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Abstract: In this paper, we analysed a system model which consists of two identical unit with the inspection of each
unit. Each unit has three modes – normal (N), partial failure (P), and total failure (F). A unit can’t enter into F-mode
directly without passing through the P-mode. A single repair facility is always available with the system that inspects
the partially failed unit first and decides whether to repair it on-line or off-line. A unit can’t enter into F-mode during
its on-line repair. The failure and inspection rates are taken as constants while the repair time distribution as general.
Various important measures of system effectiveness are obtained by using the regenerative point technique.
Keyword — Reliability, Availability, M.T.S.F., Busy period, and Profit analysis.

1. INTRODUCTION

Two unit standby redundant systems have widely been studied in the literature of reliability due to their prevalence in
modern business and industrial systems. Several researchers have analyzed the two unit cold standby systems models
working in the field of reliability theory. They have considered the concept like random inspection of the units, random
shocks, allowed downtime, imperfect and slow switching devices, a random check of standby units, etc. Arora (2005)
discussed a two-unit standby redundant system with constant repair time and a single repairman. Yusuf (2016) studied
a parallel system with a supporting device and two types of preventive maintenance with different operative conditions
of the system. Some authors including R. Gupta and Varshney (2006) analyzed two unit cold standby system models
assuming the three modes of each unit – Normal, Partial failure, and Total failure. They considered a single repair
facility that repairs a unit failed partially or totally under the following assumptions that the repair of a partially failed
unit may be performed during its operation and the partially failed unit operates to run the system while the other
(standby) unit is available in its normal mode.

In the real-world, the situations arise in many cases when the repair of a partially failed unit is not possible during
its operation. Keeping this fact into consideration we in the present paper considered a two identical unit cold standby
system with on-line and off-line repairs of a partially failed unit i.e. a partially failed unit first goes for inspection to
detect the fault before its repair. If a minute fault is detected after inspection, then the partially failed unit goes for
on-line repair otherwise for off-line repair. The model of the system is developed by assuming a system consists of two
identical units. Initially, one unit of the system is operative and the other is kept as a cold standby. Each unit of the
system has three modes – normal (N), partial failure (P), and total failure (F). If a unit fails partially, it is first inspected
for on-line/off-line repair. The inspection is performed during its operation. In inspection, if a minute fault is detected
after inspection, the failed unit goes for on-line repair otherwise it goes for off-line repair. The partially failed unit
during the inspection/on-line repair may fail totally. A unit can’t enter into F-mode without passing through P-mode.
A single repair facility is always available with the system for inspection and to repair (on-line, off-line, and total failed
unit) on a first come first serve basis. The switching device, used to detect the failed unit and to switch the standby unit
into operation, is perfect and instantaneous. After each type of repair, the repaired unit works as good as new. The
failure and repair times of the units are assumed to be independent and uncorrelated random variables. The failure time
distributions of both the units and time to inspection are taken as exponential with different parameters while all the
repair time distributions are general. The system failure occurs when it breaks down in any way. The behavior of mean
time to system failures (MTSF) and profit analysis has been observed graphically for a particular case.
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2. NOTATIONS

The following notations have been used:

α1/α2 : Constant failure rate of a unit from N to P-mode/ P to F-mode.
θ : Constant rate of inspection of a unit.
p/q : Probability that the partially failed unit goes for on-line/off-line repair.
G1(·), G2(·) : c.d.f. of time for on-line/off-line repair of a partially failed unit.
H(·) : c.d.f. of time to repair of a total failed unit.
qij : p.d.f. of transition time from state Si to Sj .

pij : Steady-state transition probability from state Si to Sj , such that, pij =
∫

qij(u)du.

q
(k)
ij : p.d.f. of transition time from state Si to Sj via state Sk.

p
(k)
ij : Steady-state transition probability from state Si to Sj via state Sk.

q
(k,l)
ij : p.d.f. of transition time from state Si to Sj via state Sk and Sl.

p
(k,l)
ij : Steady-state transition probability from state Si to Sj via state Sk and Sl.

Zi(t) : Probability that the system sojourns in the state Si up to time t.
Ψi : Mean sojourn time in the state Si.

∗ : Symbol for Laplace transform of a function i.e. f∗(s) =

∫ ∞

0

e−stf(t)dt.

© : Symbol for ordinary convolution.
Let f(t) and g(t) be two functions of non–negative variable ‘T’ then the convolution (or
ordinary convolution) of the functions f(t) and g(t) is given by

A(t)©B(t) =

∫ t

0

A(u)B(t− u)du.

3. SYMBOLS FOR THE STATES OF THE SYSTEM

We define the following symbols for the states of the system:

NO/NS : Unit is in N-mode and operative/standby.
POI : Unit is in P-mode, operative and under inspection.
P1r/P2r : Unit is in P-mode and under online/offline repair.
PwI : Unit is in P-mode and waiting for inspection.
Fr/Fwr : Unit is in F-mode and under repair/waiting for repair.

Using the above symbols, the possible states of the system are defined as under
Up states: In these states, system is in working condition;

S0 ≡ (NO, NS); S1 ≡ (POI , NS); S2 ≡ (P1r, NS);

S3 ≡ (P2r, NO); S4 ≡ (Fr, NO); S5 ≡ (P2r, PwI);

S6 ≡ (Fr, PwI).
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Failed States: In the following states, system is not in working condition;

S7 ≡ (P2r, Fwr); S8 ≡ (Fr, Fwr).

The transition diagram of the system model, along with transition rates, is shown in Figure – 1. From the figure, we
observe that the epochs of entrance from S3 to S5, S4 to S6, S5 to S7 and S6 to S8 are non-regenerative as the future
probabilistic behaviour of the system at these epochs depends upon the previous states. The all other entrance epochs
are regenerative.

Figure 1: State Transition Diagram

4. RELIABILITY MEASURES

4.1 Transition Probabilities and Mean Sojourn Times

The steady state transition probabilities are given by,

pij = lim
t→∞

Qij(t) , p
(k)
ij = lim

t→∞
Q

(k)
ij (t) and p

(k,l)
ij = lim

t→∞
Q

(k,l)
ij (t).

p01(t) =

∫ ∞

0

q01(t)dt =

∫ ∞

0

α1e
−α1tdt = 1− e−α1t.

Similarly,

p12 = pθ/(α2 + θ); p13 = qθ/(α2 + θ); p14 = α2/(α2 + θ);

p20 = G1(α2); p24 = 1−G1(α2); p30 = G2(α1);

p
(5)
31 =

α1

α1 − α2
[G2(α2)−G2(α1)] ; p

(5,7)
34 = 1− α1

α1 − α2
G2(α2) +

α2

α1 − α2
G2(α1);

p40 = H(α1); p
(6)
41 =

α1

α1 − α2
[H(α2)−H(α1)] ;

p
(6,8)
44 = 1− α1

α1 − α2
H(α2) +

α2

α1 − α2
H(α1).

Thus, we observe the following relations,

p01 = 1; p12 + p13 + p14 = 1; p20 + p24 = 1;

p30 + p
(5)
31 + p

(5,7)
34 = 1; p40 + p

(6)
41 + p

(6,8)
44 = 1.

Mean sojourn time, Ψi, is defined as the expected time for which the system stays in state Si before transiting to any
other state. If Ti is the sojourn time in state Si, then mean sojourn time in state Si is Ψi =

∫∞
0

P (Ti > t)dt.
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The mean sojourn time for state S0, denoted by Ψ0, is obtained as:

Ψ =

∫ ∞

0

P (Ti > t)dt =

∫ ∞

0

e−α1tdt =
1

α1
.

Similarly, the mean sojourn time for various states are as follows:

Ψ0 =
1

α1
; Ψ1 =

1

(α2 + θ)
; Ψ2 =

∫
e−α2tḠ1(t)dt;

Ψ3 =

∫
e−α1tḠ2(t)dt; Ψ4 =

∫
e−α1tH̄(t)dt; Ψ5 =

∫
e−α2tḠ2(t)dt;

Ψ6 =

∫
e−α2tH̄(t)dt; Ψ7 =

∫
Ḡ2(t)dt; Ψ8 =

∫
H̄(t)dt.

4.2 Reliability and MTSF

To determine reliability, Ri(t), of the system, the reliability of the system when the system starts initially from state
Si ∈ E, we assume the failed states S7 and S8 of the system as absorbing. By simple probabilistic arguments, we see
that R0(t) is the sum of the following contingencies –

(i) The system remains up in state S0 without making any transition to any other state up to time t. The probability
of this contingency is e−α1t = Z0(t), say.

(ii) The system first enters to the state S1 from S0 during (u, u+ du), u ≤ t and then starting from S1, it remains
up continuously during the remaining time (t–u), the probability of this contingency is∫ t

0

q01(u)duR1(t− u) = q01(t)©R1(t).

Thus, we have,

R0(t) = Z0(t) + q01(t)©R1(t).

Similarly,

R1(t) = Z1(t) + q12(t)©R2(t) + q13(t)©R3(t) + q14(t)©R4(t)

R2(t) = Z2(t) + q20(t)©R0(t) + q24(t)©R4(t)

R3(t) = Z3(t) + q35(t)©Z5(t) + q30(t)©R0(t) + q
(5)
31 (t)©R1(t)

R4(t) = Z4(t) + q46(t)©Z6(t) + q40(t)©R0(t) + q
(6)
41 (t)©R1(t)

where

Z0(t) = e−α1t; Z1(t) = e−(α2+θ)t; Z2 = e−α2tḠ1(t);

Z3 = e−α1tḠ2(t); Z4 = e−α1tH̄(t); Z5 = e−α2tḠ2(t) and Z6 = e−α2tH̄(t).

Taking Laplace Transform of the relations and solving for R∗
0(s), we get

R∗
0(s) =

N1(s)

D1(s)

where,

N1(s) =
(
1− q∗12q

∗
24q

(6)∗
41 − q∗13q

(5)∗
31 − q∗14q

(6)∗
41

)
Z∗
0 + q∗01Z

∗
1 +  q∗01q

∗
12Z

∗
2

+ q∗01q
∗
13 (Z

∗
3 + q∗35Z

∗
5 ) + q∗01 (q

∗
12q

∗
24 + q∗14) (Z

∗
4 + q∗46Z

∗
6 )

and

D1(s) =1− q∗01 [q
∗
12q

∗
20 + q∗13q

∗
30 + (q∗12q

∗
24 + q∗14) q

∗
40]− q∗12q

∗
24q

(6)∗
41 −  q∗13q

(5)∗
31 − q∗14q

(6)∗
41
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Taking the inverse Laplace transform of R0(s), to get the reliability of the system when it initially starts from state S0.
Now mean time to system failure (MTSF) is given by,

E(T0) = lim
s→0

R∗
0(s) =

N1(0)

D1(0)
=

N1

D1

where,

N1 =
(
1− p12p24p

(6)
41 − p13p

(5)
31 − p∗14p

(6)∗
41

)
Ψ0 +Ψ1 + p12Ψ2

+ p13 (Ψ3 + p35Ψ5) + (p12p24 + p∗14) (Ψ4 + p46Ψ6)

and

D1 =1− p12p20 − p13p30 − (p12p24 + p14) p40 − p12p24p
(6)
41 −  p13p

(5)
31 − q∗14q

(6)∗
41

4.3 System Availability Analysis

4.3.1 When a unit in N-mode and operative

Let us define AN
i (t) as the probability that the system is up due to a unit in Normal (N) at epoch t, when it initially

starts from state Si ∈ E. Using the definition of Ai(t) and probabilistic concepts, AN
i (t) is the sum of following

contingencies:

(iii) The system remains up in state S0 without making any transition to any other state up to time t. The probability
of this event is e−α1t = Z0(t), say.

(iv) The system transit to the state S1 from S0 during (u, u + du), u ≤ t and then remains up in state S1 for the
remaining time (t–u), the probability of this contingency is∫ t

0

q01(u)duA1(t− u) = q01(t)©A1(t).

Therefore,

AN
0 (t) = Z0(t) + q01(t)©AN

1 (t).

Similarly,

AN
1 (t) = q12(t)©AN

2 (t) + q13(t)©AN
3 (t) + q14(t)©AN

4 (t)

AN
2 (t) = q20(t)©AN

0 (t) + q24(t)©AN
4 (t)

AN
3 (t) = Z3(t) + q30(t)©AN

0 (t) + q
(5)
31 (t)©AN

1 (t) + q
(5,7)
34 (t)©AN

4 (t)

AN
4 (t) = Z4(t) + q40(t)©AN

0 (t) + q
(6)
41 (t)©AN

1 (t) + q
(6,8)
44 (t)©AN

4 (t)

Using the technique of Laplace transform, we can obtain the values of AN
0 (t) in terms of their Laplace transforms i.e.

AN∗
0 (s).

In the long run, the availability of the system due to a unit in N-mode is given by,

AN
0 = lim

t→∞
AN

0 (t) = lim
s→0

sAN∗
0 (s) =

N2

D2
.

Where, in terms of

n1 =

∫
te−α1tdG2(t) +

α1

α1 − α2

[∫
t
(
e−α2t − e−α1t

)
dG2(t)

]
+

α1α2

α1 − α2

∫
t

[
1− e−α2t

α2
− 1− e−α1t

α1

]
dG2(t)

n2 =

∫
te−α1tdH(t) +

α1

α1 − α2

[∫
t
(
e−α2t − e−α1t

)
dH(t)

]
+

α1α2

α1 − α2

∫
t

[
1− e−α2t

α2
− 1− e−α1t

α1

]
dH(t)

N2 =
[
1− p

(6,8)
44 − p12p24p

(6)
41 − p13

{
p
(5)
31

(
1− p

(6,8)
44

)
+ p

(5,7)
34 p

(6)
41

}
− p14p

(6)
41

]
Ψ0

+ p13

(
1− p

(6,8)
44

)
Ψ3 +

(
p12p24 + p13p

(5,7)
34 + p14

)
Ψ4

and

D2 =
[
(p12p20 + p13p30)

(
1− p

(6,8)
44

)
+ p40

(
p12p24 − p13p

(5,7)
34 + p14

)]
Ψ0

+
(
1− p

(6,8)
44

)
(Ψ1 + p12Ψ2 + p13n1) +

(
p12p24 + p13p

(5,7)
34 + p14

)
n2
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4.3.2 When a unit is in P-mode

Let us define AP
i (t) as the probability that the system is up due to a unit in preventive maintenance (P) mode at epoch

t, when it initially starts from state Si ∈ E. Using the definition of AP
i (t) and probabilistic concepts, the recurrence

relations, as obtained in previous case, for AP
i (t) are given as follows:

AP
0 (t) = q01(t)©AP

1 (t)

AP
1 (t) = Z1(t) + q12(t)©AP

2 (t) + q13(t)©AP
3 (t) + q14(t)©AP

4 (t)

AP
2 (t) = Z2(t) + q20(t)©AP

0 (t) + q24(t)©AP
4 (t)

AP
3 (t) = q30(t)©AP

0 (t) + q
(5)
31 (t)©AP

1 (t) + q
(5,7)
34 (t)©AP

4 (t)

AP
4 (t) = q40(t)©AP

0 (t) + q
(6)
41 (t)©AP

1 (t) + q
(6,8)
44 (t)©AP

4 (t)

Using the technique of Laplace transform, we can obtain the values of AP
0 (t) in terms of their Laplace transforms i.e.

AP∗
0 (s).

In the long run, the availability of the system due to a unit in P-mode is given by

AP
0 =

N3

D2
.

Where, N3 = (Ψ1 + p12Ψ2)
(
1− p

(6,8)
44

)
and D2 as defined above.

4.4 Busy Period of Repair Facility

4.4.1 When repair facility is busy in the inspection of a unit

Let Bi
i(t) be the probability that the repair facility is busy in the inspection of a partially failed unit at time t, when the

system initially starts from the state Si ∈ E. Using elementary probabilistic arguments, we have the following recursive
relations for Bi

i(t):

Bi
0(t) = q01(t)©Bi

1(t)

Bi
1(t) = Z1(t) + q12(t)©Bi

2(t) + q13(t)©Bi
3(t) + q14(t)©Bi

4(t)

Bi
2(t) = q20(t)©Bi

0(t) + q24(t)©Bi
4(t)

Bi
3(t) = q3,0(t)©Bi

0(t) + q
(5)
31 (t)©Bi

1(t) + q
(5,7)
34 (t)©Bi

4(t)

Bi
4(t) = q40(t)©Bi

0(t) + q
(6)
41 (t)©Bi

1(t) + q
(6,8)
44 (t)©Bi

4(t)

Taking Laplace Transform (L.T.) of above relations and solving them for Bi∗
0 (s), we get

Bi∗
0 (s) =

N4(s)

D2(s)
.

Where, N4(s) = q∗01

(
1− q

(6,8)
44

)
Z∗
1 and D2(s) is the same as in case of availability analysis.

4.4.2 When repair facility is busy in the repair of a totally failed unit

Let BF
i (t) be the probability that the repair facility is busy in the repair of a totally failed unit at time t, when the system

initially starts from the state SE
i . Using elementary probabilistic arguments, we have

BF
0 (t) =q01(t)©BF

1 (t)

BF
1 (t) =q12(t)©BF

2 (t) + q13(t)©BF
3 (t) + q14(t)©BF

4 (t)

BF
2 (t) =q20(t)©BF

0 (t) + q24(t)©BF
4 (t)

BF
3 (t) =q30(t)©BF

0 (t) + q
(5)
31 (t)©BF

1 (t) + q
(5,7)
34 (t)©BF

4 (t)

BF
4 (t) =Z4(t) + q46(t)©Z6(t) + q46(t)©q68(t)©Z8(t) + q40(t)©BF

0 (t)

+ q
(6)
41 (t)©BF

1 (t) + q
(6,8)
44 (t)©BF

4 (t)

Taking L.T. of above relations and solving them for BF∗
0 (s), we get

BF∗
0 (s) =

N5(s)

D2(s)
.

1813­713X Copyright © 2021 ORSTW



63

Where, N5(s) = q∗01

(
q∗12q

∗
24 + q∗13q

(5,7)∗
34 + q∗14

)
(Z∗

4 + q∗46Z
∗
6 + q∗46q

∗
68Z

∗
8 ) and D2(s) is the same as in case of

availability analysis.

4.4.3 When repair facility is busy in the on-line repair of a partially failed unit

Let B1
i (t) be the probability that the repair facility is busy in the on-line repair of a partially failed unit at time t, when

the system initially starts from the state Si ∈ E. By using elementary probabilistic arguments, we have

B1
0(t) = q01(t)©B1

1(t)

B1
1(t) = q12(t)©B1

2(t) + q13(t)©B1
3(t) + q14(t)©B1

4(t)

B1
2(t) = Z2(t) + q20(t)©B1

0(t) + q24(t)©B1
4(t)

B1
3(t) = q30(t)©B1

0(t) + q
(5)
31 (t)©B1

1(t) + q
(5,7)
34 (t)©B1

4(t)

B1
4(t) = q40(t)©B1

0(t) + q
(6)
41 (t)©B1

1(t) + q
(6,8)
44 (t)©B1

4(t)

Taking L.T. of above relations and solving them for B1∗
0 (s), we get

B1∗
0 (s) =

N6(s)

D2(s)
.

Where, N6(s) = q∗01q
∗
12

(
1− q

(6,8)
44

)
Z∗
2 and D2(s) is the same as in case of availability analysis.

4.4.4 When repair facility is busy in the off-line repair of a partially failed unit

Let B2
i (t) be the probability that the repair facility is busy in the off-line repair of a partially failed unit at time t, when

the system initially starts from the state Si ∈ E. By using elementary probabilistic arguments, we have

B2
0(t) =q01(t)©B2

1(t)

B2
1(t) =q12(t)©B2

2(t) + q13(t)©B2
3(t) + q14(t)©B2

4(t)

B2
2(t) =q20(t)©B2

0(t) + q24(t)©B2
4(t)

B2
3(t) =Z3(t) + q35(t)©Z5(t) + q35(t)q57(t)©Z7(t) + q30(t)©B2

0(t)

+ q
(5)
31 (t)©B2

1(t) + q
(5,7)
34 (t)©B2

4(t)

B2
4(t) =q40(t)©B2

0(t) + q
(6)
41 (t)©B2

1(t) + q
(6,8)
44 (t)©B2

4(t)

Taking L.T. of above relations and solving them for B2∗
0 (s), we get

B2∗
0 (s) =

N7(s)

D2(s)
.

Where, N7(s) = q∗01q
∗
13

(
1− q

(6,8)
44

)
(Z∗

3 + q∗35Z
∗
5 + q∗35q

∗
57Z

∗
7 ) and D2(s) is the same as in case of availability

analysis.
Now to obtain the steady-state probabilities that the repair facility will be busy in the inspection of a unit, repairing of
a totally failed unit, on-line and off-line repair of a unit respectively, we use the results:

Z∗
i (0) = Ψi and qij(0) = pij .

We observe that

Bi
0 =

N4

D2
, BF

0 =
N5

D2
, B1

0 =
N6

D2
and B2

0 =
N7

D2
.

Where,

N4 =
(
1− p

(6,8)
44

)
Ψ1

N5 =
(
p12p24 + p13p

(5,7)
34 + p14

)
(Ψ4 + p46Ψ6 + p46p68Ψ8)

N6 = p12

(
1− p

(6,8)
44

)
Ψ2

N7 = p13

(
1− p

(6,8)
44

)
(Ψ3 + p35Ψ5 + p35p57Ψ7)

and D2 is the same as defined in case of availability analysis.
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5. PROFIT ANALYSIS

The net expected profit earned by the system during (0, t) is given by,

P (t) = K0µ
N
up(t) +K1µ

P
up(t)−K2µ

i
b(t)−K3µ

F
b (t)−K4µ

1
b(t)−K5µ

2
b(t).

The expected profit per unit time in steady-state is

P = K0A
N
0 +K1A

P
0 −K2B

i
0 −K3B

F
0 −K4B

1
0 −K5B

2
0 .

Where, K0 and K1 are the revenues made by the system per unit time due to N and P–mode of a unit. K2,K3,K4

and K5 are the amounts paid per unit of time for inspection, repair a unit in F–mode, on-line repair, and off-line repair
respectively.

6. GRAPHICAL PRESENTATION OF RELIABILITY MEASURES

To study the behavior of the system the value of reliability and profit function is obtained by assuming all the repair
time distributions as negative exponential i.e.

G1(t) = 1− e−λ1t; G2(t) = 1− e−λ2t; H(t) = 1− e−βt.

We have the following changes in steady-state transition probabilities and mean sojourn times-

p20 =
λ1

λ1 + α2
; p24 =

α2

λ1 + α2
; p30 =

λ2

λ2 + α2
; p

(5)
3,1 =

α1λ2

(λ2 + α1)(λ2 + α2)
;

p
(5,7)
3,4 =

α1α2

(λ2 + α1)(λ2 + α2)
; p40 =

β

α1 + β
; p

(6)
4,1 =

α1β

(α1 + β)(α2 + β)
;

p
(6,8)
4,4 =

α1α2

(α1 + β)(α2 + β)
; Ψ2 =

1

(α2 + λ1)
; Ψ3 =

1

(α1 + λ2)
;

Ψ4 =
1

(α1 + β)
; Ψ5 =

1

(α2 + λ2)
; Ψ6 =

1

(α2 + β)
;

Ψ7 =
1

λ2
; Ψ8 =

1

β

n1 =
λ2

(λ2 + α1)2

[
1 +

α1(α1 + α2)

(λ2 + α2)2
+

α2

α1 − α2

]
− α1λ2

(α1 − α2)(λ2 + α2)2
+

1

λ2

n2 =
β

(α1 + β)2

[
1 +

α1(α1 + α2)

(α2 + β)2
+

α2

α1 − α2

]
− α1β

(α1 − α2)(α2 + β)2
+

1

β

7. CONCLUSION

For a more concrete study of system behaviour of the model, we plot the curves for MTSF and profit function in
Figure–2 and Figure–3 w.r.t. α1 for different values of λ2 while the other parameters are kept fixed as: α2 = 0.009,
λ1 = 0.02, θ = 0.09, β = 0.06, p = 0.5, q = 0.5, K0 = 5000, K1 = 3000, K2 = 500, K3 = 1000, K4 = 800,
K5 = 500.
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α1 λ2 = 0.01 λ2 = 0.02 λ2 = 0.03

0.01 684.03 1183.61 1733.92
0.02 456.93 729.96 1024.10
0.03 380.46 578.02 787.09
0.04 341.83 501.69 668.38
0.05 318.43 455.69 597.03
0.06 302.70 424.89 549.40
0.07 291.37 402.81 515.33
0.08 282.81 386.20 489.74
0.09 276.11 373.24 469.82
0.1 270.72 362.84 453.87

Table 1: Variation in the values of the MTSF of the system Figure 2

The graph in Figure 2 and data in Table 1 represents the behavior of MTSF with respect to α1 for three different
values of λ2(= 0.01, 0.02, and 0.03). It is clear from the graph that the MTSF decreases α1 increases from 0.01 to
0.10. We also observe that an increment in the repair rate λ2 (off-line repair rate of a partially failed unit) corresponds
to the increment in MTSF also. Further, MTSF decreases significantly in the beginning, and after that, it decreases
approximately in a constant manner.

α1 λ2 = 0.01 λ2 = 0.02 λ2 = 0.03

0.01 4234.04 4476.98 4754.33
0.02 3780.94 4084.25 4443.76
0.03 3441.94 3710.78 4147.77
0.04 3184.19 3419.91 3875.17
0.05 2978.46 3193.91 3636.46
0.06 2791.24 3015.85 3430.25
0.07 2638.03 2873.01 3252.23
0.08 2532.94 2756.41 3097.95
0.09 2448.43 2659.68 2963.46
0.1 2388.54 2578.29 2845.47

Table 2: Variation in the values of the profit function of the
system Figure 3

Figure–3 represents the behavior of profit function with respect to α1 for same three different values of λ2. Profit
function also predicts the same trends as that for MTSF.
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