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Abstract: In this paper, a production inventory model for deteriorating items with price-stock dependent demand rate
under complete backlog is developed. The deterioration rate is controlled by investment in preservation technology
and optimum preservation cost is obtained. Under these general assumptions, we first proved that the optimal sales
price and optimal preservation investment cost not only exists but is unique, for any given number of the production
cycle. Next, we have shown that the total profit is a concave function of the selling price and production cycle when
the preservation cost is given. Numerical results demonstrated the proposed model and further shown that the effects
of different system parameters on the optimal variables and the optimal expected profit.
Keyword — Inventory, Pricing, Deteriorating items, Price-stock dependent demand, Backlogging, Preservation tech-
nology

1. INTRODUCTION

Deteriorating inventory had been elaborated in the past decades (Dave and Patel (1981), Kang and Kim (1983), Wee
(1997), Lodree Jr. and Uzochukwu (2008), Bhunia, Kundu, Sannigrahi, and Goyal (2009), Mahata (2012), Chang, Teng,
and Goyal (2010)), and they commonly centralized on constant or variable deterioration rate and ways to reduce the
effect of deterioration. Deteriorating items are items that deteriorate with time, resulting in a decreasing utility, quality,
marginal value and quantity from the original ones. Such items include medicines, fruits, vegetables, fashion goods,
blood, electronic equipment, etc. Misra (1975) proposed a production lot size model for an inventory system with
deteriorating items. He analyzed the model for both the varying and constant rate of deterioration. Wee (1993) de-
veloped a single commodity economic production policy for an ongoing deterioration item with partial back-ordering
and finite replenishment. Tripathi and Tomar (2018) presented an EOQ model for deteriorating items with quadratic
time-sensitive demand and parabolic-time linked holding cost related to salvage value. In this model, the finest cycle
time and order quantity are obtained in terms of theoretical expressions. Sekar and Uthayakumar (2018) proposed and
analyzed an EPQ model for a deteriorating item with exponentially increasing demand function and demand depen-
dent production rate. Their model mainly consists of three (beginning, developing and maturity) different stages of
production and one decline stage in which determined the number of replenishment cycles under a finite time horizon.
Tiwari, Khedlekar, and Khedlekar (2021) found that the total profit for deteriorating items is a concave function of the
selling price, ordering frequency, preservation technology investment and time cycle.

The management of inventories is one of the most important tasks that every particular manager must do ef-
ficiently and effectively in an organization. Nowadays, there is a huge competition between organizations and thus
these organizations are taking seriously the management of inventories. In the last 36 years, the models for inventory
management policies involving preservation technology investment have received the attention of several researchers
(Hsu, Wee, and Teng (2010), Hsieh and Dye (2013)). Dye and Hsieh (2012) formulated an inventory model with a time-
varying rate of deterioration and partial backlogging by considering the amount invested in preservation technology and
the replenishment schedule as decision variables.

The first works on optimizing inventory decisions were designed under a reductionist perspective, and it can be
traced to the original economic production quantity (EPQ) inventory model developed by Taft (1918). Panda, Saha,

*Corresponding author’s e-mail: uvkkcm@yahoo.co.in

http://doi.org/10.6886/IJOR.202206_19(2).0002

新用戶
IJOR logo



42 Singh1, Khedlekar, Chandel: Production­Inventory Model

IJOR Vol. 19, No. 2, 41-50 (2022)

and Soumen (2012) developed a single-item perishable inventory model to determine optimal pricing and lot-sizing
policy for a retailer in stock and price-sensitive demand environment over a finite horizon. Roy, Ghosh, and Chaudhuri
(2013) investigated the optimal production time and optimal cycle time in an economic production quantity model for
items with time-proportional deterioration.

The problem of pricing and inventory control faced by a reseller who sells a perishable product with partially
backlogged demand is studied by Abad (1996). Abad (2003) discussed a pricing and lot-sizing problem for a perishable
good under finite production, exponential decay, partial backordering and lost sale. He used a new approach tomodelled
backlogging phenomenon without using the backorder cost and the lost sale cost. Goyal and Giri (2003) investigated
the production-inventory problem in which the demand, production and deterioration rate of a product is assumed
to vary with time and backlogged partially over an infinite planning horizon. Chung, Eduardo Cárdenas-Barrón, and
Ting (2013) proposed a new economic production quantity inventory model for deteriorating items under two levels
of trade credit to reflect the real business situations. Drake, Pentico, and Toews (2011) jointly planned the production
of a final product subject to the conditions of an EPQ model and the production or purchasing of its components to
the case where the final product is subject to the partial backordering of unfilled demand.

In the proposed inventory control model, we did an implicit assumption that when there is a shortage, complete
back-ordering is assumed. In this paper, we studied the number of production cycles, invest in preservation technology
and sales price to maximize the total expected profit, and perform a sensitivity analysis to understand how they depend
on cost parameters. In particular, we used price-depend production rate, deterioration and complete backlogging to
obtain general results on inventory management. In the end, a numerical example is used to illustrate the proposed
model, and concluding remarks are provided.

2. MATHEMATICAL MODEL AND ANALYSIS

2.1 Model assumptions and notations

To develop the proposed mathematical model of production inventory, the notations adopted in this paper are repre-
sented in Table 2: Assumptions:

(1) The demand rate depends on the stock quantity displayed in the warehouse/showroom as well as the sales price,

f(p, t) =

{
f(p) + λI(t), I(t) > 0, 0 < λ < 1;
f(p), I(t) ≤ 0.

where f(p) = αp−Γ, 0 < Γ < 1 is the known parameter and the price sensitivity of demand.

(2) The deterioration rate of an item follows an exponential function of u with parameter β i,e., θ(u) = θ0e
−βu,

(3) The production rate in each cycle is finite,

(4) Shortages are allowed and the unsatisfied demand is backlogged completely,

(5) There is no repair of deteriorated items,

(6) The production rate R is a function of the sales price and is given by R = f(p)
µ , where µ(> 0) is a constant.

Table 1: Notations for parameters and variables

Decision variables
p unit sales price per item ($/unit)
n number of production cycle (an integer)
u the preservation investment cost ($/unit/time unit)
Parameters
t1 production length per cycle (weeks)
t1 + t2 time at which inventory level become zero (weeks)
θ(u) the deterioration rate of finished item under influence of preservation investment cost
θ0 the natural deterioration rate
α the coefficient of price in demand rate
β the coefficient of preservation investment cost to the deterioration rate
qp the quantity produced over [0, T ] (units)
λ parameter of stock dependent consumption rate
f(p, t) demand rate function (function of sales price p and instantaneous stock level I(t)) (units/unit time)
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f(p) the market demand at price p, (units/unit time)
T the cycle time (time unit)
R the rate of production (units)
h unit stock holding cost per item per week ($/unit/time unit)
Q inventory level at t = t1
I1(t) the inventory level that changes with time t during production period (units)
I2(t) the inventory level that changes with time t during non-production period (units)
I3(t) the inventory level that changes with time t during shortage period (units)
TEP the total expected profit ($/time unit)
Cd the deterioration cost per unit item ($/unit)
Cp the production cost per unit item($/unit/time unit)
Ch the inventory holding cost per unit item ($/unit/time unit)
Cs the shortage cost per unit item ($/unit/time unit)
PDC the total production cost
HDC the total holding cost
STC the total shortage cost
DTC the total deterioration cost
PIC the total preservation investment cost

Figure 1: Graphical representation of the production-inventory model

2.2 Model Formulation

The model studies about a production-inventory system for an item. During the time t = 0 to t = t1, the production
continues with upward direction as depicted in Fig. 1, in presence of demand f(p, t) and deterioration θ(u). For
the time [t1, t1 + t2], there is no production, thus, the holding inventories positions are downstream direction with
demand f(p, t) and deterioration θ(u). The inventory level becomes zero at time t = t1 + t2. Afterwards, shortages
are permitted to happen and whole demand in the period [t1 + t2, T/n] is completely backlogged.

The differential equations which describe the inventory level are expressed below:

dI1(t)

dt
+ (θ(u) + λ)I1(t) = R(p)− f(p), 0 ≤ t ≤ t1 (2.1)

with boundary condition I1(0) = 0 and I1(t1) = Q.

dI2(t)

dt
+ (θ(u) + λ)I2(t) = −f(p), t1 ≤ t ≤ t1 + t2 (2.2)
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with boundary condition I2(t1) = Q and I2(t1 + t2) = 0.

dI3(t)

dt
= −f(p), t1 + t2 ≤ t ≤ T/n (2.3)

with boundary condition I3(t′1) = 0.
The solutions of the above differential Eqs. 2.1, 2.2 and 2.3 using boundary conditions are given by

Ii(t) =



R(p)− f(p)

θ(u) + λ

(
1− e−(θ(u)+λ)t

)
, 0 ≤ t ≤ t1, i = 1;

f(p)

θ(u) + λ

(
e−(θ(u)+λ)(t1+t2−t) − 1

)
, t1 ≤ t ≤ t1 + t2, i = 2;

f(p)(t1 + t2 − t), t1 + t2 ≤ t ≤ T/n, i = 3.

The total expected profit is

TEP (n, p, u) = Revenue−PDC−HDC−STC−DTC−PIC

TEP (n, p, u) = pf(p)T−nCpR(p)t1−nCdR(p)t1 + nCdf(p)(t1 + t2)−uT

− nCsf(p)

(
(t1 + t2)T

n
− T 2

2n2
− (t1 + t2)

2

2

)
+ n(pλ− Ch + Cdλ)

[
R(p)

(θ(u) + λ)2

{
(θ(u) + λ)t1 − 1 + e−(θ(u)+λ)t1

}
+

f(p)

(θ(u) + λ)2

{
(e(θ(u)+λ)((t1+t2)−t1) − e−(θ(u)+λ)t1 − (θ(u) + λ)(t1 + t2))

}]
.

Taking ex ≈ 1 + x+ x2

2! +
x3

3! . The above equation reduces to

TEP (n, p, u) = pf(p)T−nCpR(p)t1−nCdR(p)t1 + nCdf(p)(t1 + t2)−uT

− nCsf(p)

(
(t1 + t2)T

n
− T 2

2n2
− (t1 + t2)

2

2

)
+ n(pλ− Ch + Cdλ)

[
R(p)t21

6
{3− (θ(u) + λ)t1}+

f(p)(t22 − t21)

2

+
f(p)(θ(u) + λ)(t32 + t31)

6

]
.

(2.4)

At t = t1, Eqs. 2.1 and 2.2 gives the value of t1 + t2. Let t1 = ξT
n , R(p) = f(p)

µ , f(p) = αp−Γ.

TEP (n, p, u) =
T

6

[
6αp−Γ+1 − 6u+

3CsTαp
−Γ(ξ − µ)2

nµ2
− 6Cpαp

−Γξ

µ

+
αp−ΓTξ2(Ch − Cdλ− pλ)(µ− 1) {3nµ− Tξ(2µ− 1)(λ+ θ(u))}

n2µ3

]
.

(2.5)

In this case, the objective is to maximize the total expected profit function to obtain the optimal number of the pro-
duction cycle, optimal sales price and optimal preservation cost.

Theorem 2.1 When the number of production cycles (or replenishments) n is fixed, the total expected profit TEP (n, p, u) is jointly
concave in the sales price p and the preservation cost u.

Proof. For fixed n, the necessary conditions for maximization of TEP (n, p, u) are

∂TEP (n, p, u)

∂p
= 0, (2.6)

and

∂TEP (n, p, u)

∂u
= 0. (2.7)
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By using Eqs. (2.6) and (2.7), we obtain value of u in terms of p:

u =
[
T 2(θ0 + λ)(1− µ)(1− 2µ)ξ3{ChΓ− {(pΓ) 1

Γ (Γ− 1) + CdΓ}λ}

+ 6n2µ2{−(pΓ)
1
Γ (Γ− 1)µ+ CpΓξ} − 3nTµ

[
CsΓ(µ− ξ)2

+ {ChΓ− {(pΓ) 1
Γ (Γ− 1) + CdΓ}λ}(µ− 1)ξ2

]]
/[θ0T

2β{ChΓ

− {(pΓ) 1
Γ (Γ− 1) + CdΓ}λ}(1− µ)(1− 2µ)ξ3

]
(2.8)

Consider θ(u) = θ0e
−βu ≈ θ0(1−βu + β2u2

2 ). For any given feasible n, taking the second partial derivative of Eq.
2.5 with respect to p and u yields

∂2TEP (n, p, u)

∂p2
=

p−2−ΓTαΓ

12n2µ3

[
T 2{θ0(2 + βu(βu− 2)) + 2λ}{−Ch(1 + Γ)

+ (Cd − p+ (Cd + p)Γ)λ}(1− µ)(1− 2µ)ξ3

+ 12n2µ2{p(Γ− 1)µ− Cp(1 + Γ)ξ}
+ 6nTµ{Cs(1 + Γ)(µ− ξ)2 + [Ch(1 + Γ)

−(Cd − p+ (Cd + p)Γ)λ](µ− 1)ξ2}
]

(2.9)

∂2TEP (n, p, u)

∂u2
= −θ0p

−ΓT 3αβ2(Ch − Cdλ− pλ)(1− µ)(1− 2µ)ξ3

6n2µ3
(2.10)

and

∂2TEP (n, p, u)

∂u∂p
=

θ0p
−1−ΓT 3αβ(βu− 1){ChΓ + (p− (Cd + p)Γ)λ}(1− µ)(1− 2µ)ξ3

6n2µ3
(2.11)

The sufficient conditions for maxima of total expected profit is that TEP (n, p, u) should be concave function

∂2TEP (n, p, u)

∂p2
< 0,

∂2TEP (n, p, u)

∂u2
< 0 (2.12)

and ∂2TEP (n, p, u)

∂p2

∣∣∣∣∣
(p,u)=(p∗,u∗)

∂2TEP (n, p, u)

∂u2

∣∣∣∣∣
(p,u)=(p∗,u∗)

−

∂2TEP (n, p, u)

∂p∂u

∣∣∣∣∣
(p,u)=(p∗,u∗)

2
 > 0,

(2.13)

because 0 < Γ < 1 and 0 < µ < 1
2 . Also (Cd−p+ (Cd + p)Γ) < 0.

Solving Eqs. 2.6 and 2.7 the optimal values p∗ and u∗ of p and u can be found. By putting these optimal values in Eq.
2.5 the optimal value TEP ∗(n, p, u), the total expected profit can be obtained.

Theorem 2.2 For fix u and 0 < µ < 1
2 , the total expected profit, TEP (n, p, u), is a strictly concave function of (n, p).

Proof.

∂2TEP (n, p, u)

∂p2
=

p−2−ΓTαΓ

6n2µ3

[
T 2(θ(u) + λ){−Ch(1 + Γ) + (Cd − p+ (Cd + p)Γ)λ}

(1− µ)(1− 2µ)ξ3 + 6n2µ2{p(Γ− 1)µ− Cp(1 + Γ)ξ}
+ 3nTµ{Cs(1 + Γ)(µ− ξ)2 + [Ch(1 + Γ)− (Cd − p+ (Cd + p)Γ)λ](µ− 1)ξ2}

]
< 0,

(2.14)

because 0 < Γ < 1 and 0 < µ < 1
2 . Also (Cd−p+ (Cd + p)Γ) < 0.

∂2TEP (n, p, u)

∂n2
=

p−ΓT 2α

n4µ3

[
−T (θ(u) + λ)(Ch − Cdλ+ pλ)(1− µ)(1− 2µ)ξ3

+ nµ{Cs(µ− ξ)2 − (Ch − Cdλ+ pλ)(1− µ)ξ2}
]
< 0,

(2.15)
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provided (Ch−Cdλ+ pλ) > 0.

∂2TEP (n, p, u)

∂p∂n
=

p−1−ΓT 2α

6n3µ3
[2T (θ(u) + λ){−ChΓ + (p(Γ− 1) + CdΓ)λ}

(1− µ)(1− 2µ)ξ3 + 3nµ{CsΓ(µ− ξ)2 + [ChΓ + {p− (Cd + p)Γ}λ](µ− 1)ξ2}
]
.

(2.16)

Thus, the Hessian matrix is

H =
∂2TEP (n, p, u)

∂p2
∂2TEP (n, p, u)

∂n2
−

[
∂2TEP (n, p, u)

∂p∂n

]2
> 0. (2.17)

From the above analysis, we have obtained that, for any given u, the point (n∗, p∗) maximizing the total expected
profit. As a consequence, TEP (n, p, u) is a concave function of n and p, for a given u. (Also, shown in Fig. 3)

Corollary 2.1 The total expected profit TEP (n, p, u) is decreasing in θ0, while the selling price p is increasing in α.
This corollary states that to reach a maximum profit, the producer should reduce the natural deterioration rate and
higher sales price when it obtains a higher coefficient of price in demand rate.

3. NUMERICAL EXAMPLE

In this section, a numerical example is provided to validate the proposed model. The input data are given in Table 2.
Results for numerical examples are given in Table 3.

Table 2: Input parameters of Example 1.

T (weeks) α (units) Γ (units) Cp ($/unit) Cd ($/unit)
203 140 0.4 5 0.1

Ch ($/unit/week) Cs ($/unit/week) λ µ ξ
0.02 0.1 0.001 0.2 0.6
θ0 β
0.08 0.8

Table 3: Optimum results of Example 1.

n p u Total Demand Total Expected Profit
7 19.70 8.90 14809.19 90123.4

($/unit) ($/unit/week) (units) ($)

4. SENSITIVITY ANALYSIS

This section introduces sensitivity analyses for parameters α,Cp, Ch, β and µ, to show the overall effect of value
changes on the selling price, the preservation cost and the total profit. This sensitivity analysis is performed by changing
the parameter values by −10%,−5%,+5%, and +10% and keeping other parameters unchanged. Table 4 and 5
presents the results of the sensitivity analysis of Example 1.
(1) Sensitivity analysis of demand scale α: As the demand scale α increases under the complete backordering, Table 4
shows that p, u and TEP increase. This implies that when α is relatively high, the producer has to invest more in the
preservation technology to fulfill the high demand rate and hence, the producer tends to increase the sales price.
(2) Sensitivity analysis of production costCp: In the proposedmodel, as production costCp increases, u increases, whileTEP
decreases; p almost remains unchanged, which implies that the sales cost per unit is very less sensitive to production cost
per unit. It reveals that a higher production cost weakens the ability of the producer to coordinate between workers and
as the result of this production decreases, hence the demand rate decreases and the total expected profit also decreases.
Due to the high production cost of the item, it is necessary to preserve the item for a long time without any deterioration,
so high investment is needed in preservation techniques, otherwise, it will lead to a high loss to the producer.
(3) Sensitivity analysis of holding cost Ch: As seen from Table 4, when the unit inventory holding cost Ch increases, p
and TEP increase, whereas u decreases. If the holding cost Ch is higher, the producer is inclined to avoid too much
inventory by reducing the produced quantity, this also reduces preservation technology investment. Accordingly, the
retailer (or producer) could gain more profits by setting a relatively higher sales price. Here, p, u and TEP are highly
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sensitive to changes in Ch.
(4) Sensitivity analysis of sensitive parameter of investment to the deterioration rate β: As the investment cost coefficient β increases,
p and TEP increase, while u decreases. Here, p is less sensitive to β; u and TEP are highly sensitive to β.
(5) Sensitivity analysis of µ: When the production rate parameter µ increases, p and EPR decrease, while u increase. The
high value of parameter µ leads to a lower production rate, this will reduce the profit value.
(6) Sensitivity analysis of deterioration costCd: As the deterioration costCd increases, p and TEP decrease, while u increases.
u and p is very less sensitive to change in Cd, whereas TEP is less sensitive to Cd.
(7) Sensitivity analysis of ξ: As the ξ increases, p and TEP increase, while u decreases.
(8) Sensitivity analysis of θ0: As the θ0 increases, p and TEP increase, while u decreases.
(9) Sensitivity analysis of shortage cost Cs: From Table 6, when the unit shortage cost Cs increases, TEP increases, while u
decreases and p almost remain unchanged. Facing a large shortage cost, the retailer will charge a high selling price and
bring down the preservation technology investment cost in order to extract more profits.
(10) Sensitivity analysis of λ: As the λ increases, p, TEP , and u decrease.

As seen from Fig. 2 and Table 6, as the price-sensitive parameterΓ increases, the curve representing the total profit
function TEP (n, p, u) decreases abruptly, which indicates that larger value of parameter Γ decreases the demand rate
of the product. Fig. 3 represents that TEP (n, p, u) is jointly concave in n and p, for a feasible u.

Table 4: The sensitivity analysis of Example 1.

Parameter % changes p u Total Expected Profit

α

−10% 19.68 8.9025 80930.30
−5% 19.69 8.9031 85526.80
+5% 19.71 8.9043 94719.90
+10% 19.72 8.9048 99316.50

Cp

−10% 19.70 8.643 103064.00
−5% 19.70 8.773 96593.60
+5% 19.70 9.034 83653.10
+10% 19.70 9.165 77182.90

Ch

−10% 17.71 9.08 76138.70
−5% 18.70 8.99 83251.10
+5% 20.69 8.83 96778.40
+10% 21.69 8.76 103236.00

β

−10% 19.68 9.89 89922.60
−5% 19.69 9.37 90028.30
+5% 19.71 8.48 90209.40
+10% 19.72 8.10 90287.70

µ

−10% 19.76 6.47 94293.30
−5% 19.73 7.59 91785.60
+5% 19.65 10.43 89085.40
+10% 19.60 12.20 88504.40

Table 5: The sensitivity analysis of Example 1.

Parameter % changes p u Total Expected Profit

Cd

-10% 19.71 8.902 90191.00
-5% 19.70 8.903 90157.20
+5% 19.69 8.904 90089.60
+10% 19.68 8.905 90055.80

ξ

-10% 19.62 11.53 88648.60
-5% 19.66 10.09 89131.90
+5% 19.73 7.92 91634.30
+10% − − −

θ0

-10% 19.68 9.75 89950.80
-5% 19.69 9.31 90041.60
+5% 19.71 8.54 90197.40
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+10% 19.72 8.21 90264.60

Cs

-10% 19.70 9.00 85119.70
-5% 19.70 8.95 87621.50
+5% 19.70 8.85 92625.20
+10% 19.70 8.80 95127.00

λ

-10% 21.89 9.47 104497.00
-5% 20.74 9.17 970520.00
+5% 18.76 8.66 83649.40
+10% 17.90 8.44 77577.90

Table 6: Sensitivity analysis for Γ

Γ p u Total Profit
0.4 19.70 8.90 90123.40
0.5 19.63 8.44 66453.90
0.6 19.53 7.97 48927.20
0.7 19.41 7.50 35955.30
0.8 19.25 7.04 26360.60
0.9 19.03 6.58 19269.70

Figure 2: Graphical representation of Total Profit w.r.t Γ

Figure 3: Graphical representation of TEP (n, p, u) for fix u = 8.90
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4.1 Managerial Insights

This study brings out recommendations on how the investment of preservation can improve stock within the framework
of the production cycle, where generally shortage is allowed. However, the management can decide the optimum selling
price, based on the situation of more or fewer products necessity. The producer can increase or decrease the production
rate based on market demand. In that case, the chances of the deteriorating item will be reduced.

The selection of a number of replenishment cycles should be taken care of as major tasks are done bymanagement.
Thus, the management can get the proper quantity of stock of products with maximum profits.

5. CONCLUDING REMARKS

In this paper, we studied a production inventory system with preservation invested deterioration rate and complete
backlogging. The producer invests in the preservation technology to reduce the deteriorating rate. We also found that
if the retailer or manufacturer can effectively reduce the deteriorating rate of the item by improving the preservation
technology investment then the total profit will be increased. The optimal number of production cycle n∗, the sales
price p∗ and the preservation cost u∗ and the total expected profit TEP (n, p, u)∗ have been obtained. Further,
sensitivity analysis has also been performed to validate the obtained findings. Then, numerical simulations and sensitivity
analysis of the corresponding solutions with respect to demand scale, production cost, holding cost, deterioration cost,
preservation cost coefficient, shortage cost are given to verify the effectiveness of the proposed model, and meanwhile,
we provided some managerial insights.

The main findings are summarized as follows. First, increased demand scale tends to invest more on preservation
cost to fulfil the increased demand rate. Second, when the parameter inversely proportional to the production rate
increases, the total profit decreases due to less production and demand rate. Third, the total expected profit decreases
with an increase in the price-dependent parameter.

In future research, we encourage extending this inventory model by considering some features such as variable
production cost, probabilistic demand rate, multiple products and allowable delay in payment.
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