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Abstract: We capture the Fermat-Weber location problem for Frechet spaces, where the Frechet space is 
determined by the inverse limit of the projective system of Banach spaces. Countable collections of continuous 
seminorms on the Frechet space are used as gauges to define the Fermat-Weber location problem. Sufficient 
conditions on the existence of the set of solutions for the functions are obtained via reflexivity of the space and the 
Hahn-Banach theorem, while convexity structure is used to establish the uniqueness of the solution. Ouresults extend 
and generalize the corresponding results available for Banach spaces and others in that direction. 
Keyword -- Fermat-Weber problem; Frechet spaces; strict convexity; collinear points; continuous seminorm. 
 
 
 
1. INTRODUCTION 
 
The location problem deals with the optimal placement of new facilities among existing facilities. In the 17th century, 
Fermat posed a problem to Torricelli on the determination of the point that is a minimizer of the sum of distances from 
that point to the given three points in the plane. Torricelli, on his own part, solved the problem in several ways. 

Later in the year 1909, a German economist, Weber (1929), generalized the location problem by Fermat with the 
inclusion of a cost function which takes the functional to the whole set of real numbers. The generalized version was 
named after Weber and coined the Weber or Fermat-Weber problem. There has been a great deal of work on the 
generalized version as a result of its wide applications in practical studies, which include those that are connected with 
network optimization and wireless communications. However, the following authors studied Fermat-Torricelli and 
Fermat-Weber problems focusing on the space of the domain of definition of the functional. 

Brimberg and Love (1999) worked on the Weber problem on Eucleadian space with the norm as the distance 
function. Martini et al. (2002) extended the problem to normed planes, and this yielded mathematically interesting 
results. Vesley (1993) looked at the Fermat-Torricelli problem in reflexive normed linear spaces, and Papini and Puerto 
(2004) based their work on the Fermat-Torricelli problem in Banach Spaces as they considered a finite subset of a 
Banach space by minimizing the sum of distances from k  furthest points of the domain. Dragomir and Comanescu 
(2008) considered the Fermat-Torricelli problem for inner product spaces, and their work was based on the problem of 
minimizing the sum of distances from a point to n  distinct fixed points in an inner product space. Dragomir et al. (2013) 
published some results on the Fermat-Torricelli problem and focused on the existence of a set of points that minimizes 
the sum of distances to the n  distinct points in a normed linear space. Radulescu et al. (2015) considered the existence 
and uniqueness of the set of minimizers for the modified Weber problem, where they looked at the set of linear 
operators between normed linear spaces. The work of Ayinde and Osinuga (2019) was based on location problems in 
pre-inner product spaces. Others in this direction include Jahn et al.  (2014), Nguyen (2013), Nguyen (2018), and Bo and 
Ruriko (2018). The results in Dragomir et al. (2013) and Radulescu et al. (2015) lead to useful extensions and serve as 
motivations behind this work. Our goal is to complement the results on existence and also the uniqueness of the 
solution of the Fermat-Weber location problem from Radulescu et al. (2015) point of view by formulating them in the 
more general setting of Frechet spaces. 
 

2. PRELIMINARIES 
 
We give some definitions and notions that are required for subsequent development.  For more details, see Kelley and 
Namioka (1963),  Raymond and Yol (2001),  Treves (1967), and Tsotuiashivili and Zuernadze (2006).  
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A family = { }i i Ip   of continuous seminorms on a topological linear space X is called a fundamental system  

of seminorms if the sets = { : ( ) < 1}( )i iU x X p x i I   form a fundamental system of zero neighborhoods. 
 A locally convex space (LCS) is a topological linear space with the fundamental system of 0-neighborhoods comprising 
convex sets. 
 A metrizable LCS is an LCS whose topology is given by a countable system of continuous seminorms. The completion 
of a metrizable LCS is a Frechet Space.   
 A normed linear space (NLS)  X  is a topological vector space whose topology is determined by the norm || || . The 
completion of an NLS is a Banach space. 

The Frechet spaces considered in this work are graded. If the Frechet space X is graded, this implies that it is  
equipped with a fixed fundamental system of seminorms whereby its topology is given by an increasing sequence of 
norms =|| . ||n np , > 0n  for all x X , 1|| || || ||n nx x  , where = /n nX X kerp  is a Banach space. 
Hence, this suggests the following projective system. 

1 1 0...n n nX X X X       
Each identity map is continuous and injective. 
 
Definition 2.1 (Taylor, 1995) 
 
Let X  be a Frechet space and { }n np  = P  a system of seminorms defining the topology of X  and define 

= { | ( ) = 0}n nkerp x X p x  as a linear subspace of X ,  then a norm is defined on / nX kerp  by 

ˆ|| ||= ( ) = ( )n n nx kerp p x p x . Hence we call ˆ:= { /  | ( )}n n nX X kerp p x   the Banach space for the seminorm ˆnp . 

Therefore, for the canonical map :n nf X X , ( ) :=n nf x x kerp  and ˆ ˆ|| ( ) || = ( ) = ( ( )) = ( )n n n n n n nf x p f x p f x p x  

for all x X  and for all np
.
 

We remark that = =lim n nX X X   is a dense subspace of nX
 
. Therefore,  

= { : ( ) }n nU x X p x    ( )n N is a fixed fundamental system of neighborhoods with the fixed fundamental 

system { }n np  = P  of seminorms/norms. We let = /n nX X kerp  be a Banach space which is of finite dimension. 

Let X  be a graded Frechet space with the Banach space = /n nX X kerp  finite dimensional. Given a convex and 

closed set nU X  with 0 nU ,  the gauge function of the set nU
. 

 
:Un

p X   is defined as  

      { > 0 : } =
( ) =

{ > 0 :   }   
n

Un
n

if x U
p x

inf x U otherwise

  
 

 
 

                                                                                                      

(1)

  
The gauge function =U nn

p p  is a seminorm. This implies that if 0 nU , domain of np  is X . 

        Suppose X and Y are Frechet spaces and if :T X Y  is continuous, linear and invertible then  1 :T Y X    is 
also continuous.  

Let X  be a locally convex space. A subset U X , is called bornivorous if for every bounded set B X . 
So there is > 0   that B U . X  is called bornological if every absolutely convex bornivorous set is in the 
neighborhood of zero. 
 
Definition 2.2  
 
Let X  be a nls. X  is strictly convex if v t v t   , v t , then t rv  for some real number > 0r , ,v t  in X . 

See Dragomir et al. (2013). 
 
Definition 2.3  
 
Distinct points 1{ , , }nr r  in an LCS X  are referred to as collinear if for two distinct points ,v t X  with 

=(1, , ){ }i i n  
. 
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1 2= ( ) (1 )   where  < < < .i i i nr v t      
                                                                                                                    

(2) 
 
 Definition 2.4 
 
Let X  be a lcs  with its topology given by = { }j j i Iq Q q  . X  is referred to as strictly convex if 

( ) = ( ) ( )j j jq v t q v q t  , ( ) ( )j jq v q t  then ( ) = 0jq t rv  for some real number > 0r  and , = {0}v t jV kerq for 

every ,v t X ,. ( , )v tV  spans v  and t .  

 
 
3. EXISTING RESULTS IN BANACH SPACES 
 
A more generalized Fermat-Weber problem was considered and studied by Radulescu et al. (2015) for Banach spaces.  
We here present their existence and uniqueness results. 

Suppose X  and Y  are normed linear spaces, 1 2{ , ,..., }nT T T  the set of continuous linear operators from X   

to Y  and : , = 1, 2,..., ,iu i n n     . Considering the distinct points 1 2{ , ,..., }na a a Y , and :f X   , 

then the Weber  problem is given by ( ) = || ( ) || .
n

i i i
i

f x u T x a
                                                                                                                

Let 0x X , the solution set for the function ( )f x  is defined as 0= { | ( ) ( )}M x X f x f x   

The following results on the existence and uniqueness of solutions to the functions ( )f x  are identified for  
Banach spaces. 
 
Theorem 3.1. (Radulescu et al., 2015)  
 
Let X  be a reflexive Banach space and let : , = 1,2,..., ,iu i n n     be convex and increasing functions for 

which there exists {1,2,3,..., }k n  such that ( ) =lim t ku t   and kT  is invertible. Then 

( ) = || ( ) ||
n

i i ii
f x u T x a  admits at least one minimum point. 

 
Theorem 3.2. (Radulescu  et al., 2015)  
 
Let X  be a reflexive Banach space, Y  be a strictly convex Banach space, and :iu     ( = 1,..., )i n  be increasing 

convex functions. Assume that there exists {1,..., }k n  such that ku  is strictly increasing,  strictly convex and 

= {0}kKerT . Then f  admits a point of global minimum, and this is unique. 
 
 
4 EXISTENCE AND UNIQUENESS OF FERMAT-WEBER POINT IN FRECHET SPACES 
 
Herein, our purpose is to find conditions on the Frechet spaces X  and Y  for which the Theorems (3.1 and 3.2 ) can 
be generalized. 
 
4.1 Existence of minimum point 
 
We begin with some preliminary results that give conditions on the Frechet spaces X  and Y  which will guarantee the 
existence of the minimizer . iu  represents weight function that is convex, continuous, and increasing ( see (Radulescu 
et al., 2015), Lemma 2.1). 
       Motivated by the definition of the Weber problem for Banach spaces given in section 3 and by [(Osinuga et al., 
2020) Theorem 4.1], we state the following problem. 

Let X  and Y  be graded Frechet spaces, 1 2{ , ,..., }nT T T  set of continuous maps from X  to Y  and the  

topology of Y  determined by fixed continuous gauges = { }j j jq Q q   , then for all j   
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1( ) = ( ),  { , , }
n

i j i i i n
i

W v u q T v r r r r Y   
                                                                                                                     

(3) 

 
defines the Fermat-Weber problem, and its solution set is given as := {  | ( ) ( ), }R v X W v W t t X     

where : [0, )iu    . The following Theorem helps to establish the definition of the Fermat-Weber problem for 
Frechet spaces. 
 
 
Theorem 4.1.1. 
 
Let X  and Y  be Frechet spaces (projective limits of Banach space) with their topologies determined by continuous 
seminorms = { }j j jp P p    and = { }j j jq Q q   , respectively. Given 1 2= { , , , }nA r r r  a finite subset in Y  of 

fixed points and suppose : [0, )iu     be increasing and continuous for = 1, 2,3, 4, ,i n . Then the following are 
equivalent.   
 
(i)  There is a Fermat-Weber problem defined on Y ;

 
 

(ii)  For each Banach space iY  with a continuous map :i ig Y Y  there exists a Fermat-Weber problem defined on 

each Banach space iY .  
 
Proof. 
 
The proof follows the same pattern in [(Osinuga  .et al , 2020) Theorem 4.1].  Moreover, the following proposition 
constructs a bounded set for the Fermat-Weber problem in Frechet space. 
 
Proposition 4.1.2. 
 
Suppose X  and Y  are Frechet spaces, 1 2{ , ,..., }nT T T  the set of linear continuous and invertible operators from X  to 

Y  and : , = 1, 2,..., ,iu i n n     . Given a finite set { }n
j ja  in a Banach space kY ,  let kB  be a bounded set for 

the Fermat-Weber problem 1

=1
|| ( ) ||

m

j k jj j
u v T a   on a Banach space kX  for each k , then given a finite set 

{ }n
j jr Y , the set B  for the Fermat-Weber problem 1

=1
( )

m

j k j jj
u p v T r  in X  is bounded for all k . 

 
Proof.  
 
The proof follows the same pattern in [Osinuga et al.  (2020) Proposition 4.1.3]. Furthermore, the following lemma 
identifies the properties of the functional ( )W v . 
 
Lemma 4.1.3. 
 
Let X  and Y  are Frechet spaces with their topologies determined by continuous seminorms = { }j j jp P p    and 

= { }j j jq Q q   , respectively. Given 1 2= { , , , }nA r r r  a finite subset in Y  of fixed points and suppose 

: [0, )iu     be increasing and continuous for = 1, 2,3,4, ,i n . Furthermore, let 

: , , {1,2,3,4, , }iT X Y i k n    such that ( ) =lim s ku s   and kT  be invertible.  Then  
 

(i)  
=1

( ) = ( ( ))
n

i j i ii
W v u q T v r  is continuous. 

(ii)  ( ) ( ) =lim p v W v  . 

(iii)  
=1

( ) = ( ( ))
n

i j i ii
W v u q T v r  is convex. 

 
Proof. 
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(i) Given fixed and distinct points 1 2{ , , , }nr r r Y  , then ,i jr W j   is a neighborhood of ir  in Y  with 

= {  | ( ) }j i j iW T v q T v   for some > 0 . Hence, 1 2 =1
{ , , , } ( )

n

n i ji j
r r r r W     where 

= {  |  ( ) < }j i j ij
W T v Sup q T v  . Therefore,  for iT v Y  then, i i jT v r W  . This shows that i i jT v r W  hence, 

( )j i iq T v r    for all j ; therefore, we have 
=1

| ( ) ( ) | ( )
n n

j i j i j i ii i
q T v q r q T v r n      and since iu  for all j  is 

continuous,  therefore, ( )W v  is continuous. 
 

(ii) We define 
=1

( ) = ( ( ))
n

i j i i
i

W v u q T v r
 
where { } ,  j j jq q j   is a seminorm that defines the topology of  Y . By 

the property of seminorm 
=1 =1

( ) = ( ( )) (| ( ) ( ) |)
n n

i j i i i j i j i
i i

W v u q T v r u q T v q r   
=1

| ( ) ( ) |
n

i j i i j i
i

u q T v u q r   

Given that :iT X Y  is continuous if and only if ( ) ( )j i jq T v cp v  for which > 0c  and  

{ } ,  j j jp p j  . 

So also, since for {1,2,3, 4, , }k n   ( ) =lim s ku s   and kT  be invertible. Hence, there is v X   

where 1( ( )) ( )j k j kp T y cq T v  ,  for = ky T v Y , we then have ( ) ( )j j kp v cq T v  for all j . 

Let 10 = ( ).max k n j ks q r    

 

=1 =1

( ) = ( ( )) (| ( ) ( ) |)
n n

k j k k k j k j k
k k

W v u q T v r u q T v q r    0
=

| ( ( ) ) | .
n

k j
i k

u p v s                                                                       (4) 

 
Suppose 0= ( )js p v s .  Now, as ( ) ,jp v s   and ( ) =lim s ku s  . Hence, this implies that  

as ( ) , ( )jp v W v   

Therefore, ( ) ( ) =lim p vj
W v 

 
 

(iii) For all ,v t  in X  with [0,1]r . Hence,  

1 1

( (1 ) ) (( (1 ) ) ( ( ) (1 )( ))
n n

i j i i i i j i i i i
i i

W rv r t u q rT v r T t r u q r T v r r T t r
 

           

1 1

( ) (1 ) ( ) ( ) (1 ) ( )
n n

i j i i i j i i
i i

r u q T v r r u q T t r rW v r W t
 

          

 
Hence, ( )W v  is convex. Lemma 4.1.4 highlights the properties of the solution set for the functional ( )W v . 

 
Lemma 4.1.4.  
 
Suppose a Frechet space X  is reflexive and let Y  be another Frechet space with its topology determined by 
continuous semi norms = { }j jQ q  . Given a finite set 1 2= { , , , }nA r r r Y . Then, for ( )W v  as given in Lemma 

4.1.3, := {  | ( ) ( ), }R v X W v W t t X    is convex, closed, and bounded subset of X . 
 
Proof. 
 
Suppose 1 2 1 2, , ,v v R t t X   and [0,1]r  let consider 1 2 1 2[ , ] (1 )v v rv r v    and 1 2 2[ , ] (1 )t t rt r t   . From the 

definition of R , we have 1 2 1 2( (1 ) ) ( (1 ) ).W rv r v W rt r t      
  

From Lemma 4.1.3(iii), W  is convex. Therefore, the convexity of R  follows from the convexity of ( )W v  
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Next we show that R  is closed.  For v R  we have by definition 
=1

( ) = ( ).
n

i j i i
i

W v u q T v r  

Hence, the pullback of the gauge jq  for all j  is the pre-image of a closed set, and by the continuity of the maps 

 therefore, R  is closed. 
We finally show that = { | ( ) ( ), }R v W v W t t X   is bounded. From Proposition 4.1.2, we have  

( ) < .sup k
v B

p v


 By definition v R , and since R  is closed, it implies that v B R  .  Hence, R  as the closure of a 

bounded set B  is bounded. 
Our next result connects the functional ( )W v  with lower semi-continuity. 

 
Lemma 4.1.5. 
 
Let X  be a Frechet space. By Lemma 4.1.4, R X  is a weakly compact set. Then : [ , ]W R     on R  is a 
weakly lower semi-continuous function.  
 
Proof. 
 
From Lemma 4.1.4, R  is weakly compact in X . ( )W R  is a continuous and bounded image in [ , ]  . Since R  is 

weakly compact, we define a sequence { }n nW  finite in ( ) [ , ]W R     and hence, uniformly convergent. For v R , 

there exists | ( ) ( ) |<nW v W v  , > 0 , >n N  . Hence, there exists a complete lattice formed by this expression 
in [ , ]  ; therefore, we have : 
 

= {| ( ) ( ) |}sup n
v R

k W v W v for all v R


                                                                                                                          (5) 

 
However, R  which is weakly compact in X  means that we can have a convergent subsequence { }ni

v  from the 

sequence { } ( = 1, 2, , )nv R n   which converges weakly to v  say, for which >in N   
weakly

ni
v v in R  or 

lim =ni
v v  in R . Hence,  

 
| (lim ) (lim ) |n n ni i
W v W v k                                                                                                                                    (6) 

 
that is  
 
| (lim ) (lim ) |n n ni i
W v W v k                                                                                                                                       (7) 

 
which implies 
8 

(lim ) (lim ) (lim )n n n n ni i i
k W v W v k W v                                                                                                              (8) 

 
and  
 

(lim ) liminf ( )n n ni i
W v k W v  liminf ( )ni

k k W v   2 liminf ( )ni
k W v                                                                (9)                             

 
Hence,  
 

(lim ) 2 liminf ( )n ni i
W v W v                                                                                                                              (10)

 
 
For all > 0 , which gives (lim ) liminf ( )n ni i

W v W v . 
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Hence,  
 

(lim ) liminf ( )n nW v W v                                                                                                                                        (11)  
 
That is, 
 

( ) liminf ( )nW v W v                                                                                                                                                    (12) 
 
Therefore, W is weakly lower semi-continuous on R . 
 
 
Theorem 4.1.6. 
 
Let X  be a Frechet space, R X  a weakly compact set and by Lemma 4.1.5, : [ , ]W R     is weakly lower 
semi-continuous on R . Then, : [ , ]W R     is bounded on R . 
 
Proof. 
 
The proof of Theorem 4.1.6 is similar to Bector et al. (2007), p 16, Theorem 1.3.1.  
 
 
Theorem 4.1.7.  
 
Let X  be a reflexive Frechet space and : [0, )   = 1,2,3, 4, ,iu i n    be convex and increasing. Let 

( ) =lim t ku t   and :kT X Y  be invertible. Then the function 
=1

( : ) := ( )
n

i j i ii
W X u q T v r   has at least a 

minimum point in R  for all j . 
 
Proof.  
 
By Lemma 4.1.4, R  is weakly compact. W  is weakly lower semi-continuous on R  by Lemma 4.1.5. So also in 
theorem 4.1.6,  W  attains bound on R  and this shows that W  attains a minimum on .R  

The following existence result relies on the Hahn-Banach theorem, and it is of independent interest. 
 
Theorem 4.1.8. 
 
Suppose X  and Y  are Frechet spaces and :kT X Y  invertible and let the topology of Y  be defined by the family 

of continuous seminorms = { }j j NQ q  . If given a set 1 2= { , ,..., }nA r r r  consisting of distinct points in Y  and the 

subspace 1 1 1 1
1 1 2 2=  ( ) =  { , ,..., }k k kS span T A span T r T r T r     of X  is reflexive, then = { | ( ) ( ), }R v X W v W t t X   , 

a solution set for the Fermat-Weber problem 
=1

( ) = ( )
n

i j i ii
W v u q T v r  is non-empty in X  for all jq . 

 
Proof. 
 
Given 1 2= { , ,..., }nA r r r  in Y  we define 1 2 :=  { , ,..., }nspan A span r r r  such that there exists  

1( )kT A 1 1 1
1 1 2 2= { , ,..., },k kT r T r T r   with 1 1 1 1

1 1 2 2=  ( ) =  { , ,..., }k k kS span T A span T r T r T r     defined, which is a subspace 

of X . Since 1=  ( )kS span T A  is reflexive, then by Theorem 4.1.7 there exists a solution set 

= { | ( ) ( ), }SR v S W v W s s S    in S . 

Given that the family of continuous seminorms = { }j j NQ q   defined the topology of Y , by Hahn-Banach  

theorem, there exists a linear functional mq  defined on Span A such that ( ) ( )m i j iq T s q T s for all jq  and for each 

s S . 
Suppose 1( )kv T A , then it implies that v S . However, S  as the intersection of all subspaces containing  
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1( )kT A , contains weakly compact sets. Hence, let 1/ ( )kv S T A .  For both cases, this implies that for an element 

y X , we have ( ) ( )m i i j i iq T s T v q T s T y    for all jq  and | | 1  . Since mq  is a linear functional, the following 

suffices ( ) = ( ) ( ) ( ).m i i m i m i j i iq T s T v q T s q T v q T s T y        

For { }i i ir r , ( ) ( ) (( ) ( )).m i i m i i j i i i iq T s r q T v r q T s r T y r         Let = 1 , we then have  

( ) (( ) ( )) ( ).m i i j i i i i m i iq T v r q T s r T y r q T s r       For finite set { }i ir  and continuous and increasing weight 

function iu , we can have
=1 =1

( ) (( ) ( )) ( ).
n n

i m i i i j i i i i i m i i
i i

u q T v r u q T s r T y r u q T s r         

On the other hand, let = 1   and replace ( )i iT s r  by ( )i iT s r  . 
Hence,  

 
( ) ( ( ) ( )) ( ( )).m i i j i i i i m i iq T v r q T s r T y r q T s r         

 
                                                                                    (13) 

 
That is: 

 
( ) ( ( ) ( )) ( ).m i i j i i i i m i iq T v r q T s r T y r q T s r                                                                                                      (14) 

 
For finite set { }i ir  and continuous and increasing weight function iu , we can have 

=1 =1

( ) ( ( ( ) ( ))) ( )
n n

i m i i i j i i i i i m i i
i i

u q T v r u q T s r T y r u q T s r                                                                                          (15) 

 
Hence  

=1

( ( ( ) ( ))) ( )
n

i j i i i i i m i i
i

u q T s r T y r u q T s r      
=1 =1

( ) (( ) ( )) ( )
n n

i m i i i j i i i i m i i
i i

u q T v r u q T s r T y r q T s r                                             

 
by subadditivity.                                                                                                                                                                (16) 
       

Therefore,  
 

=1

:= | ( ( ( ) ( ))) ( ) |
n

s S i j i i i i i m i i
i

h sup u q T s r T y r u q T s r        

=1

| (( ) ( )) ( ) |:=
n

s S i j i i i i i m i i
i

inf u q T s r T y r u q T s r h     
                                   

                                                               (17)                             

 
for all jq  and a linear function mq . 

Any 
=1

( )
n

i m i ii
u q T v r  between h  and h  we do.  By the Hahn-Banach theorem, the following hold.  

=1 =1

| ( ) | ( ), .
n n

i m i i i j i i
i i

u q T v r u q T v r j                                                                                                                      (18) 

  
| ( ) | ( ), .m i i j i iq T s r q T s r j                                                                                                                                   (19) 

  
| ( ) |=  ( ),m i i s S j i iq T s r min q T s r j                                                                                                                               (20) 

 
 Hence,  

  

=1 =1

(( ) ( ))  ( ) ( ) ( )  ( ),  
n n

i j i i i i s S i j i i i j i i i j i i s S i j i i
i i

u q T s r T y r min u q T s r u q T s r u q T y r min u q T s r j             
 

(21) 
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and for some t X  we finally have  
 

 
for = { }j j jq Q q    . The implication is that SR R . Therefore, = {  | ( ) ( ), }R v W v W t t X   is non-empty.  

 
 4.2 Uniqueness of minimum point 
 
Our results here complement the importance of convexity and reflexivity of the space in optimization. The results 
show that ( )W v  has a global minimum on X .Theorem 4.2.1.  
 
If Y  is an (a Frechet space) inverse limit of { }j j NY   where jY  is a Banach space. Then, the following are equivalent:   

(i)  Y  is strictly convex.  
(ii)  jY  is strictly convex for each j   

  
Proof.  
 
Given = { }j j NQ q   as the system of seminorms defining the topology on Y . Set jN  as a set in the Banach space jY  

( = 1,2,3,...)j  with 1
, = ( )v t j jV g N  where ,v tV  spans v  and t  in the projective limit (Frechet space) Y  and 

:j jg Y Y . 

( ) ( )i ii  considering the composition map jY Y     and map :jq Y    where jq Q  such  

that ˆ =j j jq g q  by Definition 2.1, i.e. ˆ ( ( )) = ( )j j jq g v q v  for all j . With this, we have j j jv N Y   such that 

( ) =j jg v v . Therefore, ˆ ˆ( ( )) = ( )j j j jq g v q v  is jv  which is a norm on jY . 

      From strict convexity of Y , by Definition 2.4  ( ) = ( ) ( )j j jq v t q v q t   which gives 

 
 ˆ ˆ ˆ( ( )) = ( ( )) ( ( ))j j j j j jq g v t q g v q g t                                                                                                                        (23) 

 
 i.e., 

 
 ˆ ˆ ˆ( ) = ( ) ( )j j j j j j jq v t q v q t                                                                                                                                     (24) 

 
which is 

 

j j j jv t v t   .                                                                                                                                                 (25)                             

 
So also, by strict convexity of Y  i.e. by Definition 2.4 
 

( ) ( )j jq v q t
.
                                                                                                                                                          (26) 

 
 Implies: 
 

 ˆ ˆ( ( )) ( ( ))j j j jq g v q g t
.
                                                                                                                                                  (27) 

 
Which further implies 

 
ˆ ˆ( ) ( )j j j jq v q t .                                                                                                                                                               (28) 

=1 =1 =1

( ) = ( ) ( ) = ( ) ( )  ( ) = ( )
n n n

i j i i i j i i i j i i i j i i s S i j i i
i i i

W v u q T v r u q T t r u q T s r u q T y r min u q T s r W t            (22) 
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       Therefore,  
 

j jv t  implies j jv t .                                                                                                                                               (29)  

 
Similarly, from strict convexity of  

 
Y , , = {0}v t jV kerq     by Definition 2.4                                                                                                                          (30) 

 
Given 

 
( ) = 0jq t rv                                                                                                                                                           (31) 

 
for some > 0r .  

,v tV  as the span of v  and t  implies that ,v tt rv V  . Also ( ) = 0jq t rv  implies that jt rv kerq    

and with Y  being Hausdorff 
 

, = {0}v t jt rv V kerq   .
                                                                                                                                            (32) 

 
         Hence, 
 
 1( ) = {0}j j jt rv g t rv                                                                                                                                    (33) 

 
 by [(Robertson,  A. and Robertson, W., 1973) pp.84-85, Propositions 11 and 13]  from  
 

1
, = ( )r t j jV g N                                                                                                                                                          (34)

 
 

Since jg  is continuous and by [(Robertson, A. and Robertson, W., 1973), p.84, Proposition 11]  

 
1(0) = {0}.jg                                                                                                                                                                                      (35) 

 
Therefore,  

 
 = 0j jt rv                                                                                                                                                              (36) 

 
 

 or 
 

=j jt rv .                                                                                                                                                                   (37) 

                                                
This shows that jY  is strictly convex. 

         ( ) ( )ii i . With ,v tV Y  spanning v  and t . The subspace o
jY  of jY  which represents the image of jg  is 

strictly convex as a subspace of a strictly convex Banach space jY . Hence, there is a set o
j jN Y  with j j jt rv N  . 

Since o
jY  is strictly convex  

 
= 0.j jt rv                                                                                                                                                               (38) 

  
Since jg  is continuous on Y  onto o

jY , we can set  

 

,( ) =j v t jg V N ,   and                                                                                                                                                 (39) 

 



Osinuga and Ayinde: Some Results on Fermat-Weber Location Problem in Frechet Spaces 

IJOR Vol. 19, No. 3, 51−68 (2022) 

 
 
 
 
1813-713X Copyright © 2022 ORSTW 
 
 

61 

1
, = ( )v t j jV g N .                                                                                                                                                           (40) 

 
From strict convexity of o

jY  and by Definition 2.2  

 

j j j jv t v t                                                                                                                                                         (41) 

 
 or 

 
ˆ ˆ ˆ( ) = ( ) ( )j j j j j j jq v t q v q t                                                                                                                                            (42) 

                                   
which by Definition 2.2 gives  

 
 ˆ ˆ ˆ( ( )) = ( ( )) ( ( )), .j j j j j jq g v t q g v q g v j                                                                                                                   (43) 

        
 with  

 
 ,, v tv t V .                                                                                                                                                                 (44) 

 
This implies that 

 
( ) = ( ) ( )j jq v t q v q t                                                                                                                                                  (45) 

 
         So also by strict convexity of o

jY  and by Definition 2.2.  

j jv t                                                                                                                                                                        (46) 

 
implies 

 

j jv t                                                                                                                                                                (47) 

 
or 

 
ˆ ˆ( ) ( )j j j jq v q t                                                                                                                                                            (48) 

 
which gives 

 
( ) ( )j jq v q t .                                                                                                                                                             (49) 

 
For  

j j jt rv N                                                                                                                                                             (50) 

     
which implies that, for ,v tt rv V  , we have by the continuity of jg  and the property of projective system 

(see([16], p.85, Proposition 13))  
 

1
,( )j j j v tt rv g t rv V                                                                                                                                           (51) 

                                   
Strict convexity of o

jY  also implies = 0j jt rv .   Since jg  is continuous and for each 

 
j   1(0) = {0}jg                                                                                                                                                 (52) 

 
by [(Robertson, A. and Robertson, W., 1973), p.84, Proposition 11].  
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Then, 
 

1
,( )  = {0},  j j j v t j jt rv g t rv V ker q q                                                                                                                (53) 

and each j  for 
 

,  .j jq Q q                                                                                                                                                              (54) 

        
Therefore, ( ) = 0, `j jq t rv q  . Hence, Y  is strictly convex. 

 
 Proposition 4.2.2. 
 
Suppose X  and Y  are Frechet spaces with Y  strictly convex. Let = { }j j NP p   and = { }j j NQ q   be continuous 

seminorms determining the topologies of X  and Y  respectively. Let ( = 1,2,..., )iu i n  be continuous, increasing and 

convex, :iT X Y  be continuous linear operators = 1, 2,3,4, ,i n  and 1{ , , }nr r Y  be distinct points with 

=1
( ) = ( ),

n

i j i ii
W v u q T v r v X   and jq . If {1,2,3, 4, , }k n   such that ku  is strictly convex and strictly 

increasing, and ( , ) ker = {0}v t kV T , then W  is strictly convex.  

 
Proof.  
 

Since 
=1,

{ }i i n
u  is convex and by Lemma 4.1.3, ( ) ( ),i j i iW v u q T v r      v X   and for all  jq  

is convex, therefore ( (1 ) ) ( ) (1 ) ( )W rv r t rW v r W t     with [0,1]r  and , .v t X  

This is shown by contradiction. Suppose ( )W v  is not strictly convex, that is suppose v  and t X  and  

0 < < 1r  with ( ) ( )j jp v p t  

This implies that  
 

( (1 ) ) = ( ) (1 ) ( )W rv r t rW v r W t                                                                                                                       (55) 
 

That is,  

=1 =1 =1

( ( (1 ) ) ) = ( ) (1 ) ( ),   
n n n

i j i i i j i i i j i i j
i i i

u q T rv r t r r u q T v r r u q T t r q                                                                  (56) 

                   
Since all the terms are non-negative for all {1,2,3,4, , }i n  . Then, 

 
( ( (1 ) ) ) = ( ) (1 ) ( ), `i j i i i j i i i j i i ju q T rv r t r ru q T v r r u q T t r q                                                                                (57) 

    
We also have for {1,2,3, 4, , }k n    

 
( ( (1 ) ) ) ( ) (1 ) ( ),k j k k k j k k k j k ku q T rv r t r ru q T v r r u q T t r         for all  jq                                                           (58) 

                      
 

We imply that ku  be injective and since it is strictly increasing.  Therefore,  
 

( ( (1 ) ) ) ( ) (1 ) ( ) ( ( )) ((1 )( ))j k k j k k j k k j k k j k kq T rv r t r rq T v r r q T t r q r T v r q r T t r                                     (59)                             

 
Strict convexity of Y  implies that for  
 

1 ( )k kv r T v r    and 2 (1 )( )k kv r T t r                                                                                                                  (60) 
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1 2( ) 0jq v v  for some > 0  by Definition 2.4.                                                                                                 (61) 

                                                                    
Therefore,  

 
( ( ) (1 )( )) = 0j k k k kq r T v r r T t r                                                                                                                                  (62) 

 

Let = .
1

r

r



 Hence,  

 
( ) = 0j k k k kq rT v rr rT t rr                                                                                                                                            (63)                             

 
That is, 

 
( ) = 0j k kq rT v rT t                                                                                                                                                           (64) 

  
or  

  
( ) = 0j k krq T v T t                                                                                                                                                         (65) 

 
which eventually gives  

 
( ) = 0j k kq T v T t                                                                                                                                                         (66) 

             
Hence, there exists by definition,  

 

( , )T v T tk k
U                                                                                                                                                                            (67) 

 
the linear span of kT v  and kT t  in Y  such that  

 

( , ) ker = {0}k k T v T t jk k
T v T t U q                                                                                                                                    (68) 

 
Therefore, 

 
= 0k kT v T t                                                                                                                                                                    (69) 

                                                         
This further implies that ( ) = 0kT v t  by linearity of the operator kT . Hence, this means  

 

( , ) ker = {0}v t kv t V T                                                                                                                                                 (70) 

                                                                        
based on the condition in the theorem.  
This implies that ( ) = 0jp v t  and | ( ) ( ) | ( ) = 0j j jp v p t p v t   . Hence, this shows that    ( ) = ( )j jp v p t . This 

is a contradiction to the earlier assumption we made.  Hence, W  is strictly convex. 
 
 Theorem 4.2.3. 
 
Suppose X  and Y  are Frechet spaces with ( , )Y   strictly convex and topology   defined by continous seminorm 

= { }j j NQ q   where seminorm = { }j j NP p   defines the topology of X . If iu  is convex, strictly increasing function, 

:iT X Y  invertible for all = 1, 2,3,4, ,i n  and 1{( )}n
i i iT r  is a set of non collinear fixed points in X  where 

1{ , , }nr r Y  are fixed and distinct points, then, the function  
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=1

( ) = ( )   
n

i j i i j
i

W v u q T v r q                                                                                                                                     (71)                             

 
is strictly convex. 
 
Proof. 
 
By Lemma 4.1.3 and iu  being convex 
 

=1

( ) = ( )   
n

i j i i j
i

W v u q T v r q                                                                                                                                            (72) 

                                                                            
is convex.  Hence,  
 

( (1 ) ) ( ) (1 ) ( )W rv r t rW v r W t     with [0,1]r  and , .v t X                                                                              (73)                             
 

We shall show the strict convexity of ( )W v  by assuming that ( )W v  is not strictly convex, that is, suppose v   

and t X  and 0 < < 1r  with ( ) ( )j jp v p t  and  

 
( (1 ) ) = ( ) (1 ) ( ) = ( ) ((1 ) )W rv r t rW v r W t W rv W r t                                                                                           (74)                             

 
which means  
 

=1 =1 =1

( ( (1 ) ) ) = ( ) (1 ) ( )   .
n n n

i j i i i j i i i j i i j
i i i

u q T rv r t r r u q T v r r u q T t r q                                                                         (75)                             

 
Since these involve non negative terms. Then,  

 
( ( (1 ) ) ) = ( ) (1 ) ( )   .i j i i i j i i i j i i ju q T rv r t r ru q T v r r u q T t r q                                                                          (76) 

 
Since iu  is strictly increasing, then we have  

 
( ( (1 ) ) ) = ( ( )) ((1 )( ))   .j i i j i i j i i jq T rv r t r q r T v r q r T t r q                                                                                   (77)                             

 
Since Y  is strictly convex, this implies that for any  

 

1 ( ( ))i iv r T v r    and  2 (1 )( )i iv r T t r                                                                                                                    (78) 
 

and for some  > 0   1 2( ) 0jq v v  .                                                                                                           (79) 

 
This implies that 1 2 jv v kerq     and  1 2 ( , )1 2v vv v U   

Hence,  

1 2 ( , )1 2
ker = {0}v v jv v U q   by Definition  2.4 and                                                                                                 (80) 

  

1 2 ( ( ) ((1 )( )) 0i i i iv v r T v r r T t r                                                                                                                         (81)  

( ) (1 )( ) = 0i i i irT v rr r T t r                                                                                                                                   (82) 
                                                                                          

i.e. 
 

( )( ) = 0i i i irT v rr r T t r                                                                                                                                                (83)                             
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= 0i i i i i irT v rr T t r rT t rr                                                                                                                               (84) 

 
=i i i i i irr r rr T t rT v rT t                                                                                                                                   (85) 

 
( ) = ( ) .i i ir r r r T t rT v                                                                                                                                       (86) 

 
(1 )

=
(1 ) (1 )

i
i i

r T t r
r T v

r r


   




   
                                                                                                                               (87)                             

 
(1 )

(1 ) (1 )i i i

r r
r T v T t

r r


   


  

   
                                                                                                                           (88)                             

 
Since iT  is invertible 
 

1 =i iT T I                                                                                                                                                               (89) 
                                         
we have  
 

1 (1 )

(1 ) (1 )i i

rv r t
T r

r r


   

 
  

   
                                                                                                                             (90) 

 
This shows that 1 , ,i iT r v t  are collinear in X . This is a contradiction to the assumption that 1 1{ , }i i n nT r T r   are 
non-collinear. 
Furthermore,  since  

 

( , )1 2
( ) (1 )( ) ker = {0}   i i i i v v j jrT v rr r T t r U q q      ,                                                                                       (91) 

                                  
then 

[( ) (1 )( )] = {0}   j i i i i jq rT v rr r T t r q                                                                                                                       (92)       

 
Let 

 

= .
1

r

r



                                                                                                                                                                  (93)                             

 
(( ) ( )) = 0   j i i i i jq rT v rr rT t rr q                                                                                                                            (94) 

 
This gives  

 
( ) = 0.   j i i jq rT v rT t q                                                                                                                                               (95)                             

Therefore,  
 

( ) = 0.   j i i jrq T v T t q                                                                                                                                                   (96) 

 
This means 

 
( ) = 0.   j i i jq T v T t q                                                                                                                                               (97) 

 
Following the fact that Y  is strictly convex, there exists ( , )T v T ti i

U , a linear span of iT v  and iT t  such that  
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( , ) ker = {0}.i i T v T t ji i
T v T t U q                                                                                                                               (98) 

  
Hence, = 0i iT v T t . This  implies that ( ) = 0iT v t  by linearity.  Since  

 
1 = .i iT T I                                                                                                                                                                   (99)                             

 
Hence,  

 
1 ( ) = 0.i iT T v t                                                                                                                                                         (100)                             

 
That is = 0v t . Which means ( ) = 0jp v t    jp . 

We then have  
 
| ( ) ( ) | ( ) = 0   j j j jp v p t p v t p                                                                                                                                   (101) 

 
that is  
 

( ) = ( )   j j jp v p t p                                                                                                                                                        (102) 

 
which contradicts the earlier assumption and coupled with the first contradiction, ( )W v  is strictly convex. 
 
Theorem 4.2.4. 
 
Suppose X  and Y  are Frechet spaces and ( , )Y   is strictly convex with its topology   determined by continous 

seminorm = { }j j NQ q   and seminorm = { }j j NP p   determining the topology of X . Let   

(i)  ku  be strictly increasing and strictly convex for {1,2,3, 4, , }k n   and   ( , ) ker = {0}v t kV T  or  

(ii) :iT X Y  invertible for  all = 1, 2,3, 4, ,i n  and 1{( )}n
i i iT r  set of non-collinear fixed points in X  where 

1{ , , }nr r Y  are fixed and distinct points.  

Then the minimum point of ( )W v  is unique.  
 
Proof. 
 
For (i) and (ii). Since from previous results, the minimum points exist. Here, we shall show the uniqueness of the 
minimum point.  
Let   ( , ), v tv t V X  be distinct points of the global minimum. 

Since t  is also a global minimum, this implies that t R . This also shows that 
2

v t
R


 .  From the fact that W  is 

strictly convex, we then have 
 

( (1 ) ) ( ) (1 ) ( )W rv r t rW v r W t     .      For  [0,1]r                                                                                              (103) 
 
 
i.e.  
 

( (1 ) ) < ( ) (1 ) ( ) = ( )W rv r t rW v r W t W t                                                                                                                (104) 
 

Let 
1

=
2

r
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1 1
( ) < ( ) ( ) = ( )
2 2 2 2

v t
W W v W t W t                                                                                                                           (105) 

i.e.  
 

( ) ( )
( ) < = ( )

2 2

v t W v W t
W W t

 
                                                                                                                                        (106) 

                             
This is a contradiction. Hence, W  has a unique minimum point. 

 
 
CONCLUSION  
 
We considered the Fermat-Weber problem for Frechet spaces and have been able to show that the set of minimizers 
exists for a reflexive Frechet space or a reflexive metrizable locally convex space. So also, the non-emptiness of a set of 
minimizers in a Frechet space whose subspace is reflexive was proved. The strict convexity of a Frechet space vis-a-vis 
the strict convexity of each of the Banach spaces in the projective system was proved and used to discuss the 
uniqueness of a minimizer in the weakly compact subset of the Frechet space. 
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