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Abstract: This study investigates the multi-customer Joint Replenishment Problem with districting considerations
and material handling capacity constraints (MJRPDC-MHCC). Solving MJRPDC-MHCC is important to the manager
before signing a contract with a third-party logistics service provider since it obtains a logistics plan providing lot-
sizing and districting decisions. We propose a solution approach based on genetic algorithm (GA) as its framework
and incorporate a heuristic that generates a feasible replenishment schedule for each districting setting. Following our
numerical experiments, we observe that the average runtime of our approach grows in a cubic order with respect to
both the number of customers and the number of items. Therefore, the proposed GA-based solution approach is
recommended as a useful decision-support tool.
Keyword — Joint replenishment, districting problem, material handling, capacity constraints, genetic algorithm

1. INTRODUCTION

Enterprises take advantage of advanced logistic services and inventory control to improve supply chain management
and to strengthen their core competencies for long-term profits; see Chopra and Meindl (2015) and Simchi-Levi, Chen,
and Bramel (2014). This study investigates a logistics planning problem integrating lot-sizing and districting considering
limited available capacity.

Joint replenishment has been popularly adopted to reduce the unit setup cost of order picking, packaging, prepara-
tion, and dispatch via economies of scale. The joint replenishment problem (JRP) is concerned with the determination
of the lot size and the delivery schedule of n items of goods supplied from a single supplier so as to minimize the aver-
age total cost (typically, including setup and holding cost) over an infinite (and continuous) planning horizon. Usually,
there are two categories of setup costs: (i) a major setup cost, A0 , for collectively handling a subset of items and (ii) a
minor setup cost, ai , processing for each item i. It is common that a major setup involves a considerable amount of
time and costs, and managers utilize JRP to synchronize the replenishment schedule of each item i to share the major
setup cost to balance the inventory holding cost of each item.

JRP has been studied for more than half of a century since the early work of Shu (1971). Cohen-Hillel and
Yedidsion (2018)show that the periodic JRP is strongly NP-hard recently. Researchers, e.g., Fung and Ma (2001), Goyal
(1974), Van Eijs (1993), Viswanathan (2002), etc., proposed solution approaches for JRP by enumerating combinations
of the basic cycle timeB and its multiples, ki of item i, to search for an optimal solution. Lee and Yao (2003) investigate
the optimality structure of the objective function for JRP under the power-of-two (PoT) policy that mandates ki = 2p

for some p ∈ N . They illustrate that the optimal objective function is piece-wise convex and propose a search
algorithm to obtain a global optimum of JRP under the PoT policy. Their theoretical analysis establishes important
foundation to investigate the general integer (GI) policy that requires each ki to be a positive integer. One may refer
to Khouja and Goyal (2008) and Bastos, Mendes, Nunes, Melo, and Carneiro (2017) for a thorough review of JRP. The
logistic managers may take advantage of the joint replenishment and extend it to cases with multiple customers if many
customers order the same group of items from a single supplier; for example, a chain of branches or retail stores in an
enterprise group. We call such an extension of JRP a multi-customer joint replenishment problem (MJRP). Following
some practical concerns such as geography, transportation, or fleet size, managers usually divide the customers into
various mutually exclusive zones of a planning region. Then, they need to solve MJRP to coordinate the replenishment
for customers in the same zone. Some studies proposed solution approaches for solving MJRP. For instance, Chan,
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Cheung, and Langevin (2003) solve MJRP in each zone corresponding to eight predetermined groups (Figure 1.1) using
a genetic algorithm.Yao, Lin, Y., Lin, and Fang (2020) bring up a search algorithm that effectively solves MJRP for a
given zone.

Yao et al. (2020) investigate a multi-customer JRP with districting consideration (MJRPDC), which determines
an optimal districting setting such that the average total cost of MJRP for all zones is minimized. Note that most of
the related studies in the literature solve MJRP for given partitions, while MJRPDC views the districting as a decision
variable and divides customers into a fixed number of groups before solving MJRP.

As emphasized in Yao et al. (2020), MJRPDC is of particular importance to a company that outsources its trans-
portation and delivery operations to a third-party logistics (3PL) service provider. A company must not only negotiate
the freight rate in the contract with a 3PL service provider, but also offer a districting plan with a replenishment schedule
to cover all customers before signing an outsourcing contract.

Ricca, Scozzari, and Simeone (2013) present three commonly used principles of districting:

(i) Contiguity: A zone is said to be contiguous if it is possible to travel between any two territorial units without
leaving the zone.

(ii) Population equity: A partition is said to be in population equity if the number of desired units such as eligible
voters and sales potential in each zone is roughly the same.

(iii) Compactness: A zone is said to be compact if it is geographically round shaped.

Yao et al. (2020) considers population equity and compactness principles in their study. To solve MJRPDC,
they use a GA-based solution approach that integrates with a search algorithm for solving MJRP for a given zone to
evaluate the performance of each districting setting. This study is an extension of MJRPDC investigated in Yao et al.
(2020). The manager solves MJRPDC before negotiating a 3PL contract with the 3PL service provider. Then, the 3PL
service provider plans a specified area (for example, an assigned dock) in its warehouse for the logistics operations,
namely, sorting, packaging and loading items, of a particular zone. The availability of material handling resources such
as labors or lifting equipment are essential constraints in the implementation. To fulfill customers’ demand, the 3PL
service provider reserves some specific amount of capacity of the material handling equipment for contract customers.
Therefore, before negotiating with a contract customer, the manager needs to incorporate a set of material handling
capacity constraints into the decision-making scenario ofMJRPDC to coordinate the lot-sizing and replenishment for all
the customers of each zone. The integration of MJRPDCwith material handling capacity constraints is surely original in
the literature. Most of the studies on JRP consider no restrictions on the replenishment operations of all items. However,
managers make their logistics plans subject to many constraints due to limitations in transportation, budget, and physical
space in practice. Goyal (1975) is the first study that introduced the JRP with budget constraints, and he proposed a
heuristic based on the Lagrangian multipliers for solving the problem. Hoque (2006) included the considerations of
storage capacity, transport capacity, and budget limitation in the JRP. Later, Moon and Cha (2006) investigated a JRP
considering a budget constraint and solved it using a GA. Yao (2010) dealt with the JRP under the warehouse-space
restrictions in a distribution center. Amaya, Carvajal, and Castano (2013) studied the JRP with budget limitations and
proposed a heuristic based on linear programming. Ongkunaruk, Wahab, and Chen (2016) considered a JRP with
defective items and the restrictions such as shipment, budget, and transportation capacity constraints. However, the
researches in the literature are different from MRJP with material handling capacity constraints in this study (which will
be presented in Section 2).

Similar to Yao et al. (2020), this study takes into account the principles of population equity and compactness
because population size defines demand and compactness involves transportation distance and cost. The proposed
GA-based framework to solve the districting problem is similar to that presented in Yao et al. (2020). Then, we propose
a heuristic for solving MJRP considering Material Handling Capacity Constraints (MHCC) which plays a critical role in
the evaluation of the performance of each districting setting. We use a small-size example showing a districting decision
from the proposed solution approach. We also conduct a sensitivity analysis of the parameters corresponding to the
demand equity and compactness constraints. This study contributes to the following two aspects. First, it presents an
efficient search algorithm to solve MJRP under the GI policy. Second, by incorporating the search algorithm for MJRP,
we propose a GA-based solution method to solve MJRPDC considering MHCC, and it may assist the decision-makers
in obtaining a logistic plan before signing a contract with a 3PL service provider.

The rest of the paper is presented as follows. Section 2 introduces the decision-making scenario and the mathe-
matical models for MJRPDC considering MHCC. Section 3 uses the local minimum obtained by the search algorithm of
Yao et al. (2020) for unconstrained MJRP as the candidate solutions. Section 4 proposes a feasibility-testing procedure
based on Yao (2001) heuristic to generate a feasible replenishment schedule, and fix an infeasible solution as obtaining
no feasible schedule. Section 5 presents computational experiments showing the average runtime of our approach
grows in a cubic order with respect to both the number of customers and the number of items. Section 6 concludes
the paper with practical implications and remarks on future extensions.
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2. MATHEMATICAL MODELS

We first introduce a decision-making scenario for the multi-customer JRP with districting considerations and material
handling capacity constraints (abbreviated as MJRPDC-MHCC). Then, we review a mathematical model for MJRPDC.
Finally, given a districting setting, we formulate a mathematical model for the multi-customer JRP (MJRP) considering
MHCC.

2.1 Decision-making scenario

The manager needs to manage two issues when dealing with MJRPDC and MJRPDC-MHCC:

1. Districting: Divide all of the customers into p mutually exclusive zones.

2. Lot-sizing: Coordinate the replenishment of multiple items in each zone.

Regarding the issue of “districting”, the manager should start with deciding the location (i.e., the coordinates) of “cen-
troids” of p zones, and a centroid is not necessary to set at any customer. Then, each customer will be assigned to one
and only one zone based on these centroids.

Figure 2.1 shows two zoning examples in a planning region with 3 zones and 10 customers; see also, Yao et al.
(2020). For the left-side example, the manager first determines the coordinates of three centroids, e.g., (x1, y1) , (x2, y2)
and (x3, y3) , and then, customers 1 to 4 are assigned to zone 1, customers 5 and 6 to zone 2, and the others to zone
3. The manager takes into accounts two concerns when making the districting decision:

Figure 2.1: Two districting examples with 3 zones and 10 customers (Yao, et al., 2020)

1. Compactness: The distance between any customer and the corresponding centroid does not exceedMd km.

2. Demand equity: The total demand of any zone is no more than α times the average demand of all zones.

Beside of districting, the manager needs to deal with the “lot-sizing” problem by coordinating the replenishment of the
customers in the same zone to minimize the average total costs for each zone (called a multi-customer JRP), and to
meet the material handling capacity constraints.

The objective function of the multi-customer JRP in each zone include the (major and minor) setup/ordering cost
and the inventory holding cost, but similar to Chan et al. (2003), it does not take account of the transportation cost since
we assume that a third-party-logistics (3PL) service provider handles the logistics of replenishment between the supplier
and all the customers. Following the pricing mechanism of 3PL (see Haniefuddin et al., 2013), the transportation cost
may be based on either sales revenue or the volume/weight of the commodities, and it turns to be a constant since the
annual demand of each item is known and fixed. Therefore, we do not include the transportation cost in the objective
function in this study.

For a given districting setting, the manager coordinates the lot-sizing and replenishment for all the customers in
a zone z using a basic cycle time denoted by Bz . The replenishment cycle time of item i for customer j is a positive
integer multiplier kij of Bz , i.e., kijBz . Taking the right-hand example in Figure 3.1, we have the replenishment
cycle time of item i for Customer 5 (in zone 2) is ki5B2 . The set of material handling capacity constraints arise from
the 3PL contract negotiation between the company and the 3PL service provider. Referring to practical operations in
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distribution centers, the 3PL service provider usually employs a specified operating area (sometimes, also a designated
dock) in its warehouse for the logistics operations (including sorting, packaging and loading items for the customers)
of a particular zone. The material handling equipment is critical in the implementation of these logistics operations. To
guarantee feasibility of a replenishment schedule for a zone z, the logistics operations may use nomore than the available
capacity of the material handling equipment for zone z. When negotiating with a contract customer, 3PL service
provider must reserve an amount of capacity of the material handling equipment. The manager of the company must
take into account the set of material handling capacity constraints when coordinating the lot-sizing and replenishment
for all the customers in a zone z.

2.2 The model for MRJPDC

This section reviews the model for MJRPDC as follows.
Parameters

q Number of items
n Number of customers
A0 Major setup cost
aij Minor setup cost of item i for customer j
hij Holding cost of item i per unit, per unit time for customer j
dij Demand rate of item i for customer j
p Number of zones
Md Maximal allowed distance between any customer and its corresponding centroid
α Balanced-factor among zones
(x̄j , ȳj) Coordinate of customer j

Indices

i item index, i ∈ {1, 2, . . . , q}
j customer index, j ∈ {1, 2, . . . , n}
z zone index, z ∈ {1, 2, . . . , p}

Decision variables

Bz Basic cycle time in zone z
kij Multipliers of basic cycle time of item i of customer j

rjz

{
= 1, if customer j is assigned to zone z
= 0, otherwise

(xz, yz) Coordinates of the centroid of zone z
Nz Subset of customers assigned to zone z, i.e.,

Nz ≡ {j : rjz = 1, j = 1, . . . , n}, z = 1, . . . , p

Assumptions

1. The replenishment for each item is instantaneous, and the replenishment cycle time of each item is constant.

2. No shortages are permitted.

3. A third-party logistics (3PL) service provider is responsible for the replenishment. Therefore, we take into
accounts neither the vehicle routing, nor the transportation costs.
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Model Formulation

TC([Bz]1×p, [kij ]q×n, [rjz]n×p, [(X
z, Y z)]pz=1) = min

p∑
z=1

A0

Bz
+

p∑
z=1

n∑
j=1

q∑
i=1

rjz(
aij

kijBz
+

hijdijkij
2

Bz)

(2.1)

Subject to

p∑
z=1

rjz = 1, j = 1, . . . , n (2.2)

q∑
i=1

n∑
j=1

dijrjz ≤
α

p

∑
i

∑
j

dij , z = 1, . . . , p (2.3)

rjz

√
(x̄j − xz)2 + (ȳj − yz)2 ≤Md, j = 1, . . . , n; z = 1, . . . , p (2.4)

rjz ∈ {0, 1}, j = 1, . . . , n; z = 1, . . . , p (2.5)

(xz, yz) ∈ R2
+, z = 1, . . . , p (2.6)

kij ∈ Z+, i = 1, . . . , q; j = 1, . . . , n (2.7)
Bz > 0, z = 1, . . . , p (2.8)

The objective function in (2.1) is to minimize the average total costs that include the major setup cost, the minor
setup cost and inventory holding cost per unit of time. Equations (2.2) ensure that each customer can be assigned to a
single zone. The inequalities in (2.3) mandate that the total demand of all the customers in each zone cannot exceed α
times of the average total demand of all zones. The constraints in (2.4) make sure that a customer j may be assigned to
zone z, only if the distance between customer j and the centroid of zone z is no more thanMd km. Constraints (2.5)
- (2.8) define the domain of the decision variables.

2.3 The model for MRJP considering MHCC

Given any zone z in a districting setting, we formulate amathematical model formulti-customer JRP (MJRP) considering
MHCC.

Before presenting the model, we re-define some notation to simplify the formulation. We define an index î for an
artificial item corresponding to the demand of an item i for a customer j. Table 2.1 shows the redefinition of î using
a small example in which three customers (Customer 1, 7 and 9) in zone 1 demand for two items (Item 1 and 2), or
N1 ∈ {1, 7, 9} with n = 2 .

Suppose that each customer demands for all items. The index î runs from 1 to
∑p

z=1 n · |Nz| . For simplified
notation, we define n̂ ≡

∑p
z=1 n · |Nz| . We may redefine notations of the minor setup cost (aî), the demand rate (dî),

the holding cost (hî), respectively. For instances, it holds that a11 = aî , d29 = h6̂ and h17 = h2̂ following Table 2.1.

Table 2.1: An example of redefinition of index î

î Original definition
1 Item 1 (i = 1) demanded by Customer 1 (j = 1)
2 Item 1 (i = 1) demanded by Customer 7 (j = 7)
3 Item 1 (i = 1) demanded by Customer 9 (j = 9)
4 Item 2 (i = 2) demanded by Customer 1 (j = 1)
5 Item 2 (i = 2) demanded by Customer 7 (j = 7)
6 Item 2 (i = 2) demanded by Customer 9 (j = 9)
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We define some additional notations before presenting the mathematical model.
Parameters

k̄î : Largest integer multiplier of item î

rî : Processing time (of material handling) of item î per unit
Hz : Available capacity of the material handling equipment for zone z

Index

t : period in a unit of basic cycle time, t = 1, 2, 3, . . . , lcm{kî}

Decision variables

yî,k,φ(k,t) =

{
1, if item î is replenished in the φ(k, t)-th period among the first k periods
0, otherwise.

Assumptions
The sum of total processing time (of material handling) cannot exceed the available capacity of the material handling
equipment for zone z in each period.

Model Formulation
Given a particular zone z in a districting setting, the mathematical model of MJRP considering MHCC is presented as
follows.
Minimize

Γ([yî,k,φ(k,t) ]̂i=1,2...,
∑p

z=1 n·|Nz|
k=1,2...,k̄î

t=1,2,...,lcm{kî}

, Bz) =
A0

Bz
+

∑p
z=1 n·|Nz|∑

î=1

k̄î∑
k=1

k∑
t=1

(
aîyî,k,φ(k,t)

kBz
+

kBzdîhîyî,k,φ(k,t)

2
) (2.9)

Subject to
∑p

z=1 n·|Nz|∑
î=1

k̄î∑
k=1

kBdîrîyî,k,φ(k,t) ≤ Hz, t = 1, 2, . . . , lcm{kî} (2.10)

k̄î∑
k=1

k∑
t=1

yî,k,φ(k,t) = 1, î = 1, 2, . . . ,

p∑
z=1

n · |Nz| (2.11)

kî =

k̄î∑
k=1

k ·
k∑

t=1

yî,k,φ(k,t), î = 1, 2, . . . ,

p∑
z=1

n · |Nz| (2.12)

where

yî,k,φ(k,t) =

{
1, if item î is replenished in the φ(k, t)-th period among the first k periods
0, otherwise. (2.13)

and

φ(k, t) =

{
t mod k , if t ̸= ξ · k, ξ ∈ N+

k , if t = ξ · k, ξ ∈ N+ , t = 1, 2, . . . , lcm{kî} (2.14)

yî,k,φ(k,t) ∈ {0, 1}, î = 1, 2, . . . ,

p∑
z=1

n · |Nz|; k = 1, 2 . . . , k̄î; t = 1, 2, . . . , lcm{kî} (2.15)

Bz > 0 (2.16)
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The objective function in eq. (2.9) is to minimize the average total costs, including major setup cost, minor setup
cost, and holding costs. The constraints in (2.10) mandate the sum of total processing time (of material handling) cannot
exceed the available capacity of the material handling equipment for zone z in each of the lcm{kî} periods.

The equations in (2.11) and (2.12) determine the starting period and the replenishment cycle time of an item î
, respectively, with yî,k,φ(k,t) in (2.13) and the function φ(k, t) in (2.14) . Equations (2.15) and (2.16) express the
domain of the decision variablesBz and yî,k,φ(k,t) . Table 2.2 presents an example of using yî,k,φ(k,t) for deciding the
replenishment cycle time and cyclic replenishment scheduling of an item î with k̄î = 3 .

Table 2.2: Using yî,k,φ(k,t) for deciding the replenishment cycle time and scheduling

Multiplier
Periods in the unit of a basic cycle time

1st period 2nd period 3rd period

k = 1 yî,1,1

k = 2 yî,2,1 yî,2,2

k = 3(= k̄î) yî,3,1 yî,3,2 yî,3,3

When k = 1, there is only one choice, that is to start the replenishment in the first period (and repeat replenishing
in each period thereafter). For the case of k = 2, one may start the replenishment in either the first or the second
period. In general, there are a total of 2k̄î − 1 = 23 − 1 = 7 possible choices of (replenishment cycle time–starting
period) combination. Eq. (2.11) shows that one may choose one and only one out of these choices. Suppose that
yî,2,2 = 1 in this example. Then, eq. (2.12) shall obtain a multiplier kî = 2 (or equivalently, a replenishment cycle time
of kîB = 2B) for item î .

Consider an example with only two items with k1̂ = 2 and k2̂ = 3 . The whole replenishment schedule repeats
every lcm(k1̂, k2̂) = 6 periods. (By the same token, the whole replenishment schedule repeats every lcm{kî} periods
in the general case.) If the starting period of item 2̂ is period 2 (among the first k2̂ = 3 periods), i.e., y2̂,3,2 = 1 , we
have the value of φ(k, t) = φ(3, 5) = 5 mod 3 = 2 at the 5th period, which means y2̂,3,φ(3,5) = y2̂,3,2 = 1 following
(2.14). Therefore, the function φ(k, t) keeps an item being replenished after a fixed cycle time.

The model in (2.9) - (2.16) precisely expresses the problem of MJRP considering MHCC, especially, in the replen-
ishment scheduling of items. However, we are not able to directly use the model for decision-making because of the
following reasons.

1. The values of kî are dependent variables of the decision variables yî,k,φ(k,t) .

2. There are a total of lcm{kî} constraints for each of (2.10), (2.14) and (2.15), respectively.

3. The total number of constraints in the model stays unknown since it depends on the decision variables yî,k,φ(k,t)

.

We will utilize part of the model in the determination of a feasible replenishment schedule in the proposed solution
approach discussed in Section 4 later.

3. AN INTEGRATED GA-BASED SOLUTION APPROACH

We propose a solution approach for solving MJRPDC-MHCC in this section. First, we introduce the coding-encoding
mechanisms of the chromosome and the initialization procedure. Then, we discuss the fitness evaluation of chromo-
somes and the genetic operators (namely, selection, crossover, and mutation, etc.) and the termination conditions in
GA. Figure 3.1 illustrates an integrated framework of the proposed GA-based solution approach.

3.1 Coding-encoding mechanisms and initialization

We employ the same coding-encoding mechanisms of the chromosome as Yao et al. (2020) in this study since it enjoys
greater flexibility to meet the compactness and distance allowance restrictions when solving the districting problem.
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Given a maximum allowed unit distance, µ̄ (e.g., 0.5 km), we cover the service region by a reasonable number of
discrete grid points with a unit of grid width/length of no more than µ̄ km. We denote the minimum number of grids
needed to represent the coordinates of the service region on the l-axis as GPl , where l ∈ {x, y}:

GPl = ⌈
lmax − lmin

µ̄
⌉ (3.1)

where lmin and lmax are the smallest and largest coordinate values of the customers’ locations on the l axis, where
l ∈ {x, y}. Let βl be the number of bits required for the representation on the l axis:

βl = ⌈log2(GPl + 1)⌉, l ∈ {x, y} (3.2)

Figure 3.1: Integrated framework of the proposed GA-based approach

We assure that the grid width/length on the l axis is no greater than ū following (3.1) and (3.2) where

ul =
lmax − lmin

2βl − 1
, l ∈ {x, y} (3.3)

An encoding mechanism converts the coordinate value on the l axis of a zone centroid into binary strings
(bβl

bβl−1 . . . b1 b0) for the chromosome representation in our GA. We may decode the coordinate value on
the l axis of a zone, denoted as l̃ , by

l̃ = lmin + (

βl∑
i=0

bi · 2i)µl, l ∈ {x, y} (3.4)

The initialization process of the GA randomly generates binary strings, representing the coordinates of the zone cen-
troids, for the chromosomes in the initial population. Our encoding mechanism ensures the locations of all the zone
centroids keep inside of the service region.
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3.2 Evaluation of chromosomes

Referring to Yao et al. (2020), we employ an evaluation procedure to evaluate the fitness for each chromosome using
the following four steps:

1. Solve a generalized assignment problem (GAP) in (3.5)-(3.8) to assign customers to all zones based on the de-
coded locations of the zone centroid.

Minimize
n∑

j=1

p∑
z=1

cjzrjz (3.5)

Subject to

q∑
i=1

n∑
j=1

dijrjz ≤
α

p

∑
i

∑
j

dij , z = 1, . . . , p (3.6)

p∑
z=1

rjz = 1, j = 1, . . . , n (3.7)

rjz ∈ {0, 1}, j = 1, . . . , n; z = 1, . . . , p (3.8)

The objective function in (3.5) is to minimize the total distance of all customers to their assigned zone centroid,
where cjz is the distance between customer j and the centroid of zone z. The constraints in eq. (3.6) are
identical to (2.3), which mandate the demand equity principle. The constraints in Eq. (4.7), the same as eq. (2.2),
ensure that each customer is assigned to one and only one zone. We do not include the compactness constraint
in Inequality (2.4) in the GAP to allow our GA searching for an optimal solution via illegal chromosomes as
intermediate structures. Our GA applies an extremely large penalty function whenever encounter any violation
in the compactness constraint. Similar to Yao et al. (2020), we use the heuristic of Jeet and Kutanoglu (2007) for
solving efficiently the GAP.

2. Calculate the average total cost given the set of customers assigned to each zone by solving MJRP with MHCC
for each zone with the given set of customers using the proposed procedure in Section 4. Then, sum up the
average total costs, as well as the penalties for the constraint violation of each zone if applicable, for all the zones.

3. Calculate the fitness value for the chromosome by applying linear ranking normalization (see Pohlheim
(1999)), where all the chromosomes in a population are ranked and stored in a temporary list, temp.
We denote the ranking of the chromosome i in a population as Ri and calculate its normalized fitness value,
eval, by

evalRi = 2− SP +
2(SP − 1)(Ri − 1)

PS − 1
(3.9)

where PS is the size of a population and takes a value of the selection pressure (SP ) in the range of [1.0, 2.0].
The best-fit chromosome takes the first portion of the ranking list and is ranked the highest (Ri = PS), whereas
the least-fit chromosome reserves the last portion of the list and is ranked the lowest (Ri = 1).

4. Update the best-on-hand solution if a better solution appears.

3.3 GA operators and termination conditions

Before forming the population in the next generation, GA uses selection to pick the chromosomes from the current
population to undergo genetic operators. Tournament selection and roulette wheel selection are most popular
among the selection mechanisms used in GA (see Michalewicz (1996)). Tournament selection matches a few randomly
chosen chromosomes for “tournaments”, and the winner of each tournament (the one with the best fitness) goes for
crossover. The proposed GA adopts the roulette wheel selection in which a probability of selection is associated with
the fitness level of each chromosome.
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Crossover exchanges genetic information of two parents to generate new offspring in the next generation and
explores the solution space to search for new solutions. Single-point crossover, two-point (or k-point crossover), and
Uniform crossover are most popular when using binary-encoding as the data structure in GA (see Michalewicz (1996)).
Since our numerical experiments show no significant difference among these three operators, we choose a two−point
crossover in the proposed GA. The operator first randomly picks two cut points are from both parent chromosomes
and swaps the bits in between the two cut points between the parent organisms. The proposed GA uses a dynamic
crossover probability since a higher crossover probability at the beginning of the evolutionary process enhances diversity
among the chromosomes improving the exploration of the solution space. Alternatively, a lower crossover probability
assists in keeping information across generations before the evolution terminates. Therefore, the crossover probability
decreases linearly from one generation to the next in our GA. One may refer to Srinivas (1994) and Zhang, Chung, S.,
and Lo (2007), etc., for the promotion of using dynamic (or adaptive) probabilities.

Mutation conducts a minor random deviation to increase diversity in the evolutionary process since it randomly
changes some genes in a chromosome before being passed on to the next generation. Similar to the crossover prob-
ability, the proposed GA uses a dynamic setting of mutation probability that increases linearly after a fixed number of
generations. This improves diversity and exploit solutions in its neighborhood, particularly when chromosomes turn
to be too similar to each other close to the end of evolutionary process.

The proposed GA terminates when the evolutionary process shows no further improvement. For example, our
GA procedure stops when the best-on-hand solution was not updated over the last 100 generations.

4. HEURISTIC FOR SOLVING MJRP CONSIDERING MHCC

We propose a heuristic for solving MJRP Considering MHCC in this section. The section includes three parts. The first
part reviews the search algorithm proposed by Yao et al. (2020) for solving the (unconstrained) MJRP as a framework
of our heuristic. Then, we present the procedure for generating a replenishment schedule considering MHCC. The
third part presents our heuristic that picks the local minimum with not only a feasible replenishment schedule, but also
the minimum objective function value as the heuristic solution for MJRP considering MHCC.

4.1 Review of the search algorithm for solving MJRP

We review the search algorithm for solving MJRP in a given zone z, proposed by Yao et al. (2020) since the search
algorithm will serve as a framework of our heuristic that solves MJRP considering MHCC. The overview of the search
algorithm is presented as follows. First, we define a search range within a lower and an upper bound on the Bz-axis,
denoted byBz and B̄z , respectively. Note thatBz and B̄z are derived based on the rationale that the solutions beyond
Bz and B̄z are no better than the optimal solution located in [Bz, B̄z]. The proposed algorithm searches along the
Bz-axis from the upper bound (B̄z) to the lower bound (Bz).

Then, we obtain the junction points, i.e., δij(m) , in [Bz, B̄z], sort them to get a non-decreasing sequence
· · · ≤ w2 ≤ w1 ≤ w0 = B̄z , and take the sorted sequence as the road map to proceed with the search. We divide the
search range into sub-intervals where each sub-interval [wl, wl−1] is defined by two neighboring points in the sorted
sequence. Following the junction point analysis, we are able to obtain the vector of optimal multipliers, K̄ , and the local
minimum B̆∗

z (K̄) . We take the local minimum as a candidate for the optimal solution in each sub-interval, and update
the best-on-hand solution if applicable. By examining all the local minima that exist in [Bz, B̄z], we secure an optimal
solution for MJRP in a given zone z.

One may refer to Yao et al. (2020) for the details of the search algorithm.

4.2 Generate a replenishment schedule considering MHCC

We present a procedure that generates a feasible replenishment schedule considering MHCC in this section. Our
proposed procedure is based on Yao (2001) heuristic for solving Peak LoadMinimization Problem in Cyclic Production.
Note that it shares a common characteristic of cyclic replenishment with MJRP considering MHCC. But, we need to
take care of the constraints in (2.10) that mandate the sum of total processing time (of material handling) cannot exceed
the available capacity of the material handling equipment for zone z in each of the lcm{kî} periods when solving MJRP
considering MHCC.

Our heuristic for generating a replenishment schedule considering MHCC follows the Feasibility Testing Proce-
dure for the ELSP in Yao (2001) in which it takes into account the capacity constraints of a production facility in the
Economic Lot Scheduling Problem (ELSP). We use Proc Gen Schedule to test the feasibility of a given combination
(K(B), B) for MJRP considering MHCC.We denoteL∗(K(B), B) as the peak load, which corresponds to the largest
value of the sum of total processing time (of material handling) among all the lcm{kî} periods. Apparently, if it holds
that L∗(K(B), B) ≤ Hz for all the lcm{kî} basic periods, the replenishment schedule is feasible. We define an
indicator ϕ in Proc FT to indicate if a feasible production schedule is obtained when ϕ = 1 ; otherwise, ϕ = 0 . Let
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L(WF ) and WF be the peak load and the replenishment schedule obtained by Proc Gen Schedule. We present the
flowchart of our heuristic, Proc Gen Schedule, in Figure 4.1.

Figure 4.1: Flowchart of Proc Gen Schedule

Further discussion about the solution framework is as follows. In the beginning of Proc Gen Schedule, an Initial
Schedule Procedure(Proc IS) is used to obtain an initial schedule W by emulating the LPT rule that iteratively
assigns replenishment lot size to the customer with the longest σj (i.e., the longest processing time of material handling)
among the unassigned customers until all customers are assigned.

After an initial scheduleW is obtained, one starts with the next run of local search (or re-optimization) by em-
ploying three subroutines, namely, the Smooth−Out Routine, the Pair-Exchange Routine, and the Two− to−One
Exchange Routine to reduce the peak load inW as much as possible. The terms “Smooth-Out” and “Exchange”
indicate the essence of local search, namely, moving-out or exchanging the processing time of replenishment lots pro-
duced in the peak-load period to reduce the peak load in the schedule. To prevent from getting stuck in a local minima,
we randomly select half of the customers (i.e., ⌊n2 ⌋ ), and re-assign their replenishment schedule. One may refer to Yao
(2001) for the details of the three subroutines.

The termination of Proc Gen Schedule is based on the value of χ as the number of consecutive times that the
procedure was not able to improve L∗(W ∗) where L∗(W ∗) is the minimal peak load obtained by the procedure using
W ∗ andW ∗ is the minimal peak load schedule obtained in the heuristic. A threshold value γ is set for the termination,
i.e., one stops Proc Gen Schedule when χ > γ . (We set γ = 3 in our numerical experiments.)
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Following the numerical experiments in Yao (2001), Proc Gen Schedule is efficient since its run time grows in a
cubic order of the problem size, i.e., it is approximately O(n3) algorithm.

4.3 Proposed heuristic for solving MJRP considering MHCC

The proposed heuristic uses the search algorithm proposed by Yao et al. (2020) for solving MJRP as a framework of
our heuristic; please refer to Section 4.1 and Algorithm 2. Taking each local minimum, say the l-th local minimum, as a
candidate solution (B̆∗

z (K̄), K̄) , we aim to generate a feasible replenishment schedule for this local minimum by Proc
Gen Schedule discussed in Section 4.2. If we are able to obtain a feasible replenishment schedule for (B̆∗

z (K̄), K̄) , we
calculate the objective function value by TCl

z(B̆
∗
z (K̄), K̄) . If Proc Gen Schedule generates no feasible replenishment

schedule, we will find a larger value of B, denoted by B̃ , so that (B̃, K̄) may obtain a feasible replenishment schedule,
set B̆∗

z (K̄) = B̃ , and calculate TCl
z(B̆

∗
z (K̄), K̄) . Then, we try to update the best-on-hand solution if TCl

z(B̆
∗
z (K̄), K̄)

secures a better objective function value. After examining all the local minimum, we report the best-on-hand solution
as our heuristic solution.
Algorithm 2.

Step1: Initialization

i. Find an initial upper bound: Calculate Tcc andmaxijδij(1) by (4.1) and (4.2).
Set B̄z = max{Tcc,maxijδij(1)} .

Tcc =

√√√√√√√√
A0 + 2

q∑
i=1

n∑
j=1

aij

q∑
i=1

n∑
j=1

hijdij

(4.1)

δij(m) =

√
1

m(m+ 1)

√
2aij
hijdij

,∀m ∈ N (4.2)

ii. The initial solution of the optimal multipliers K̄(B̄z) can be derived from (4.3). Then, we calculate the
initial solution TCz(B̄z, K̄(B̄z)) by (4.4), and set Φ̌∗

z ← TCz(B̄z, K̄(B̄z)) .

k̄ij(Bz) = ⌈−
1

2
+

1

2

√
1 +

8aij
hijdijBz

⌉ (4.3)

where ⌈x⌉ denotes that the ceiling function maps x to the least integer greater than or equal to x.

TCr(Bz, [kij ]q×n) =
A0

Bz
+

∑
j∈Nz

q∑
i=1

(
aij

kijBz
+

hijdijkij
2

Bz) (4.4)

iii. Find an initial lower bound: Let Bz = 0 . Set ΦU
z = Φ̌∗

z , and calculate β1 and β2 by (4.5) and (4.6),
respectively. Update Bz by (4.7).

β1 =
2A0

ΦU
z

(4.5)

β2 =
A0

Φ̌∗
z −

∑
j∈Nz

q∑
i=1

√
2aijhijdij

(4.6)

Bz = max{β1, β2} (4.7)

Step2: Further improve the bounds by the following iterative procedures:

i. Improve the upper bound:
(a) Let Bb

z ← B̄z

(b) Calculate K̄(B̄z) by (4.3) and B̌z(K̄(B̄z)) by (4.8), respectively.

B̌z(K̄(B̄z)) =

√√√√√√√√
2 + (

∑
j∈Nz

q∑
i=1)

aij
¯kij(Bz)∑

j∈Nz

q∑
i=1

hijdij k̄ij(Bz)

(4.8)
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(c) Set B̄z ← B̌z(K̄(B̄z)).
(d) If Bb

z = B̄z , go to ii.; otherwise, go to Stepi.(a).
ii. Improve the lower bound:

(a) Let Ba
z ← Bz

(b) Calculate K̄(Bz)) by (4.3) and B̌z(K̄(Bz)) by (4.8), respectively.
(c) Set Bz ← B̌z(K̄(Bz)).
(d) If Ba

z = Bz , go to Step3; otherwise, go to Stepii.(a).
Step3: Set l = 1 and Φ̌∗

z ←∞ . Sort the junction points in a non-increasing order:

· · · ≤ w2 ≤ w1 ≤ w0 = B̄z (1)

Step4: Solve the sub-problem (P l) by the following steps:
i. Given K̄ , solve the sub-problem (P l) in (4.9).

(P l)
min
Bz

TCl
z(Bz, [k̄ij ]q×n) =

A0

Bz
+

∑
j∈Nz

q∑
i=1

(
aij

k̄ijBz
+

hijdij k̄ij

2 Bz)

s.t. Bz ∈ [wl, wl−1]

(4.9)

ii. Obtain B̌∗
z (K̄) by (4.10), and calculate TCl

z(B̌
∗
z (K̄), K̄).

B̌∗
z (K̄) =


B̌z(K̄) , if B̌z(K̄) ∈ [wl, wl−1]
wl , if B̌z(K̄) < wl

wl−1 , if B̌z(K̄) > wl−1

(4.10)

iii. Try to generate a feasible replenishment schedule for the candidate (B̌∗
z (K̄), K̄) by Proc Gen Schedule.

(a) If Proc Gen Schedule finds a feasible replenishment schedule for (B̌∗
z (K̄), K̄) , we calculate

TCl
z(B̌

∗
z (K̄), K̄) .

(b) If Proc Gen Schedule obtains no feasible replenishment schedule for (B̌∗
z (K̄), K̄) , we find B̃ by

(4.11) for the period with the maximal load, set B̌∗
z (K̄) = B̃ , and calculate TCl

z(B̌
∗
z (K̄), K̄) .

B̃ = Hz

/∑p
z=1 n·|Nz|∑

î=1

k̄î∑
k=1

kBdîrîyî,k,φ(k,t) (4.11)

Step5: Update the best-on-hand solution. If TCl
z(B̌

∗
z (K̄), K̄) < Φ̌∗

z , then Φ̌∗
z ← TCl

z(B̌
∗
z (K̄), K̄) , B̌∗

z ←
B̌∗

z (K̄) , and Ǩ∗ ← K̄ . Also, set ΦU
z = Φ̌∗

z , and calculate β1 and β2 by (4.5) and (4.6), respectively.
Update Bz by Bz ← max{β1, β2} if Bz < max{β1, β2} .

Step6: Stop criterion. If wl−1 < Bz , go to Step 7; otherwise, determine (̃i, j̃) by (4.12), then update K̄ =
K̄\{k̄̃ij̃} ∪ {k̄̃ij̃ + 1} , set l← l + 1 , and go to Step 4.

(̃i, j̃) = argmax
i,j

{δij(k̄ij) < wl|i = 1, . . . , q, j ∈ Nz}. (4.12)

Step7: Output the optimal solution K∗ ← Ǩ∗ , B∗
z ← B̌∗

z , and Φ∗
z ← Φ̌∗

z

5. NUMERICAL EXPERIMENTS

We conduct some numerical experiments to verify our theoretical results and demonstrate our proposed algorithm in
this section. The first part presents the settings of our numerical experiments. Then, the second part uses a small-size
example showing a districting decision of 10 customers from our proposed GA. The third part investigates the runtime
growth of the proposed solution approach with respect to the problem size.
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5.1 Settings of experiments

We use a personal computer with a microprocessor of Intel® Core™ i5 CPU 750 @ 2.67GHz and 24GB memory for
our numerical experiments.
The instances of our numerical experiments are randomly generated using the following guidelines.

1. The coordinates of the customers: We employ the set R (uniformly distributed in the planning region) in Solomon
(1987) and randomly choose among the coordinates among the 100 nodes of the benchmark problems.

2. The parameters related to inventory control and material handling: We refer to Van Eijs (1993) to set the range
of demand rate dij , holding cost hij , and minor setup cost aij . Also, we include the range of the processing
time and the capacity limit of material handling equipment. Table 5.1 shows the ranges of the parameters.

Table 5.1: Range of the parameters

Parameters Minimum Maximum
Demand rate dij 100 1000000
Minor setup cost aij 1 51
Holding cost hij 0.2 2
Processing time of MH ri 0.00001 0.00009
Available capacity of MH
equipment for zone z Hz

8 hours/day

Major setup cost A 200

Table 5.2 presents the parameters of our GA.We find the best settings of parameters by evaluating the trade-off between
the improvement in solution quality and runtime. To allow our GA for more ability of exploration, we set a lower penalty
of 100,000 for the first 50 generations when there exists any violation in compact principle constraints. To force GA to
search in the feasible solution space, we increase the value of penalty to 10,000,000 (which is 100 times of the anterior
setting) after the 50th generations.

Table 5.2: Parameters of GA

Parameters Value of setting
Population size(pop_size) 40
Crossover rate(Pe) 0.6
Mutation rate(Pm) 0.1
Selection Pressure(SP) 1.5
No. of consecutive gener-
ations without update 100

5.2 A small size example

A small size example with 10 customers (n = 10), 10 items (q = 10), and 3 zones (p = 3) MJRPDC considering
MHCC is solved by the proposed GA-based approach in this section.

The planning region of this example refers to a real-world case of a leading bank with its branches scattered across
Taipei City and New Taipei City in northern Taiwan. This bank uses more than 50 forms for its daily operations such
as applications for personal loans, credit cards, and remittance requests (but, we pick only 10 forms for this example).
The proposed GA solves this small-size problem for 30 times, and we show the districting decision of the best solution
in Figure 5.1.

The centroids of three zones are located at (15.29, 12.11) , (4.88, 3.55), and (12.55, 3.74), respectively. The
corresponding sets of customers in the three zones are N1 = {2, 3, 7}, N2 = {1, 5, 8, 10}, and N3 = {4, 6, 9} .

1813­713X Copyright © 2021 ORSTW



25

Figure 5.1: A small example with 10 customers and 10 items

5.3 Experiments on runtime growth

Two categories of experiments investigates the runtime growth with respect to the problem size in this subsection: (1)
the growth of runtime with respect to the number of customers, and (2) the growth of runtime with respect to the
number of items. For each instance, we run our GA for 30 times and save the optimal objective values as well as the
average runtime.

We tested a total of eight levels for the number of customers, from 10 to 80, and randomly generated 30 instances
with 10 items for each level in the first category of experiments. Table 5.3 summarizes the results of the average number
of generations before termination and the average runtime.

Table 5.3: Runtime Growth with respect to number of customers

No. of Average
customers runtime(sec)

10 373.47
20 833.50
30 1676.35
40 3025.26
50 6403.60
60 5742.27
70 8521.13
80 13144.16

We analyze the growth of the average runtime with respect to the number of customers using polynomial regres-
sions (see Neter et al., 1996). The curve fitting demonstrates that the average runtime grows in a cubic order with a
95%confidence level, as shown in Figure 5.2. Therefore, we may conclude that the proposed GA-based approach is
effective for solving MJRPDC considering MHCC. The decision-makers may make observations on the impact of these
parameters on the average total costs by testing different combinations of α,Md , and p within a reasonable run time.
These experiments are crucial for the managers before signing a contract with 3PL service providers.

Figure 5.2: Runtime growth with respect to number of customers
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In the second category of experiments, we observe the runtime growth with respect to the number of items, which
serves as another important factor of the problem size. We collect runtime data from 30 randomly generated instances
with 10 customers from each of 6 levels of the number of items, from 10 to 60 items. Table 5.4 presents the results
of the average runtime. Again, we apply polynomial regressions for analysis and observe that the average runtime of
our solution approach for the number of items grows in a cubic order with a 95%confidence level. Consequently, our
results suggest that the proposed GA is efficient for solving MJRPDC considering MHCC.

Table 5.4: Runtime Growth with respect to number of items

No. of items Average runtime
10 378.85
20 2010.35
30 6285.33
40 17844.95
50 26427.03
60 69737.53

6. CONCLUSIONS

This study investigates the multi-customer JRP with districting considerations andmaterial handling capacity constraints
(MJRPDC-MHCC) which is an extension of the multi-customer JRP (MJRP) with districting consideration. A 3PL
service provider generally uses a specified area/designated dock in its warehouse for the logistics operations like sorting,
packaging, and loading items for the customers of a particular zone. Therefore, when negotiating with a contract
customer, the 3PL service provider must reserve an amount of capacity of the material handling equipment to guarantee
the feasibility of a replenishment schedule for each zone. Therefore, we formulate a mathematical model for MJRP
that takes into account the set of material handling capacity constraints. We propose a GA-based framework that solves
MJRPDC with compactness and demand equity constraints by referring to Yao et al. (2020). We use the local minima
obtained by the search algorithm of Yao et al. (2020) for unconstrained MJRP as the candidate solutions. Then, we
employ a feasibility-testing heuristic proposed by Yao (2001) to generate a feasible replenishment schedule, and fix an
infeasible solution as obtaining no feasible schedule. From our numerical experiments, we observe that the average
runtime of our approach grows in a cubic order with respect to both the number of customers and the number of
items. It is helpful and efficient for a logistic manager to use the proposed GA-based solution approach under different
combinations of scenario or parameter settingsand examine the corresponding impact on the average total costs within a
reasonable runtime. Therefore, we recommend the proposed GA-based solution approach as a useful decision-support
tool for logistic managers before negotiating a service contract with a 3PL service provider.
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