targets that are retrieved.

6. CONCLUSION

This paper focuses on the joint operation of a parent boat (PB) in a predetermined path and unmanned surface vehicles
(USVs) with a limited battery capacity. This limitation can be solved by treating a PB as a mobile recharging station.
This research aims to maximize the total value of targets rescued within a limited operating period and to calculate
the optimal routes that satisfy the USV energy constraints during the process. To solve this problem, we proposed a
combined concept, including two-echelon routing, an orienteering problem, and coverage path planning with energy
considerations. We formulated IPmathematical formulations that can solve the problemwith detailed results. However,
the commercial solver for solving the IP mathematical formulations requires a lot of time. To solve the problem faster,
we proposed the Iterative Clustering Heuristic (ICH) to limit the movements of the USVs by assigning each USV to a
cluster. The solver was only applied to solve the simplified problem. There were two experiments conducted on this
problem, including simulated experiments with three scenarios, to understand the parameter changes in the IP model
and the ICH, and an analysis was conducted based on a real-world case in Indonesia.

Based on the experimental results that have been conducted (USV nodes increment, targets increment, and the
operation time-bound increment) over simulated random networks, we observe that the commercial solver’s branch-
and-bound nature dominates the computational time, which makes obtaining an optimal solution or even a feasible
solution very difficult, as the size of the problem increases. On the other hand, our proposed ICH approach, designed
based on the divide-and-conquer concept, can avoid performance stalling due to the branch-and-bound nature. The
computational experiments indicate the increase in target numbers has more effects than the increase in USV nodes
on the problem difficulty. Increasing the planning horizon length does further boost the performance of ICH, yet
it is not clear to set a proper length of the planning horizon. Similarly, in the real-world case experiment based on
two main harbors connecting Bali (Indonesia- Gilimanuk Harbor) and Java (Indonesia-Ketapang Harbor), the ICH has
consistently shown better performances in both solution quality and computational time than the IP model.

There are some related research topics that we would suggest for further investigations. Firstly, the heuristic that
we developed uses commercial solver, but it is very time-consuming due to too many iterations of the branch-and-
bound operations. Therefore, developing efficient, effective heuristic algorithms for this challenging problem would
be beneficial. Second, in our setting, the PB route was planned, while in the real world, how this route can be planned
in a more collaborative way with USV routes is still unclear. Third, we assumed that a USV moves faster than the PB
and consumes less time in the USV nodes. However, it is also possible that some USV nodes require longer time and
greater battery consumptions. A more practical examination of the USV battery consumption would make the problem
more practical and challenging to solve.
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