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Abstract: The intellectual and industrial design of a complex inventory system becomes a vital issue for the organization
of responsiveness to uncertainties. The parameters involved in inventory model are likely to be varied due to the
fluctuating business environment. Therefore, it will be more realistic apply fuzzy model rather than crisp model. This
paper derives a single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on
lead time in a fuzzy environment. In this model, buyer and vendor cost parameters are uncertainties which necessitate
the use of trapezoidal fuzzy numbers. The purpose of this model is to determine the minimum integrated total cost
and optimal order quantity in the fuzzy scenario. There are two mathematical inventory models proposed in this paper.
Initially, a crisp model is developed with fuzzy total inventory cost along with crisp optimal order quantity. Next, the
fuzzy model is formulated with fuzzy total inventory cost and fuzzy optimal order quantity. Graded mean integration
formula is employed to defuzzify the total inventory cost and the extension of the Lagrangian method is used to
determine the optimal order quantity. An algorithm is developed to obtain the optimal order quantity and minimum
integrated total cost. The comparison of a fuzzy inventory model with the conventional crisp inventory model is made
through numerical examples. This proposed fuzzy model is also compared with some specific cases of the previous
models. Finally, the graphical representation is presented to demonstrate the proposed model. The result illustrates
that this fuzzy model can be quite useful in determining the optimal order quantity and minimum integrated total cost
procedure when the lead time is analysed.
Keyword — Optimal integrated total cost, Optimal order quantity, Graded mean integration representation method,
Fuzzy inventory system, Lagrangian method.

1. INTRODUCTION

Many authors handle inventory systems with various lead time cases where the cost components are considered as crisp
values which do not represent the actual inventory system completely. In rare cases, the inventory cost components
are considered as fuzzy values. In actual life, varying physical or synthetic features may cause an influence on the cost
components and exact values of cost features as it becomes a risk to measure the exact amount of holding, order, and
setup cost. Thus, in controlling the inventory system, it may allow some flexibility in the cost parameter values in order
to treat the ambiguity which always fits the actual situations. Fuzzy set theory meets these prerequisites to some extent.
In this paper, fuzziness is introduced by allowing the buyer and vendor ordering cost, inventory holding cost, setup cost
and lead time crashing cost. It is suitable for the inventory system to fit the real situation and proves to be profitable.

The integrated inventory management organization is a common exercise in the global markets and provides
economic benefits both for the vendor and the buyer. In recent years, most integrated inventory management orga-
nizations have focused on the integration between vendor and buyer. Once they form a tactical alliance to minimize
their own cost or maximize their own income, trading parties can cooperate and share information to achieve en-
hanced benefits. Currently, companies can no longer contribute solely as individual entities in the constantly varying
business world. Globalization of marketplace and increased competition force organizations to depend on effective
supply chains to progress their overall performance. Lead time management is an important issue in manufacture and
operation management. In many practical circumstances, lead time can be compacted using crashing cost.
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Inventory models considering lead time as a determinate variable have been developed by several researchers
recently. Initially, Liao and Shyu (1991) allowed an inventory model in which lead time is a sole decision variable
and the order quantity is fixed. Annadurai and Uthayakumar (2010a) developed a combination inventory model with
backorders and lost sales in which the order quantity, reorder point, lead time and setup cost are ruling variables. It is
assumed that an appearance order lot may contain some defective products and the number of defective products is a
random variable. There are two inventory models scheduled in this paper, one with normally distributed demand and
the another with distribution-free demand. Again Annadurai and Uthayakumar (2010b) proposed (T, R, L) inventory
model to analyze the effects of increasing two different kinds of investments to lessen the lost-sales rate, in which the
review period, lead time and lost-sales rate are preserved as decision variables. Billington (1987) addressed to solve
situations where setup cost varies exponentially and linearly as a function of capital expenditure. Decision rules are
expressed to indicate specific situations in which setup cost reduction reduces total cost. Optimal manufacturing batch
size with rework in a single-stage production system is dealt by Cárdenas-Barrón (2008). C. K. Chen, Chang, and
Ouyang (2001a) considered minimizing the total related cost by concurrently improving order quantity, reorder point,
and lead time. The lead time demand is supposed to be normally distributed.

F. Chen, Federgruen, and Zheng (2001b) proposed an optimal policy, maximizing total organization-wide profits
in a centralized system. Economic production quantity models concerning lead time as a determinate variable are
constructed by Chiu (1998). Goyal (1985) extended an economic order quantity under conditions of permissible delay
in payments. Jaggi, Goyal, and Geol (2008) presented a retailer’s optimal replenishment decisions with credit linked
demand under permissible delay in payments. Credit financing in economic ordering policies of deteriorating items is
developed by Jaggi and Aggarwal (1994). Li, Xu, Zhao, Yeung, and Ye (2012) demonstrated a supply chain containing
a vendor and a buyer with controllable lead time. They measured two situations such as complete information and
incomplete information about the buyer. Ouyang, Chuang, and Lin (2007) designed minimized lead time and ordering
price that are inter-dependent in an inventory system with a backorder cost discount. The objective is to minimize the
total related cost by instantaneously optimizing the review period, lead time and backorder price discount. A single-
vendor single-buyer combined production inventory model under the hypothesis that the lead time is stochastic and
lead time is decision variable are investigated byOuyang, Wu, andHo (2004). Pan and Yang (2002) considered delivering
a lower total cost and tinier lead time compared to previous inventory problems.

Render (1994) elaborated the nonlinear programming methods. Taha (1997) gave the Lagrangian method used
to solve uncertainty problems as mentioned in operations research. Vijayashree and Uthayakumar (2015) designed an
integrated inventory model to determine optimizing the optimal order quantity, process quality, lead time and the
number of deliveries. Vijayashree and Uthayakumar (2016) constructed an optimizing integrated inventory model
with deals for quality improvement and setup cost reduction. Vijayashree and Uthayakumar (2017) focused on the
minimized integrated total cost by adopting linear and logarithmic ordering costs that decrease depending on lead
time. An integrated inventory model to minimize the total cost by optimizing order quantity, lead time, and number of
deliveries is offered by Yang and Pan (2004).

The enhancement of the above inventory models depends on the terms lead time, controllable lead time, stochastic
demand in controllable lead time, controlling the setup cost, ordering cost and permissible delay in payments. The
specified crisp models are designed to get economic order quantity, economic production quantity, optimal total cost
using differential calculus methods and algorithms. The above mentioned papers provide quantitative analysis for
comparisons of the previous inventory models.

In the present scenario, it becomes extremely difficult to determine the exact value of the parameters. One way
of managing this vagueness is through fuzzy numbers. It is pertinent to discuss the work done in this area before the
formulation of the proposed fuzzy economic model. Fuzzy set theory introduced by Zimmerman (1983) focused on
fuzzy sets in operational research which are more flexible to solve different kind of problem structures and improvised
the model for human estimation and decision-making processes, than traditional mathematics. S. H. Chen, Wang,
and Arthur Ramer (1996) explored the median rule to find the optimal economic order quantity (EOQ) and shortage
quantity. S. H. Chen (1985) discussed arithmetic operations on fuzzy numbers with function principle, which might
be used as the fuzzy arithmetic operations with generalized fuzzy numbers. S. H. Chen and Hsieh (2000) designed a
generalized L-R type fuzzy number using graded mean integration representation method to prove some relationships.
S. H. Chen and Hsieh (1999) elaborated a graded mean integration representation of the generalized fuzzy number.
El-Wakeel and Al-yazidi (2016) presented a fuzzy constrained probabilistic inventory model depending on trapezoidal
fuzzy numbers. Hsieh (2002) developed optimization of fuzzy production inventory model. Jaggi, Yadavalli, Anuj
Sharma, and Sunil Tiwari (2016) discussed a fuzzy EOQ model with admissible shortage under different trade credit
terms. Optimization of fuzzy production inventory model with repairable defective products under crisp or fuzzy
production quantity is estimated by S. H. Chen, Wang, and Chang (2005).

After the introduction of fuzzy set theory, operations on fuzzy numbers under the function principle, graded
mean integration representation, ranking, signed distance and similarity of L-R type fuzzy number concepts are the
great turning points of many application fields. The above concepts are applied in the inventory models to find the
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optimization of production lot size, ordering lot size and total cost, which give better results compared to previous crisp
models.

This paper aims at developing a fuzzy inventory model allowing ordering cost, holding cost, setup cost and lead
time crashing cost under lead time. Order quantity is assumed to be a crisp and fuzzy form of the integrated inventory
model where cost parameters are fuzzified. Due to modification in the integrated vendor buyer sector, the parameters
involved in the inventory system may deviate more or less from their actual value. To deal with such type of situation,
trapezoidal fuzzy numbers have been employed in the current study. Graded mean integration method is used for
defuzzification of the integrated total cost and the extension of Lagrangian method is used to determine optimal order
quantity. An algorithm is developed to obtain the optimal order quantity and integrated total cost. The integrated
inventory model is demonstrated using numerical illustrations and graphical representations. This model identifies the
most suitable inventory model which has a larger impact on enhancing the profit of the business organisation.

The rest of the paper is organized as follows: Section 2 introduces the notations and assumptions. Section 3 deals
with a mathematical model to minimize integrated total cost and optimal order quantity. In Section 4, the methodology
of the Lagrangian method is discussed. Section 5 describes fuzzy inventory models and an algorithm is designed to
find the optimal order quantity and minimum integrated total cost. In Section 6, numerical examples and graphical
representation are presented to illustrate crisp and fuzzy sense. In Section 7, comparative study is presented. This is
followed by the conclusion.

2. NOTATIONS AND ASSUMPTIONS

To develop the proposed model, the following notations and assumptions which are similar to those used in (Pan and
Yang (2002)) are adopted. Besides, additional notations and assumptions will be applied based on requirement.

2.1 Notations

Q - Order quantity for the buyer,
L - Length of lead time for the buyer,
A - Buyer’s ordering cost per order,
m - The number of lots in which the product is delivered from the vendor to the buyer in one production

cycle,
D - Average demand per unit time on the buyer,
P - Production rate of the vendor P > D,

S - Vendor’s setup cost per setup,
Cv - Unit production cost paid by the vendor Cv < Cb,

Cb - Unit purchase cost paid by the buyer,
r - Annual inventory holding cost per dollar invested in stocks,
R - Reorder point of the buyer,
ITC - Integrated total cost for the single vendor and the single buyer.

2.2 Assumptions

To develop the model, following assumptions are adopted.

1. The system consists of single-vendor and single-buyer for a single product in this model.

2. The buyer orders a lot of size Q and the vendor manufacturesmQ with a finite production rate P (P > D) at
one setup but ships quantityQ to the buyer overm times. The vendor incurs a set up cost S for each production
run and the buyer incurs an ordering cost A for each order of quantity Q.

3. The demand X during lead time L follows a normal distribution with mean µL and standard deviation σ
√
L.

4. The inventory is continuously reviewed. The buyer places the order when inventory reaches the reorder point
R.

5. The reorder point (ROP) equals the sum of the expected demand during lead time and safety stock. The reorder
point R = expected demand during lead time + safety stock, that is R = DL+ kσ

√
L where k is safety factor.
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6. The lead time L consists of nmutually independent components. The i-th component has a normal duration bi,
minimum duration ai, and crashing cost per unit time ci. For convenience, ci is arranged such that c1 < c2 <
c3 < · · · < cn.

7. The components of lead time are crashed one at a time starting from the first component because it has the
minimum unit crashing cost and then the second component, and so on.

8. Let L0 =
∑n

i=1 bi , and Li be the length of lead time with components 1, 2, 3, . . . i crashed to their minimum
duration, then Li can be expressed as Li = L0−

∑n
j=1(bj −ai), i = 1, 2, 3, . . . , n; and the lead time crashing

cost per cycle R(L) is given by R(L) = ci(Li−1 − L) +
∑i−1

j=1 cj(bj − ai), L ∈ [Li, Li−1]. In addition, the
length of lead time is equal for all shipping cycles, and the lead time crashing cost occurs in each shipping cycle.
The relationship between lead time and crashing cost is shown in Figure 1.

9. The reduction of lead time L accompanies reduced ordering cost A and A is firmly the concave function of L,
i.e., A′(L) > 0 and A′′(L) < 0 (Ouyang et al. (2007), C. K. Chen et al. (2001a)).

10. If extra costs are incurred by the vendor, it will be fully transferred to the buyer when shortened lead time is
required (Pan and Yang (2002)).

Figure 1: The relationship between lead time and crashing cost

3. MATHEMATICAL MODEL

3.1 Conventional Crisp Inventory Model

In this model, the integrated total cost consists of buyer and vendor ordering cost, inventory holding cost, setup cost
and lead time crashing cost.
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Integrated total cost (ITC)
The joint total expected cost per unit time derived in Pan and Yang (2002) is the sum of the following elements,

Ordering cost per unit time =
A

Q/D
=

AD

Q
, (1)

Buyer’s holding cost per unit time is =

(
Q

2
+ kσ

√
L

)
rCb, (2)

Lead time crashing cost per unit time =

(
D

Q

)
R(L), (3)

Vendor setup cost per year =

(
D

mQ

)
S, (4)

Vendor’s holding cost per unit time is obtained from vendor’s average inventory is evaluated as the difference of the
vendor’s accumulated inventory and the buyer’s accumulated inventory (see Figure 2).
Hence, vendor’s average inventory cost

=

{[
mQ

(
Q

P
+ (m− 1)

Q

D

)
− m2Q2

2P

]
−

[
Q2

D
(1 + 2 + · · ·+ (m− 1))

]}
D

mQ
,

=
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
.

So the vendor’s holding cost per unit time is =
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
rCv (5)

According to the assumptions (1) to (5) and the equations (1) to (5) described above, (Pan and Yang (2002))
the integrated total cost per unit time for the single vendor and the single buyer integrated inventory system which
is composed of buyer and vendor ordering cost, inventory holding cost, setup cost and lead time crashing cost, is
expressed by

ITC(Q,L,m) =
D

Q

(
A+

S

m
+R(L)

)
− QrCv

2

(
mD

P
+ 1

)
+

Qr

2

((
m+

2D

P

)
Cv + Cb

)
+ rCbkσ

√
L.

(6)

If a particular value ofm andL the integrated total cost is ITC(Q,L,m) optimal order quantityQ is determined
when integrated total cost ITC(Q,L,m) is minimum. In order to find the minimization of ITC(Q,L,m) we find
the partial derivative of ITC(Q,L,m) with Q and equate to zero, then we have

− D

Q2

(
A+

S

m
+R(L)

)
− rCv

2

(
mD

P
+ 1

)
+

r

2

((
m+

2D

P

)
Cv + Cb

)
= 0. (7)

For a fixed m and L, the integrated total cost ITC(Q,L,m) is positive definite at point Q. By examining the
sufficient conditions for a minimum value of ITC(Q,L,m), second order partial derivatives of ITC(Q,L,m) with
respect to Q and obtain

∂2ITC

∂Q2
=

2D

Q3

(
A+

S

m
+R(L)

)
> 0. (8)
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Figure 2: The inventory pattern for the buyer and vendor
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Therefore, ITC(Q,L,m) is convex in Q, for a fixedm and L. As a result, examine for the optimal derivatives,
Q∗ is reduce to find a local minimum. Hence, we obtain the optimal order quantity Q∗ by the above equation (7) is,

Q∗ = Q =

√
2D

(
A+ S

m +R(L)
)

r
((
m

(
1− D

P

)
− 1 + 2D

P

)
Cv + Cb

) . (9)

4. METHODOLOGY

In this paper, Graded mean integration method and function principle are used to find the optimal order quantity with
a fuzzy inventory model. When the quantities are fuzzy numbers Lagrangian method is used to solve the model.

4.1 Graded Mean Integration Representation Method

S. H. Chen and Hsieh (1999) introduced Graded mean integration representation method based on the integral value of
graded mean h-level of generalized fuzzy number to defuzzify the same. Here, generalized fuzzy number is described
as follows:

Suppose Ã is a generalized fuzzy number as shown in Figure 3. It is described as any fuzzy subset of the real line
R, whose membership function µÃ satisfies the following conditions.

1. µÃ(x) is a continuous mapping from R to [0, 1],

2. µÃ(x) = 0, −∞ < x ≤ a1,

3. µÃ(x) = L(x) is strictly increasing on [a1, a2],

4. µÃ(x) = wA, a2 ≤ x ≤ a3,

5. µÃ(x) = R(x) is strictly decreasing on [a3, a4],

6. µÃ(x) = 0, a4 ≤ x < ∞,

where 0 < wA ≤ 1 and a1, a2, a3 and a4 are real numbers. This type of generalized fuzzy number is also denoted as
Ã = (a1, a2, a3, a4;wA)LR . When wA = 1, it can be simplified as Ã = (a1, a2, a3, a4)LR .

Now Graded mean integration representation method, L−1 and R−1 are the inverse functions of L and R
respectively, and the graded mean h-level value of generalized fuzzy number Ã = (a1, a2, a3, a4;wA)LR is
h
2

(
L−1(h) +R−1(h)

)
as in Figure 3. Then, the Graded mean integration representation of P (Ã) with grade wA is

P (Ã) =

∫ wA

0
h
2

(
L−1(h) +R−1(h)

)
dh∫ wA

0
hdh

, (10)

where 0 < h ≤ wA and 0 < wA ≤ 1.
In the proposed fuzzy inventory models, popular trapezoidal fuzzy number is used as the type of all fuzzy pa-

rameters. Let B̃ be a trapezoidal fuzzy number and is denoted by B̃ = (b1, b2, b3, b4). Graded mean integration
representation of B̃ by the equation (10) is

P (B̃) =

∫ 1

0
h
2 [(b1 + b4) + h(b2 − b1 − b4 + b3)] dh∫ 1

0
hdh

,

P (B̃) =
b1 + 2b2 + 2b3 + b4

6
. (11)
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Figure 3: The graded mean h-level value of generalized fuzzy number Ã = (a1, a2, a3, a4)LR .

4.2 Fuzzy Arithmetical Operations under Function Principle

In S. H. Chen (1985), function principle is proposed to the fuzzy arithmetical operations by trapezoidal fuzzy numbers.
Some fuzzy arithmetical operations under function principle are described as follows:

Suppose Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) are two trapezoidal fuzzy numbers. Then,

1. The addition of Ã and B̃ is Ã⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4), where a1, a2, a3, a4, b1, b2, b3 and
b4 are any real numbers.

2. The multiplication of Ã and B̃ is Ã ⊗ B̃ = (c1, c2, c3, c4), where T = {a1b1, a1b4, a4b1, a4b4},
T1 = {a2b2, a2b3, a3b2, a3b3}, c1 = minT , c2 = minT1, c3 = maxT , c4 = maxT1.
If a1, a2, a3, a4, b1, b2, b3 and b4 are all nonzero positive real numbers, Ã⊗ B̃ = (a1b1, a2b2, a3b3, a4b4).

3. −B̃ = (−b4,−b3,−b2,−b1) and the subtraction of Ã and B̃ is Ã⊖ B̃ = (a1− b4, a2− b3, a3− b2, a4− b1),
where a1, a2, a3, a4, b1, b2, b3 and b4 are any one of the real numbers.

4. 1
B̃

= B̃−1 =
(

1
b4
, 1
b3
, 1
b2
, 1
b1

)
, where b1, b2, b3 and b4 are all positive real numbers. If a1, a2, a3, a4, b1, b2, b3

and b4 are all nonzero positive real numbers, then the division of Ã and B̃ is Ã⊘ B̃ =
(

a1

b4
, a2

b3
, a3

b2
, a4

b1

)
.

5. For any α ∈ R,

a) If α ≥ 0, then α⊗ Ã = (αa1, αa2, αa3, αa4),

b) If α < 0, then α⊗ Ã = (αa4, αa3, αa2, αa1).

4.3 Extension of Lagrangian Method

Taha (1997) discussed to solve nonlinear programming problem with equality constraints by using Lagrangian Method
to find an optimum solution, and showed that Lagrangian method may be extended to solve inequality constraints.
The general idea of extending the Lagrangian procedure is that if the unconstrained optimum of the problem does not
satisfy all constraints, the constrained optimum must occur at a boundary point of the solution space. The problem is

Minimize y = f(x), subject to gi(x) ≥ 0, i = 1, 2, 3, . . . ,m.

The non-negativity constraints x ≥ 0, if any are included in them constraints. Then, the procedure of Extension
of the Lagrangian method involves the following steps.

Step 1 : Solve the unconstrained problem
Minimize y = f(x).

If the resulting optimum satisfies all the constraints, stop because all constraints are redundant. Otherwise, set
k = 1 and go to Step 2.

Step 2 : Activate any k constraints (i.e., convert them into equality) and optimize f(x) subject to k active constraints
by the Lagrangian method. If the resulting solution is feasible with respect to the remaining constraints, stop;
it is a local optimum. Otherwise, activate another set of k constraints and repeat the step. If all sets of active
constraints taken k at a time are considered without encountering a feasible solution, go to Step 3.

Step 3 : If k = m, stop; no feasible solution exists. Otherwise, set k = k + 1 and go to Step 2.
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5. FUZZY INVENTORY MODELS

5.1 Fuzzy Integrated Inventory Model for Crisp Order Quantity

Throughout this paper, following parameters are used in order to simplify the treatment of the fuzzy inventory models.
Let D̃, Ã, S̃, r̃, P̃ , C̃v and C̃b be fuzzy parameters. Now, fuzzy integrated inventory model is introduced with fuzzy
parameters for crisp order quantity Q as follows.

In this model, the fuzzy integrated total cost consists of buyer and vendor fuzzy ordering cost, fuzzy inventory
holding cost, fuzzy setup cost and fuzzy lead time crashing cost. That is fuzzy ordering cost per unit time= (Ã⊗D̃)⊘Q,
buyer’s fuzzy holding cost per unit time is= ((Q⊘ 2)⊕ (k⊗σ⊗

√
L))⊗ (r̃⊗ C̃b), fuzzy lead time crashing cost per

unit time = (D̃ ⊘Q)⊗ R(L), vendor fuzzy setup cost per year = (D̃ ⊘ (m⊗Q))⊗ S̃ and vendor’s fuzzy holding
cost per unit time is= (Q⊘2)⊗ [(m⊗ (1− (D̃⊘ P̃ ))⊖1⊕ ((2⊗ D̃)⊘ P̃ ))]⊗ (r̃⊗ C̃v). Then, the fuzzy integrated
total cost is

˜ITC(Q,L,m) =[(D̃ ⊘Q)⊗ (Ã⊕ (S̃ ⊘m)⊕R(L))]⊖ [[(Q⊗ r̃ ⊗ C̃v)⊘ 2]⊗ [(m⊗ D̃ ⊘ P̃ ) + 1]]

⊕ [[(Q⊗ r̃)⊘ 2]⊗ [[m⊕ ((2⊗ D̃)⊘ P̃ )]⊗ C̃v ⊕ C̃b]]⊕ [r̃ ⊗ C̃b ⊗ k ⊗ σ ⊗
√
L],

(12)

where ⊕,⊗,⊘ and ⊖ are the fuzzy arithmetical operators under function principle.
Suppose D̃ = (D1, D2, D3, D4), Ã = (A1, A2, A3, A4), r̃ = (r1, r2, r3, r4), S̃ = (S1, S2, S3, S4), P̃ =

(P1, P2, P3, P4), C̃v = (Cv1, Cv2, Cv3, Cv4) and C̃b = (Cb1, Cb2, Cb3, Cb4) are non-negative trapezoidal fuzzy
numbers. Then the optimal order quantity of equation (12) is solved as in the following steps.

To begin with, fuzzy integrated total cost ˜ITC(Q,L,m) by equation (12) is

˜ITC(Q,L,m) =[(
D1

Q

(
A1 +

S1

m
+R(L)

)
−

Qr4Cv4

2

(
mD4

P1
+ 1

)
+

Qr1

2

((
m+

2D1

P4

)
Cv1 + Cb1

)
+ r1Cb1kσ

√
L

)
,(

D2

Q

(
A2 +

S2

m
+R(L)

)
−

Qr3Cv3

2

(
mD3

P2
+ 1

)
+

Qr2

2

((
m+

2D2

P3

)
Cv2 + Cb2

)
+ r2Cb2kσ

√
L

)
,(

D3

Q

(
A3 +

S3

m
+R(L)

)
−

Qr2Cv2

2

(
mD2

P3
+ 1

)
+

Qr3

2

((
m+

2D3

P2

)
Cv3 + Cb3

)
+ r3Cb3kσ

√
L

)
,(

D4

Q

(
A4 +

S4

m
+R(L)

)
−

Qr1Cv1

2

(
mD1

P4
+ 1

)
+

Qr4

2

((
m+

2D4

P1

)
Cv4 + Cb4

)
+ r4Cb4kσ

√
L

)]
.

(13)

Next, fuzzy integrated total cost in equation (13) is defuzzified by Gradedmean integration representation method
in equation (11). The result is

P ( ˜ITC(Q,L,m)) =

1

6

[(
D1

Q

(
A1 +

S1

m
+R(L)

)
−

Qr4Cv4

2

(
mD4

P1
+ 1

)
+

Qr1

2

((
m+

2D1

P4

)
Cv1 + Cb1

)
+ r1Cb1kσ

√
L

)
+ 2

(
D2

Q

(
A2 +

S2

m
+R(L)

)
−

Qr3Cv3

2

(
mD3

P2
+ 1

)
+

Qr2

2

((
m+

2D2

P3

)
Cv2 + Cb2

)
+ r2Cb2kσ

√
L

)
+ 2

(
D3

Q

(
A3 +

S3

m
+R(L)

)
−

Qr2Cv2

2

(
mD2

P3
+ 1

)
+

Qr3

2

((
m+

2D3

P2

)
Cv3 + Cb3

)
+ r3Cb3kσ

√
L

)
+

(
D4

Q

(
A4 +

S4

m
+R(L)

)
−

Qr1Cv1

2

(
mD1

P4
+ 1

)
+

Qr4

2

((
m+

2D4

P1

)
Cv4 + Cb4

)
+ r4Cb4kσ

√
L

)]
.

(14)

Then, we get the optimal order quantity Q when defuzzified fuzzy integrated total cost P [ ˜ITC(Q,L,m)] is
minimized. In order to find the minimization of P [ ˜ITC(Q,L,m)], Q is solved by taking the partial derivative of
P [ ˜ITC(Q,L,m)] with respect to Q and equated to zero. Now ∂P [ ˜ITC(Q,L,m)]

∂Q = 0 becomes,

1

6

[(
−
D1

Q2

(
A1 +

S1

m
+R(L)

)
−

r4Cv4

2

(
mD4

P1
+ 1

)
+

r1

2

((
m+

2D1

P4

)
Cv1 + Cb1

))
+ 2

(
−
D2

Q2

(
A2 +

S2

m
+R(L)

)
−

r3Cv3

2

(
mD3

P2
+ 1

)
+

r2

2

((
m+

2D2

P3

)
Cv2 + Cb2

))
+ 2

(
−
D3

Q2

(
A3 +

S3

m
+R(L)

)
−

r2Cv2

2

(
mD2

P3
+ 1

)
+

r3

2

((
m+

2D3

P2

)
Cv3 + Cb3

))
+

(
−
D4

Q2

(
A4 +

S4

m
+R(L)

)
−

r1Cv1

2

(
mD1

P4
+ 1

)
+

r4

2

((
m+

2D4

P1

)
Cv4 + Cb4

))]
= 0.

(15)
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For a fixedm and L, the integrated total cost P [ ˜ITC(Q,L,m)] is positive definite at pointQ. By examining the
sufficient conditions for a minimum value of P [ ˜ITC(Q,L,m)], second order partial derivatives of P [ ˜ITC(Q,L,m)]
with respect to Q and obtain

∂2P [ ˜ITC(Q,L,m)]

∂Q2
=
1

6

(
2D1

Q3

(
A1 +

S1

m
+R(L)

)
+

4D2

Q3

(
A2 +

S2

m
+R(L)

)
+
4D3

Q3

(
A3 +

S3

m
+R(L)

)
+

2D4

Q3

(
A4 +

S4

m
+R(L)

))
> 0.

(16)

Therefore,P [ ˜ITC(Q,L,m)] is convex inQ, for a fixedm andL. As a result, examine for the optimal derivatives,
Q∗ is reduce to find a local minimum. Hence, we get the optimal order quantity Q∗ is obtained by solving the above
equation (15),

Q∗
c = Q∗

=

√√√√√√√√
2D1

(
A1 + S1

m
+R(L)

)
+ 4D2

(
A2 + S2

m
+R(L)

)
+ 4D3

(
A3 + S3

m
+R(L)

)
+ 2D4

(
A4 + S4

m
+R(L)

)
r1

((
m

(
1− D1

P4

)
− 1 + 2D1

P4

)
Cv1 + Cb1

)
+ 2r2

((
m

(
1− D2

P3

)
− 1 + 2D2

P3

)
Cv2 + Cb2

)
+2r3

((
m

(
1− D3

P2

)
− 1 + 2D3

P2

)
Cv3 + Cb3

)
+ r4

((
m

(
1− D4

P1

)
− 1 + 2D4

P1

)
Cv4 + Cb4

) . (17)

5.2 Fuzzy Integrated Inventory Model for Fuzzy Order Quantity

In this section, fuzzy integrated inventory model is introduced by changing the crisp order quantity into fuzzy order
quantity. Suppose fuzzy order quantity Q̃ be a trapezoidal fuzzy number, Q̃ = (Q1, Q2, Q3, Q4) with the constraint
0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4.

The fuzzy integrated total cost consists of fuzzy buyer and vendor ordering cost, fuzzy inventory holding cost,
fuzzy setup cost and fuzzy lead time crashing cost. That is fuzzy ordering cost per unit time = (Ã⊗ D̃)⊘ Q̃, buyer’s
fuzzy holding cost per unit time is = ((Q̃⊘ 2)⊕ (k ⊗ σ ⊗

√
L))⊗ (r̃ ⊗ C̃b), fuzzy lead time crashing cost per unit

time = (D̃ ⊘ Q̃)⊗ R(L), vendor fuzzy setup cost per year = (D̃ ⊘ (m⊗ Q̃))⊗ S̃ and vendor’s fuzzy holding cost
per unit time is = (Q̃⊘ 2)⊗ [(m⊗ (1− (D̃⊘ P̃ ))⊖ 1⊕ ((2⊗ D̃)⊘ P̃ ))]⊗ (r̃⊗ C̃v). Then, the fuzzy integrated
total cost is

˜ITC(Q̃, L,m) =[(D̃ ⊘ Q̃)⊗ (Ã⊕ (S̃ ⊘m)⊕R(L))]⊖ [[(Q̃⊗ r̃ ⊗ C̃v)⊘ 2]⊗ [(m⊗ D̃ ⊘ P̃ ) + 1]]

⊕ [[(Q̃⊗ r̃)⊘ 2]⊗ [[m⊕ ((2⊗ D̃)⊘ P̃ )]⊗ C̃v ⊕ C̃b]]⊕ [r̃ ⊗ C̃b ⊗ k ⊗ σ ⊗
√
L],

(18)

where ⊕,⊗,⊘, and ⊖ are the fuzzy arithmetical operators under function principle.
Suppose D̃ = (D1, D2, D3, D4), Ã = (A1, A2, A3, A4), r̃ = (r1, r2, r3, r4), S̃ = (S1, S2, S3, S4), P̃ =

(P1, P2, P3, P4), C̃v = (Cv1, Cv2, Cv3, Cv4) and C̃b = (Cb1, Cb2, Cb3, Cb4) are non-negative trapezoidal fuzzy
numbers. Then the optimal order quantity of equation (18) is calculated as follows.

We start with, fuzzy integrated total cost ˜ITC(Q̃, L,m) which is given by equation (18). Then,
˜ITC(Q̃, L,m) =[(

D1

Q4

(
A1 +

S1

m
+R(L)

)
−

Q4r4Cv4

2

(
mD4

P1
+ 1

)
+

Q1r1

2

((
m+

2D1

P4

)
Cv1 + Cb1

)
+ r1Cb1kσ

√
L

)
,(

D2

Q3

(
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S2

m
+R(L)

)
−

Q3r3Cv3

2

(
mD3
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+ 1

)
+

Q2r2

2

((
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2D2

P3

)
Cv2 + Cb2

)
+ r2Cb2kσ

√
L

)
,(
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S3
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)
−

Q2r2Cv2

2

(
mD2
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+ 1

)
+

Q3r3

2

((
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2D3

P2

)
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)
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√
L

)
,(

D4
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(
A4 +

S4

m
+R(L)

)
−

Q1r1Cv1

2

(
mD1

P4
+ 1

)
+

Q4r4

2

((
m+

2D4

P1

)
Cv4 + Cb4

)
+ r4Cb4kσ

√
L

)]
.

(19)

Also, the Graded mean integration representation of ˜ITC(Q̃, L,m) is obtained by equation (11) as

P [ ˜ITC(Q̃, L,m)] =

1

6

[(
D1

Q4

(
A1 +

S1

m
+R(L)

)
−

Q4r4Cv4

2

(
mD4

P1
+ 1

)
+

Q1r1

2

((
m+

2D1

P4

)
Cv1 + Cb1

)
+ r1Cb1kσ

√
L

)
+ 2

(
D2

Q3

(
A2 +

S2

m
+R(L)

)
−

Q3r3Cv3

2

(
mD3

P2
+ 1

)
+

Q2r2

2

((
m+

2D2

P3

)
Cv2 + Cb2

)
+ r2Cb2kσ

√
L

)
+ 2

(
D3

Q2

(
A3 +

S3

m
+R(L)

)
−

Q2r2Cv2

2

(
mD2

P3
+ 1

)
+

Q3r3

2

((
m+

2D3

P2

)
Cv3 + Cb3

)
+ r3Cb3kσ

√
L

)
+

(
D4

Q1

(
A4 +

S4

m
+R(L)

)
−

Q1r1Cv1

2

(
mD1

P4
+ 1

)
+

Q4r4

2

((
m+

2D4

P1

)
Cv4 + Cb4

)
+ r4Cb4kσ

√
L

)]
,

(20)
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with 0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4. It will not change the meaning of equation (20) if inequality conditions are replaced
0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4 into the inequality condition Q2 −Q1 ≥ 0, Q3 −Q2 ≥ 0, Q4 −Q3 ≥ 0 and Q1 > 0.
In the following steps, extension of the Lagrangian method is used to find the solutions of Q1, Q2, Q3 and Q4 to
minimize P [ ˜ITC(Q̃, L,m)] in equation (20).

Step 1 : Solve the unconstraint problem: In order to find the minimization of P [ ˜ITC(Q̃, L,m)], we find the partial
derivatives of P [ ˜ITC(Q̃, L,m)] with respect to Q1, Q2, Q3 and Q4 then equate them to zero as follows.

1

6

[
−D4

Q2
1

(
A4 +

S4

m
+R(L)

)
− r1Cv1

2

(
mD1

P4
+ 1

)
+

r1
2

((
m+

2D1

P4

)
Cv1 + Cb1

)]
= 0, (21)

2

6

[
−D3

Q2
2

(
A3 +

S3

m
+R(L)

)
− r2Cv2

2

(
mD2

P3
+ 1

)
+

r2
2

((
m+

2D2

P3

)
Cv2 + Cb2

)]
= 0, (22)

2

6

[
−D2

Q2
3

(
A2 +

S2

m
+R(L)

)
− r3Cv3

2

(
mD3

P2
+ 1

)
+

r3
2

((
m+

2D3

P2

)
Cv3 + Cb3

)]
= 0, (23)

1

6

[
−D1

Q2
4

(
A1 +

S1

m
+R(L)

)
− r4Cv4

2

(
mD4

P1
+ 1

)
+

r4
2

((
m+

2D4

P1

)
Cv4 + Cb4

)]
= 0, (24)

Solving the above equations (21) to (24), we get the optimal order quantities which are given by

Q1 =

√√√√ 2D4

(
A4 +

S4

m +R(L)
)

r1

((
m

(
1− D1

P4

)
− 1 + 2D1

P4

)
Cv1 + Cb1

) , (25)

Q2 =

√√√√ 4D3

(
A3 +

S3

m +R(L)
)

2r2

((
m

(
1− D2

P3

)
− 1 + 2D2

P3

)
Cv2 + Cb2

) , (26)

Q3 =

√√√√ 4D2

(
A2 +

S2

m +R(L)
)

2r3

((
m

(
1− D3

P2

)
− 1 + 2D3

P2

)
Cv3 + Cb3

) , (27)

Q4 =

√√√√ 2D1

(
A1 +

S1

m +R(L)
)

r4

((
m

(
1− D4

P1

)
− 1 + 2D4

P1

)
Cv4 + Cb4

) . (28)

The above results show that Q1 > Q2 > Q3 > Q4 and they do not satisfy the constraint 0 < Q1 ≤ Q2 ≤
Q3 ≤ Q4. Therefore set k = 1 and go to Step 2.

Step 2 : Convert the inequality constraint Q2 − Q1 ≥ 0 into equality constraint Q2 − Q1 = 0 and optimize
P [ ˜ITC(Q̃, L,m)] subject to Q2 −Q1 = 0 by the Lagrangian method.

The Lagrangian function is L(Q1, Q2, Q3, Q4, λ) = P [ ˜ITC(Q̃, L,m)] − λ(Q2 − Q1). The partial derivatives of
L(Q1, Q2, Q3, Q4, λ)with respect toQ1, Q2, Q3, Q4 andλ are taken to find theminimization ofL(Q1, Q2, Q3, Q4, λ).
Let all the partial derivatives be equal to zero to solve Q1, Q2, Q3 and Q4. Then,

Q1 = Q2 =

√√√√ 4D3

(
A3 +

S3

m +R(L)
)
+ 2D4

(
A4 +

S4

m +R(L)
)

r1

((
m

(
1− D1

P4

)
− 1 + 2D1

P4

)
Cv1 + Cb1

)
+ 2r2

((
m

(
1− D2

P3

)
− 1 + 2D2

P3

)
Cv2 + Cb2

) ,
(29)

Q3 =

√√√√ 4D2

(
A2 +

S2

m +R(L)
)

2r3

((
m

(
1− D3

P2

)
− 1 + 2D3

P2

)
Cv3 + Cb3

) , (30)

Q4 =

√√√√ 2D1

(
A1 +

S1

m +R(L)
)

r4

((
m

(
1− D4

P1

)
− 1 + 2D4

P1

)
Cv4 + Cb4

) . (31)

Again, the above results show that Q3 > Q4 and it does not satisfy the constraint 0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4.
Therefore it is not a local optimum. Similarly, the same result can be achieved by considering any other inequality
constraint as equality constraint. Therefore set k = 2 and go to Step 3.
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Step 3 : Convert the inequality constraint Q2 − Q1 ≥ 0, Q3 − Q2 ≥ 0 into equality constraints Q2 − Q1 = 0 and
Q3−Q2 = 0. P [ ˜ITC(Q̃, L,m)] is optimized subject toQ2−Q1 = 0 andQ3−Q2 = 0 by the Lagrangian
method.

Then the Lagrangian function is L(Q1, Q2, Q3, Q4, λ1, λ2) = P ( ˜ITC(Q̃, L,m))−λ1(Q2−Q1)−λ2(Q3−
Q2). In order to find the minimization of L(Q1, Q2, Q3, Q4, λ1, λ2), we take the partial derivatives of
L(Q1, Q2, Q3, Q4, λ1, λ2) with respect to Q1, Q2, Q3, Q4, λ1, λ2 and let all the partial derivatives equal to zero and
solve Q1, Q2, Q3 and Q4 then we get,

Q1 = Q2 = Q3

=

√√√√√√√
4D2

(
A2 +

S2

m +R(L)
)
+ 4D3

(
A3 +

S3

m +R(L)
)
+ 2D4

(
A4 +

S4

m +R(L)
)

r1

((
m

(
1− D1

P4

)
− 1 + 2D1

P4

)
Cv1 + Cb1

)
+ 2r2

((
m

(
1− D2

P3

)
− 1 + 2D2

P3

)
Cv2 + Cb2

)
+2r3

((
m

(
1− D3

P2

)
− 1 + 2D3

P2

)
Cv3 + Cb3

) ,

(32)

Q4 =

√√√√ 2D1

(
A1 +

S1

m +R(L)
)

r4

((
m

(
1− D4

P1

)
− 1 + 2D4

P1

)
Cv4 + Cb4

) . (33)

From the above results it is clear that Q1 > Q4 and does not satisfy the constraint 0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4.
Therefore it is not a local optimum. Similarly, the same result can be achieved by considering any two inequality
constraint as equality constraint. Therefore set k = 3 and go to Step 4.

Step 4 : Convert the inequality constraint Q2 − Q1 ≥ 0, Q3 − Q2 ≥ 0 and Q4 − Q3 ≥ 0 into equality constraints
Q2 −Q1 = 0, Q3 −Q2 = 0 and Q4 −Q3 = 0. We optimize P [ ˜ITC(Q̃,m,L)] subject to Q2 −Q1 = 0,
Q3 −Q2 = 0 and Q4 −Q3 = 0 by the Lagrangian method.

The Lagrangian function is given by

L(Q1, Q2, Q3, Q4, λ1, λ2, λ3) = P ( ˜ITC(Q̃,m,L))− λ1(Q2 −Q1)− λ2(Q3 −Q2)− λ3(Q4 −Q3).

In order to find the minimization of L(Q1, Q2, Q3, Q4, λ1, λ2, λ3), we take the partial derivatives of
L(Q1, Q2, Q3, Q4, λ1, λ2, λ3) with respect to Q1, Q2, Q3, Q4, λ1, λ2, λ3 and let all the partial derivatives equal to
zero and solve Q1, Q2, Q3 and Q4 then we get,

Q1 = Q2 = Q3 = Q4

=

√√√√√√√√
2D1

(
A1 + S1

m
+R(L)

)
+ 4D2
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)
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((
m
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P4
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)
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m
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)
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m
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)
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)
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m

(
1− D4

P1

)
− 1 + 2D4

P1

)
Cv4 + Cb4

) .

(34)

As the above solution Q̃ = (Q1, Q2, Q3, Q4) satisfies all inequality constraints, the procedure terminates with
Q̃ as a local optimum solution to the problem. Since the above local optimum solution is the only feasible solution of
equation (20), it is an optimum solution of the inventory model with fuzzy order quantity according to Extension of the
Lagrangian Method. Let Q1 = Q2 = Q3 = Q4 = Q̃∗. The optimal fuzzy order quantity is Q̃∗ = (Q∗, Q∗, Q∗, Q∗),
where

Q̃∗ =

√√√√√√√√
2D1

(
A1 + S1

m
+R(L)

)
+ 4D2

(
A2 + S2
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)
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m
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)
r1
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m

(
1− D1
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)
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)
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m
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)
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)
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)
+2r3
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m
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)
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Cv3 + Cb3
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m
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)
Cv4 + Cb4

) .

(35)
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5.3 Algorithm for Inventory Models

The following algorithm is designed to find the optimal order quantity and integrated total cost. In the crisp sense
using equations (9) and (6) respectively, we get the optimal order quantity Q∗ and minimum integrated total cost
ITC(Q,L,m). In the fuzzy sense using equations (35) and (20) respectively, the optimal fuzzy order quantity Q̃∗

and minimum fuzzy integrated total cost P [ ˜ITC(Q̃, L,m)] are obtained. Further, the comparisons are given for both
conventional crisp model and the fuzzy model. This is used to determine the suitable model for finding the optimal
order quantity and the integrated total cost with their savings.
Algorithm

Step 1 : Calculate optimal order quantity and integrated total cost in the conventional crisp model for the given crisp
values of D, P , k, Cv , r, A, S, σ , L, R(L), m and Cb. Then crisp optimal order quantity Q∗ and crisp
integrated total cost ITC(Q,L,m) are obtained.

Step 2 : Determine fuzzy integrated total cost using fuzzy arithmetic operations on fuzzy buyer and vendor order-
ing cost, fuzzy inventory holding cost, fuzzy setup cost and fuzzy lead time crashing cost which is taken as
trapezoidal fuzzy number.

Step 3 : Use graded mean integration method to defuzzify integrated total cost ˜ITC(Q,L,m), in order to find the
order quantityQ∗

c which can be obtained by putting the first derivative of P [ ˜ITC(Q,L,m)] is equal to zero.

Step 4 : Use extension of the Lagrangian method to find the fuzzy optimal order quantity Q̃∗ = (Q∗, Q∗, Q∗, Q∗),
which is the special method for trapezoidal fuzzy number. The optimal fuzzy order quantity
Q̃∗ = (Q∗, Q∗, Q∗, Q∗), is obtained by substituting the first derivative of P [ ˜ITC(Q̃, L,m)] that is equal to
zero.

Step 5 : To check whether the optimal order quantity Q∗
c obtained by Graded Mean Integration is the same as the

fuzzy optimal order quantity Q̃∗.

Step 6 : Compare the integrated total cost and the optimal order quantity in conventional crisp model and fuzzy model.
If Q∗ > Q̃∗ and ITC(Q,L,m) > P [ ˜ITC(Q̃, L,m)] then the proposed fuzzy model is finest to find the
optimal order quantity and integrated total cost, else Q∗ < Q̃∗ and ITC(Q,L,m) < P [ ˜ITC(Q̃, L,m)]
then the conventional crisp model is the finest to find the optimal order quantity and integrated total cost.

Step 7 : Compare the optimal order quantity, integrated total cost obtained from both conventional crisp model and
the fuzzy model with their savings.

6. NUMERICAL EXAMPLE

In this section, numerical examples are given to demonstrate the above solution procedure using the proposed algorithm.
After applying the algorithm, the best inventory model is identified. The solutions to these examples are obtained by
using computer Matlab software. The proposed vendor-buyer fuzzy model can be used in industries such as aircraft,
healthcare, printers, cars, computers, textiles, clothing, refrigerators, cell phones, televisions, washing machines, tyres,
air conditioners and huge items such as printed circuit boards, etc. Integrated inventory model is useful especially
for Just-in-time (JIT) inventory systems where seller and buyer form a strategic partnership for profit sharing. The
proposed integrated inventory model is more valid for the supply chain manufacturing process and seller and buyer
management.

6.1 Crisp Model

Example. 1
To illustrate the solution procedure for crisp model, let us consider the systemwith the data used in Pan and Yang (2002),
D = 1000 units/year, P = 3200 units/year, k = 2.33, r = 0.2, S = $400/setup, Cv = 20/units, Cb = 25/units,
σ = 7 units/week. In addition, we take L = 3, 4, 6 and 8 weeks, R(L) = $53.2, $18.2, $1.4 and $0, m = 3, 4, 5
and 5, A = $21.87/order, $22.50/order, $23.75/order and $25.00/order. Using equations (9) and (6) respectively,
optimal order quantityQ∗ and minimum integrated total cost ITC(Q,L,m) are attained. The results are tabulated in
Table 1.
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Table 1: Optimal solution for crisp model

D P k Cv r A S Cb σ L R(L) m Q∗ ITC(Q,L,m)

1000 3200 2.33 20 0.2 21.87 400 25 7 3 53.2 3 188.34 2354.3
1000 3200 2.33 20 0.2 22.5 400 25 7 4 18.2 4 139.31 2183.1
1000 3200 2.33 20 0.2 23.75 400 25 7 6 1.4 5 110.41 2104.4
1000 3200 2.33 20 0.2 25 400 25 7 8 0 5 110.34 2133.9

6.2 Fuzzy Model

Example. 2
The data is the same as in Example. 1, except that the fuzzy parameters D̃, P̃ , C̃v , r̃, Ã, S̃ and C̃b. The order quantity
in Example. 1 is transferred as fuzzy order quantity Q̃ = (Q1, Q2, Q3, Q4) with 0 < Q1 ≤ Q2 ≤ Q3 ≤ Q4. The
proposed algorithm yields the result as shown in Table 2. Using equations (35) and (20) respectively, optimal fuzzy
order quantity Q̃∗ and minimum fuzzy integrated total cost P [ ˜ITC(Q̃, L,m)] are obtained.

Table 2: Optimal solution for fuzzy model

D̃ P̃ k C̃v r̃ Ã S̃ C̃b σ L R(L) m Q∗ = Q̃∗ P [ ˜ITC

(Q̃, L,m)]
(950,
975,
1025,
1050)

(3100,
3150,
3250,
3300)

2.33

(15,
17,
22,
27)

(0.12,
0.14,
0.2,
0.4)

(18,
19,
23.5,
28.22)

(380,
390,
410,
420)

(20,
22,
28,
30)

7 3 53.2 3 181.99 2317.0

(950,
975,
1025,
1050)

(3100,
3150,
3250,
3300)

2.33

(15,
17,
22,
27)

(0.12,
0.14,
0.2,
0.4)

(18.5,
20.6,
23.8,
27.7)

(380,
390,
410,
420)

(20,
22,
28,
30)

7 4 18.2 4 134.63 2148.3

(950,
975,
1025,
1050)

(3100,
3150,
3250,
3300)

2.33

(15,
17,
22,
27)

(0.12,
0.14,
0.2,
0.4)

(17,
21,
27.1,
29.3)

(380,
390,
410,
420)

(20,
22,
28,
30)

7 6 1.4 5 106.75 2067.2

(950,
975,
1025,
1050)

(3100,
3150,
3250,
3300)

2.33

(15,
17,
22,
27)

(0.12,
0.14,
0.2,
0.4)

(16,
24,
27,
32)

(380,
390,
410,
420)

(20,
22,
28,
30)

7 8 0 5 106.68 2096.8

Table 3: Summary of Optimal solution

L Q∗ ITC(Q,L,m) Q̃∗ P [ ˜ITC(Q̃, L,m)]
Savings (%) Optimal
order quantity

Savings (%)
Integrated total cost

3 188.34 2354.3 181.99 2317.0 3.37 1.58

4 139.31 2183.1 134.63 2148.3 3.36 1.59

6 110.41 2104.4 106.75 2067.2 3.31 1.77

8 110.34 2133.9 106.68 2096.8 3.32 1.74

Table 1 shows in crisp environment, when lead timeL = 3, 4, 6 and 8weeks, we get the optimal order quantityQ∗

and minimum integrated total cost ITC(Q,L,m) which range from 110.34 units to 188.34 units and from $2133.9
to $2354.3 respectively. The results of Table 1 illustrate that when lead time increases optimal order quantity Q∗

decreases and minimum integrated total cost ITC(Q,L,m) initially decreases and increases later. Similarly, Table 2
illustrates fuzzy environment. When lead time L = 3, 4, 6 and 8 weeks we get the optimal fuzzy order quantity Q̃∗
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decreases and minimum fuzzy integrated total cost P [ ˜ITC(Q̃, L,m)] which range from 106.68 units to 181.99 units
and from $2096.8 to $2317.0 respectively. The results of Table 2 demonstrate that the optimal fuzzy order quantity
Q̃∗ and minimum fuzzy integrated total cost P [ ˜ITC(Q̃, L,m)] initially decreases and increases later when the lead
time increases. Summarized optimal order quantity and minimum integrated total cost are tabulated in Table 3. It is
observed that optimal order quantity and minimum integrated total cost savings while using the fuzzy model range
from 3.31% to 3.37% and from 1.58% to 1.74% respectively. It is also indicated that the optimal order quantity and
minimum integrated total cost solutions of fuzzy case considerably fluctuate from the solutions of the crisp case.

6.3 Graphical Representation

Graphical representation of the optimal order quantity for the different numbers of lead time is compared both in the
crisp and fuzzy models as depicted in Figure 4. It is clear that the optimal lot-size Q∗ and Q̃∗ decrease when the lead
time L increases. It is observed that the optimal order quantity is productively optimized in the fuzzy model when
compared to the crisp model. The next graphical representation of integrated total cost along with the lead time is
compared both in the crisp and fuzzy models as shown in Figure 5. The integrated total cost ITC(Q,L,m) and fuzzy
integrated total cost P [ ˜ITC(Q̃, L,m)] decrease initially and then start to increase later when the lead time increases.
It is perceived that the integrated total cost is effectively minimized in the fuzzy model when compared to the crisp
model. Another graphical representation of optimal order quantity and integrated total cost along with the lead time L
is compared both in the crisp and fuzzy models as exhibited in Figure 6. The integrated total cost ITC(Q,L,m), fuzzy
integrated total cost P [ ˜ITC(Q̃, L,m)] initially decreases and increases later then optimal lot-size Q∗, fuzzy optimal
lot-size Q̃∗ decrease correspondingly when the lead time L increases. It is observed that the optimal order quantity and
integrated total cost are constructively optimized in the fuzzy model compared to the crisp model.

7. COMPARATIVE STUDY

A comparative study of the proposed model with that of optimal order quantity and integrated total cost are shown in
Table 4. It is observed that as lead time increases, the percentage variation of the performance measures between the
models decreases in optimal order quantity and increases then decreases in integrated total cost. The model with fuzzy
optimal order quantity and integrated total cost has higher utilisation than the model with crisp optimal order quantity
and integrated total cost. It is also observed that the assumption of fuzzy optimal order quantity and integrated total
cost has a significant influence on all the performance measures of the model. Lead time has an important effect on the
system performance measures, and this fuzzy inventory model can predict the performance measures more efficiently.
This fuzzy inventory model is also compared with some specific cases of the previous models.

In Pan and Yang (2002) model they found the optimal order quantity, lead time and delivering number when
the probability distribution of the lead time demand was normal. The aim of Vijayashree and Uthayakumar (2017)
mathematical model was to reduce the ordering cost dependent on lead time. The proposed model followed procedures
to find optimal order quantity and minimum integrated total cost in fuzzy sense. We compare the proposed model with
the previous models and the results are tabulated in Table 4. From this an efficient result for the proposed fuzzy model
is attained.

Figure 4: Graphical representation of optimal order quantity versus lead time.
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Figure 5: Graphical representation of integrated total cost versus lead time.

Figure 6: Graphical representation of optimal order quantity and integrated total cost versus lead time.
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Table 4: Summary of the comparisons

L R(L) m A

Pan and. Yang model
(2002)

Vijayashree and
Uthayakumar model
(2017) Ordering cost

considered as Linear case

This fuzzy inventory
model with fuzzy
order quantity

Savings (%)

Optimal
order
quantity

Integrated
total cost

Optimal
order
quantity

Integrated
total cost

Optimal
order
quantity

Integrated
total cost

Optimal
order
quantity

Integrated
total cost

3 53.2 3

25

190 2370.8 189.75 2370.8 183.37 2330.5 3.36 1.70

4 18.2 4 141 2200.9 140.54 2200.9 135.84 2161.4 3.34 1.79

6 1.4 5 111 2115.7 111.07 2115.7 107.38 2076.7 3.32 1.84

8 0 5 110 2134.0 110.34 2133.9 106.68 2096.8 3.32 1.74

Table 4 shows in crisp environment results of Pan and Yang (2002) & Vijayashree and Uthayakumar (2017) in-
ventory models. They used lead time L = 3, 4, 6 and 8 weeks and got the optimal order quantity and integrated total
cost which range from 110.34 units to 188.34 units and from $2133.9 to $2354.3 respectively. In our proposed fuzzy
inventory model for lead time L = 3, 4, 6 and 8 weeks, we get the optimal order quantity and integrated total cost
which range from 106.68 units to 183.37 units and from $2076.7 to $2330.5 respectively. It is observed that the
considerable variations in optimal order quantity and integrated total cost in the application of two inventory models.

Hence, our fuzzy integrated inventory model helps the organization to handle uncertain inventory cost param-
eters. It is observed that uncertain cost parameters give 3.32% to 3.36% and 1.70% to 1.84% of the savings in the
optimal order quantity and integrated total cost respectively. Then uncertain cost parameters are positive as a predictor
statistically different from zero. Also, they have a significant and direct effect on inventory. Therefore, organizations
are able to find optimal order quantity and minimum integrated total cost in profitable manner. From this, we conclude
that if the models are dealt with crisp sense, it cannot properly embed with real situations. But taking the same models
with fuzzy sense, it is possible to embed properly in real situations. Hence the fuzzy sense is the best to handle the
inventory models.

8. CONCLUSION

A single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on lead time is
formulated and developed in both crisp and fuzzy environments. In fuzzy environment, all related inventory parameters
are assumed to be trapezoidal fuzzy numbers. For defuzzification, graded mean integration method is employed to
evaluate the optimal integrated total cost. Extension of Lagrangian method is used to determine the optimal order
quantity. A computational algorithm is framed to investigate the effects of fuzzy parameters on the optimal order
quantity and minimum integrated total cost of the proposed integrated vendor-buyer system. Graphical representation
of numerical examples show that by using the proposed fuzzy model, one can obtain a significant amount of savings
in integrated inventory model. By comparing the proposed model with the previous models, an efficient result for the
proposed fuzzy model is attained. After comparing both the conventional crisp and fuzzy models, it is observed that
the fuzzy model is better than the conventional crisp model.

Future researches on this problem can deal with inventory constraints, ordering constraints, etc. Further, various
type of multi-echelon supply chain models can be considered in crisp sense, fuzzy sense or both.
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