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Abstract: Multiobjective optimization started as a mathematical discipline, is gradually becoming a multidisciplinary
field of study, finding its place in operational research, multiple criteria decision making and decision analytics. This
transformation is accompanied with update of the methodology, strengthening its focus on human-related aspects of
decision support.

In this paper we take a look at multiobjective optimization as a framework for decision making and support in
complex systems. We identify some challenges of its methodology, that need to be addressed in order to harness the
practical potential of this research discipline. We review some our past works addressing those challenges.
Keyword — multiobjective optimization, multiple criteria decision making, decision support, human aspects.

1. THE FIELD OF STUDY

1.1 Decision making problems with multiple criteria

A decision making problem arises, when an individual or a group of stakeholders needs to choose an alternative among
a given set of alternatives, which serves their interests in a best way. Such problems appear in many, if not all, areas of
organized human activity: industry (e.g. selecting best parameters of a production process), business (e.g. choosing a
best business strategy for a new venture), engineering (e.g. finding a best design of a new product), public administra-
tion (e.g. selecting a best portfolio of public investments), supply chain management (e.g. constructing a supply chain
network in a best possible way), space exploration (e.g. choosing a best trajectory of a spacecraft), and so on.

In the case where alternatives are evaluated and compared based on multiple aspects and the aspects can be quan-
tified, the problem is often framed as a multiple criteria decision making (MCDM) problem (see e.g. Greco, Ehrgott, and
Figueira (2016); C. Hwang and Yoon (1981); Miettinen (1999); Steuer (1986), and also Kaliszewski, Miroforidis, and
Podkopaev (2016)). In terms of MCDM methodology, the entity making the choice is referred to as the decision maker
(DM), and the considered aspects as criteria or objectives. It is assumed that for each alternative, the numerical value of
each criterion is known or can be calculated. It is also assumed that the DM compares alternatives only based on their
values of criteria. In this respect, the set of criteria is divided into maximization criteria (the DM prefers higher values to
lower values) and minimization criteria (the DM prefers lower values to higher values).

In the ideal case, a best alternative is one maximizing or minimizing, respectively, all criteria values on the given
set of alternatives. The existence of such an alternative in practice is very rare, therefore the condition of simultaneous
optimality with respect to all criteria is relaxed to the condition of Pareto optimality. A given alternative is called Pareto
optimal (also efficient or non-dominated )1, if there does not exist another alternative which dominates it in the following
sense: all its criteria values are preferred at least as much as of the given alternative, and at least one criterion value is
more preferred. The best alternative is selected among the set of Pareto optimal alternatives.
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context. Efficiency often refers to a modification of Pareto optimality, while non-dominance has a special meaning in the context of population-based
heuristics.
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The set of Pareto optimal alternatives (the Pareto optimal set for short) has the following important property: for
any pair of alternatives, if one alternative has a more preferred value of one criterion, then the other alternative has more
preferred value of at least one other criterion. This property is often referred to in MCDM as the conflict of criteria. Thus,
in most real-life problems, instead of aspiring for an ideal solution, the DM has to settle for an acceptable compromise
between achieving good enough values of different criteria.

For many complicated MCDM problems, mathematical methods and their computer implementations are the
only way of solving the problem. However, the extent of formalization of such problems is limited. Since the Pareto
optimal set usually contains more than one element (sometimes many or infinitely many elements), it is impossible
to uniquely define a solution of an MCDM problem in a formal way. Moreover, different DMs may regard different
Pareto optimal alternatives as best ones, since all humans may have different views on what is best compromise between
criteria. Therefore, any MCDM method (with very few exceptions) requires additional information in order to select
one among the set of Pareto optimal alternatives. This information is related to preferences of the specific DM with
regard to the criteria of the specific MCDM problem, and is called preference information orDM’s preferences. An alternative
whose criteria values satisfy the DM’s preferences in a best possible way is called a most preferred alternative, or a most
preferred solution to the decision making problem. Thus, a typical MCDM problem cannot be solved by a formal method,
without the involvement of a DM.

1.2 Multiobjective optimization problems

Multiobjective optimization (MOO) is the part of MCDM that deals with situations, where the set of alternatives and
criteria values cannot be presented explicitly. In MOO problems, alternatives are referred to as feasible solutions, and their
set is defined via constraints or combinatorial structures. The criteria are referred to as objective functions and are often
represented by mathematical functions (closed-form expressions). It is worth noting that in MOO problems arising in
practice, objective functions can also be defined via open-form expressions (Peitz, Ober-Blöbaum, & Dellnitz, 2019)
or black-boxes such as simulations (Tabatabaei, Hakanen, Hartikainen, Miettinen, & Sindhya, 2015).

A general MOO problem is formulated as follows:

maximize f1(x), . . . , fk(x)

subject to x = (x1, . . . , xn)
T ∈ X,

(1)

whereX ⊆ Rn is a nonempty compact set of feasible solutions (also called decision vectors), and k ≥ 2 is the number of ob-
jective functions. The latter are defined as fi : X → R, i = 1, · · · , k and sometimes are referred to as objectives for short.

For any x ∈ X , the vector f(x) := (f1(x), . . . , fk(x))
T ∈ Rk consisting of objective function values is called

an objective vector, Rk is referred to as the objective space, while Rn as the decision space. The image of X in the objective
space is defined by f(X) = {f(x) : x ∈ X}.

The word ”maximize” refers to the fact that the DM prefers larger objective values to smaller values. We as-
sume that all objectives are maximized for the simplicity of notation. Note than any minimization objective can be
transformed into a maximization objective by multiplying it by −1.

The MOO problem formulation differs from a single objective optimization problem only with the number of
objective functions. However, the difference in approaches to solving the problems in the decision making context is
drastic. The definitions below are refined from the ones presented above for MCDM problems. Solving the MOO problem
means finding a feasible solution which is most preferred for the DM. As noted earlier, problem solution cannot be
formally defined without knowing preferences of the specific DM, in whose interest the given problem instance is being
solved. Let us remind that by assumption, the DM compares feasible solutions solely based on their objective vectors.
It follows that from the DM’s point of view, solving the problem is equivalent to finding a most preferred objective
vector z in the set f(X), and selecting any feasible solution x such that f(x) = z.

The search of the most preferred solution is limited to the set of Pareto optimal solutions defined as follows:

P = {x ∈ X : {x̄ ∈ X : f(x′) ≥ f(x) and f(x′) ̸= f(x)} = ∅} ,

where an inequality between vectors is defined as inequalities between all the corresponding components. The objective
vector f(x) of a Pareto optimal solution x is called a Pareto optimal objective vector. The image of P in the objective space
defined as {f(x) : x ∈ P} is referred to as the Pareto front.
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1.3 Interactive methods

Unlike in single-objective optimization, research challenges in MOO are not limited to mathematical and computational
aspects. Additional challenges arise from the necessity to obtain preference information from a human DM and use this
information in the solution process. The following three main approaches of including a DM in the solution process
are distinguished in the literature (Buchanan, 1986; C.-L. Hwang & Masud, 1979; Miettinen, 1999).

• A priori approach: first the DM expresses preference information, then a preference model is constructed and the
most preferred Pareto optimal solution is derived according to this model.

• A posteriori approach: first the set of Pareto optimal solutions (or its subset) is derived, then the DM selects the
most preferred solution from this set.

• Interactive approach: theDM expresses preferences gradually during solution process and gets corresponding Pareto
optimal solutions as feedback from the method.

In the case of computationally and cognitively complex MOO problems with many objectives, the first two ap-
proaches are rarely used due to their evident flaws. The a priori approach should not be used because in practice, one
cannot expect the DM to have deep knowledge about the problem and preference expression mechanisms. Therefore,
a solution obtained in a single attempt is not likely to represent what the DM really wants to achieve in the problem.
The a posteriori approach cannot be used in a situation, when a large number of objectives dictates that many Pareto
optima has to be derived in order to represent the Pareto front accurately2. Firstly, one cannot expect that a DM is
able to compare many multidimensional objective vectors and secondly, deriving many Pareto optimal solutions may
be impossible due to high computational complexity of the problem.

The interactive methods are devoid of the above disadvantages. In contrast to a priori methods, interactive meth-
ods allow the DM to correct mistakes arising from incomplete knowledge about the problem and preference expression
mechanisms thanks to feedback. During the interactive solution process, the DM can learn about the problem which
contributes to the quality of solution (Belton et al., 2008). Finally, interactive methods conserve the computing power
by focusing only on those Pareto optima which are relevant to the solution process. Therefore, interactive approach is
the de facto standard of solving computationally and cognitively complex MOO problems with many objectives.

The general scheme of an interactive method can be outlined as follows (Miettinen, Ruiz, & Wierzbicki, 2008):

Step 0. Initialization of the method. Present to the DM some information about the problem.

Step 1. Ask the DM to specify preference information.

Step 2. Generate one or several Pareto optimal solutions according to the preference information and present them to
the DM.

Step 3. Ask the DM if one of solutions is satisfactory enough to be considered as a most preferred solution of the
problem. If yes, stop; otherwise, go to Step 1.

In this paper we concentrate on interactive methods as the dominant approach to decision support in real-life
applications of MOO. In the next section we offer some critical reflections on the current state of interactive MOO
from the practical perspective. We refine them as challenges that need to be addressed at the methodological level. In
Section 3, we review some our works that address them.

2. MODERN CHALLENGES OF MULTIOBJECTIVE OPTIMIZATION

The research discipline of MOO has been formed as a continuation of scalar optimization, goal and parametric pro-
gramming. It is a relatively young discipline, appeared under the names multiple objective programming and vector optimization
in the second half of the XX century (Köksalan, Wallenius, & Zionts, 2013). First interactive methods have been pub-
lished in early 70s (Dyer, 1972; Geoffrion, Dyer, & Feinberg, 1972). The basic principles and research methodologies
did not change much since then.

The foundation ofMOOhas been laid by mathematicians. Early publications as well as the majority of later papers
focus on formal issues while paying less attention to human aspects. The interactive methods are presented in the form
of pseudocode programs and/or flowcharts. The DM is called at certain steps to provide preference information,
playing the role of an oracle or an external black box (Dyer, 1972; Geoffrion et al., 1972; Ghaznavi, Ilati, & Khorram,
2016; Ruiz, Sindhya, Miettinen, Ruiz, & Luque, 2015). Such a presentation is convenient from developer’s point of
view, however it implicitly assigns a passive role to the DM in the interactive solution processes. On the other hand, the

2According to some estimates (see e.g. Sen & Yang, 2012), for a given density or resolution of Pareto front representation, the number of Pareto
optimal solutions required in order to achieve this density grows exponentially with the number of objectives.
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only goal of solving an MOO problem is satisfying DM’s needs. Therefore, the DM should become the central part of
interactive MOO methods.

The narrow definition of DM’s role can be traced back to the origins of MOO discipline. This brings challenges to
researchers aiming at uncovering the full potential of MOOmethodology in practical applications. Those challenges can
be broadly divided into two types, which are described in Subsections 2.1 and 2.2, respectively. Some works addressing
them are presented in Subsections 3.1 and 3.2, respectively.

2.1 Connecting the DM with the method through preference expression mechanisms

In many MCDM methods and the vast majority of MOO methods, DM’s preferences are modeled by parametric
scalarizing functions where parameters (often referred to as weights) are provided directly by the DM. A solution
corresponding to DM’s preference information is calculated by minimizing or maximizing such a function over the set
of feasible solutions. Some MCDMmethods also produce ranking of solutions according to the function values (Greco
et al., 2016).

In order to claim that a solution or ranking obtained in the above way satisfies DM’s preferences, one needs to
ensure that (i) the DM accepts the ordering of the feasible solution set imposed by the scalarizing function, and (ii)
the DM understands the correspondence between provided parameters and the resulted solution. Neither of that is
addressed in publications describing the scalarizing functions or their applications in interactive optimization. One has
to take into account that real DMs who need to solve practical MOO problems are not necessary mathematicians, but
rather experts in their problem domains. Thus, the preference expressing mechanisms can be disconnected from real
DM’s.

The most popular class of preference models used in interactive MOO are achievement scalarizing functions
(ASFs). First papers presenting the concept of ASF (Wierzbicki, 1980, 1982) are devoted to studying their mathematical
properties, e.g. characterizing Pareto optimal solutions in terms of ASFs. A part of ASF’s parameters is the vector of
aspiration levels (a reference point) that can be easily understood by a typical DM. However, the rest of parameters
as well as the inner mechanics of ASF remain unexplained. Usually the ASF is interpreted in terms of minimizing
a distance to a reference point in the objective space, which may sound too abstract to non-mathematicians. Later
papers developing advanced ASF modifications (see e.g. Luque, Miettinen, Ruiz, and Ruiz (2012); Nikulin, Miettinen,
and Mäkelä (2012)) continue the tradition of presenting ASF from the mathematical perspective, while mentioning the
needs of the DM in motivational parts of the papers. Only few papers explicitly address the issue of interpreting ASFs
in decision making terms (Kaliszewski, 2004, 2015).

There are many other types of scalarizing functions, where the DM is supposed to provide parameters playing
the role of weights, but the interpretation of parameters and the mechanics of deriving solutions is not explained
(Brans & De Smet, 2016; C. Hwang & Yoon, 1981; Miettinen, Eskelinen, Ruiz, & Luque, 2010; Opricovic, 1998). A
typical interpretation of weights provided by authors sounds as follows: the higher is the weight associated with a criterion, the
more important is this criterion for the DM. However, in order to set weights in a meaningful way, the DM would need to
understand, how large weight corresponds to how much importance of each criterion, and what does ”importance” mean in this
context.

Explaining the mechanics behind a scalarizing function to a DM and providing a clear interpretation of its param-
eters would allow the DM to connect the values of parameters with his/her preferences. Besides that, such explanations
and interpretations provided for different methods would help the DM to choose a method, whose preference model
better suits DM’s understanding of the solution process.

2.2 Taking into account the human nature of the DM

As discussed earlier, the MOO methodology treats the DM as an oracle which is called at certain steps of the solution
process and asked for certain information. One type of information is method-specific preferences which are used
to derive new Pareto optimal solutions. Another type of information is the selection of the most preferred solution
among previously derived Pareto optimal solutions. It is used in two ways: selecting the most preferred solution of
the problem and in some methods (Jaszkiewicz & Słowiński, 1999; Miettinen & Mäkelä, 2006), expressing preference
information with respect to a previously derived solution.

Almost no publications address possible imperfections of the oracle, i.e. the limitations and needs of human DMs.
In practice, this means that interactive methods are not adapted to be used by real people. Below are three potential
problems which can be encountered in regard to that.

1. In the case of many objective functions and many derived solutions, selecting one among previously derived
solutions may be cognitively difficult for the DM. One can see that by looking at complexity of visualizations in
the case of moderate numbers of objectives and Pareto optimal solutions (see e.g. Miettinen, 2014).
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2. In the case of a computationally complex problem, waiting times between iterations can be unacceptable. The
DM may have limitations related to time spent with the method, as well as requirements to solve the problem by
a certain deadline.

3. In the presence of a large variety of interactive methods, it is unclear how to choose the most suitable method
for the specific DM in the specific circumstances. The real DMs who are not experts in MOO cannot make this
choice by themselves due to the lack of guidance and comparative studies.

Although MOO is relatively young as for a mathematical discipline, it is old as a computer science discipline. The
foundation of MOO has been laid before big data, user-friendly interfaces and widespread parallelization came into
practice. The scale and complexity of decision making problems has been rapidly increasing in recent decades as a
response to the growing scale of information systems (Filip, 2007; Tang & Liao, 2019). This makes the first two of the
mentioned issues more pronounced. At the same time, information technologies become more accessible to general
public. As a result, there are more opportunities for DMs to use decision support systems by themselves. This raises
the importance of the third issue.

3. ADDRESSING THE CHALLENGES

The challenges described in the previous section are rather broad. They call for thorough reconsideration of MOO
methodologies and approaches. Many researchers in theMCDMcommunity work in this direction (see e.g. Branke, Deb,
Miettinen, & Slowinski, 2008; P. Korhonen & Wallenius, 1996; Ogryczak & Vetschera, 2004). Our papers presented in
the next two subsections contribute to addressing the issues formulated in Subsections 2.1 and 2.2, respectively.

3.1 Explainable preference modeling

The works Miettinen, Podkopaev, Ruiz, and Luque (2015); Podkopaev (2007, 2008); Podkopaev and Miettinen (2011)
deal with achievement scalarizing functions (ASFs) first introduced in Wierzbicki (1980, 1982), which became the most
popular class of preference models used in interactive MOO. The goal of our study is to make the mechanism and
parameters of ASFs understandable for DMs, which would contribute to transparency and accuracy of expressing
preferences.

The basic and most common form of an ASF is the following:

minimize max
i=1,··· ,k

λi (z
asp
i − fi(x)) + ρ(x) (2)

subject to x ∈ X,

where zasp = (zasp1 , . . . , zaspk ) is the reference point composed of aspiration levels; λ1, . . . , λk are weights corre-
sponding to objective functions, and ρ(x) is a linear augmentation term ensuring Pareto optimality of any derived
solution. The aspiration levels have clear interpretation in decision making terms: they are objective function values,
which would satisfy the DM if being achieved. However, the weights, the augmentation term and the overall corre-
spondence between the ASF parameters and derived solutions cannot be easily understood.

Papers by Kaliszewski (2004, 2015) contribute to better understanding of weights and propose a holistic inter-
pretation of the ASF. The works by Kaliszewski (1994); Kaliszewski and Michalowski (1997) connect k parameters of
the linear augmentation term with k(k − 1) bounds on pairwise trade-off coefficients between objective functions.
Bounds on trade-offs are a good way of representing partial preference information in a situation, where the DM is not
confident about preferences and therefore cannot express information in a complete way, e.g. as rates of substitution
between objectives.

We go further by proposing a new, simple linear augmentation term with k(k−1) parameters, which have a direct
interpretation in terms of corresponding bounds on trade-off coefficients. Bounding trade-offs using this augmentation
term is reduced to a linear transformation of the objective space (Podkopaev, 2007). In the paper Podkopaev (2008),
we prove the rationality of DM’s preferences represented by the proposed linear model. Our approach allows any DM
to freely express partial information about pairwise preferences between criteria in understandable terms.

In the paper Podkopaev andMiettinen (2011), we combine the abovemodel of partial preference information with
an ASF preference model. The latter is interpreted in terms of a direction of improvement of objectives. As a result,
we obtain a holistic ASF-based preference model fully interpreted in decision making terms. Not only parameters but
also the whole mechanism of deriving solutions are explained in common language. In addition to the interpretation,
we propose an interactive procedure of forming the direction of improvement which can be used by inexperienced
DMs. This model and the procedure are suitable for interactive methods where a DM or a group of DMs wants to
avoid conflicts between objectives while concentrating on their synergy. We integrated the above developments with
an interactive method based on the same philosophy, called NAUTILUS (Miettinen et al., 2010). The new NAUTILUS
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method Miettinen et al. (2015) is suitable for both individual and group decision making in conflict-free environment.
This method was created in an attempt to avoid cognitive biases caused by the conflict (Kahneman & Tversky, 1979),
where the DM is forced to give up in some objectives in order to improve other objectives.

Beside ASF, there are many other parametric scalarizing functions serving as DM’s preference models, mainly in
the context of multi-attribute decision making (Greco et al., 2016; C. Hwang & Yoon, 1981; Shih, Shyur, & Lee, 2007).
Only additive scalarizing functions have been studied in terms of interpreting parameters (weights) in the decision
making context (see e.g. Saaty (1986) and references in P. J. Korhonen, Silvennoinen, Wallenius, and Öörni (2013)).
The papers Kaliszewski and Podkopaev (2016); Podkopaev (2016) contribute to explaining non-additive preference
models to the DM.

In Podkopaev (2016), we conduct experimental study of three among most popular non-additive scalarizing meth-
ods: TOPSIS, VIKOR and PROMETHEE, and compare them with the simple additive weighting (SAW) method. The
experiments involved comparing rankings produced by all four methods for randomly generated problem data. We ob-
served significant differences between rankings, implying that the method selection should not be made arbitrarily. We
provided weights interpretations in the considered methods, helping potential DMs to make the choice of the most
suitable method reflecting their preferences.

Besides that, in Podkopaev (2016) we analyzed how much the adjustment of weights can reduce the differences
between rankings of the non-additive methods and SAW. The achieved reduction is multifold, which suggests that the
different interpretation of weights in the methods significantly contributes to the difference in rankings (comparing
to the contribution by different shapes of the non-linear functions). This fact justifies our proposition of a posteriori
interpretation of solutions presented in the paper Kaliszewski and Podkopaev (2016). We proposed to adjust weights
of SAW function in order to obtain the same or similar ranking as the one based on a complex scalarizing function, and
to interpret the ranking process in more simple terms of the linear model.

3.2 Taking into account DM’s needs and limitations

Long waiting times between iterations can be costly for a busy DM and discourage him/her from participation in the
decision making process. The following scheme, named in Tabatabaei et al. (2015) the adaptive surrogate-based framework,
has been exploited by several papers as an approach to overcoming that issue:

1. Construction phase. A representation of the Pareto front (so called surrogate problem) is constructed. This may
take time for a computationally expensive problem, however the DM is not involved in this phase and therefore
does not spend his/her valuable time.

2. Decision phase. The interactivemethod is employed to solve the surrogate problem in communication with theDM.
The Pareto front representation allows calculating approximate solutions corresponding to DM’s preferences
instantly, thereby eliminating waiting times.

3. Projection phase. The solution of the original problem is obtained based on the solution of the surrogate problem.
The DM needs to wait before the most preferred solution is delivered, however his/her involvement in the
solution process is no longer required.

As concluded in Tabatabaei et al. (2015), the adaptive framework is more advantageous in the case of MOO problems
compared to the traditional approach, where surrogate functions are created for individual computationally complex
objective functions.

The paper Kaliszewski, Miroforidis, and Podkopaev (2012) presents a novel surrogate-based approach in the adap-
tive framework. Unlike other approaches, here instead of approximate Pareto optimal solutions in the decision phase,
the DM obtains information about lower and upper bounds on their objective function values. Thus, the DM knows
the guaranteed accuracy of the approximate objective vector corresponding to any instance of preference information.
This feature is made possible by creating a special type of representation of the Pareto front in the construction phase.
It consists of so called lower and upper shells, which are sets of feasible and non-feasible points, respectively, enclosing
the Pareto front in between like a sandwich.

If the accuracy of a solution is not satisfactory for the DM, the density of Pareto set representation near this
solution can be improved by another algorithm. However the DM has to pay for this improvement with waiting
time. Both the construction phase algorithm and the improvement algorithm proposed in Kaliszewski et al. (2012) are
evolutionary-based heuristics. The paper is a continuation of earlier works by Kaliszewski (2004, 2006); Kaliszewski
and Miroforidis (2009, 2010).

The described scheme of surrogate-based interactive MOO can be further improved by employing techniques of
parallel computing and artificial intelligence. In the paper Ojalehto, Podkopaev, and Miettinen (2015), we propose a
concept of an agent-based framework extending the adaptive surrogate-based framework as follows. Several intelligent
modules called agents work in parallel during the decision phase. They exchange information, observe the behavior
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of the DM and learn his/her preferences. Using this information, they try to predict the areas of the objective space
which are most interesting for the DM. They derive new Pareto optimal solutions in those areas and update the Pareto
front representation, thereby improving the accuracy of solutions derived during the decision phase. The agents work
seamlessly for the DM, utilizing time the DM spends with the computer for improving the quality of solutions in
background.

The agent-assisted concept was implemented on top of the surrogate-based method PAINT developed earlier
(M. Hartikainen, Miettinen, & Wiecek, 2012; M. E. Hartikainen & Lovison, 2014). This method represents Pareto
front by linear interpolation between derived Pareto optimal solutions using Delaunay triangulation. We demonstrated
the benefits of the agent-assisted algorithm by applying it to solving a real-life problem of chemical engineering. During
the decision phase, we utilized information obtained from a real DM in an industrial project. It is worth noting that the
concept of the agent-assisted framework can be implemented with any type of surrogate-based method including the
one from Kaliszewski et al. (2012).

The issue of cognitive difficulty of interactive MOO has been addressed in the paper Filatovas, Podkopaev, and
Kurasova (2015). We consider the class of interactive methods where the DM has to express information with respect
to one of previously derived Pareto optimal solutions. The Pareto optimal solutions are accumulated in each iteration
forming the so called solution pool. In order to express preference information in each iteration, the DM has to select
one of them. Comparing a dozen of objective vectors may be cognitively difficult in the case of many objectives. We
propose and implement the concept of a visualization tool assisting the DM in this task.

The visualization tool is based on reducing the dimensionality of objective vectors from k to 2 or 3 using multidi-
mensional scaling, and visualizing them in an interactive plot. It helps the DM to understand how different solutions are
clustered in space, as well as interconnected in time throughout the iterations. We describe the algorithm implementing
the visualization tool in detail, as well as a general scheme of connecting it with any method of the considered class. We
demonstrate its work with NIMBUS method (Miettinen & Mäkelä, 2006) using an example problem.

The papers Miettinen, Hakanen, and Podkopaev (2016); Ojalehto, Podkopaev, and Miettinen (2016) address the
lack of guidance for DMs related to selecting appropriate interactive MOOmethods. Usually authors of any interactive
method recommend to use it, emphasizing method’s advantages. On the other hand, different DMsmay prefer different
styles of expressing preferences which vary across methods. Besides that, experimental studies comparing interactive
methods are scarce due to numerous difficulties of involving humans in such experiments.

In the survey of interactive MOO methods Miettinen et al. (2016), we classify all well-known interactive methods
based on the type of preference information required from the DM. The survey contains 277 references. We identified
five main types of preference information:

• the vector of aspiration levels also known as the reference point – the desirable levels of objective function values;

• classification of objectives – after selecting one among previously derived Pareto optimal solutions, the DM describes
the desirable improvement of this solution objective-wise;

• comparison of solutions – the DM is required to compare given Pareto optimal solutions with each other;

• marginal rates of substitution – desirable proportions between improvement of some objectives and deterioration of
other objectives when moving from one Pareto optimal solution to another one;

• navigation – free navigation among Pareto optimal solutions using graphical user interface.

One way of overcoming the difficulties related to conducting interactive methods tests with human DMs is to
construct artificial DMs simulating such interaction. There are no formal theories of preferences which could be used
to set aspiration levels in justified ways. Despite reference points are the most popular type of preference information
used in interactive MOO, only few works propose artificial DMs for testing reference point-based methods. Our work
Ojalehto et al. (2016) is among the first ones in this direction. We propose a holistic structure of an artificial DM
mimicking how humans interact with MOOmethods in our understanding. Generation of reference points is based on
adjusting the aspiration levels in each iteration, taking into account priorities of objectives and involving randomness. We
demonstrate the universality of our approach by comparing two interactive reference point-based methods of different
nature: the classical interaction procedure by setting the reference point and the evolutionary method R-NSGA-II.

Last but not least, we contribute to educatingDMs of various backgrounds by publishing a textbookKaliszewski et
al. (2016) and presenting it as the first human-centric decision making approach available to general public (Kaliszewski,
Miroforidis, & Podkopaev, 2018). It is based on our course of computer-aided decision making taught to managers at
the level of high school. The textbook presents a simple but complete methodology allowing a DM to solve an MCDM
problem by himself/herself. It is self-sufficient, meaning that it describes all theoretical concepts required for mastering
the methodology. Accompanying electronic materials illustrate the implementation of this methodology in Microsoft
Excel. Our textbook can help closing the gap between the MOO methods and the DMs with non-mathematical
background.
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4. CONCLUSION

In this short paper we attempted at introducing the MOO as a framework for decision making and support. The
developments of MOO have great potential for meeting the needs of real-life decision makers in the modern world of
growing complexity. However, important challenges need to be addressed in the methodology of MOO for enabling
that. We concentrated on the challenges related to strengthening human aspects, and reviewed our works addressing
them. The scope of future work which has to be done is much broader than presented here. In order to keep up with
the demands of evolving world, MOO should strengthen its integration with such disciplines as cognitive psychology,
behavioral science, user interface design, artificial intelligence, and others. The first step could be the systematization
of research challenges in the broader context and the elaboration of a roadmap for future studies.
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