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Abstract⎯This paper proposes a bandwidth allocation process for a single broadband network traffic source. In recent 
years, broadband traffic source has been proved that it has self-similarity and self-similar model that is well fit to the 
broadband network traffic sources. The bandwidth allocation problem is very important in network planning. The network 
planning problems such as call admission control and route selection have to consider the required bandwidth of  network 
traffic. We use the equivalent bandwidth of  two-state fluid-flow model and self-similar model to estimate the bandwidth of  
the traffic traces. The traffic traces are generated from the Poisson model and the self-similar model. In order to efficiently 
utilize the network resources, we analyze those traffic sources and bandwidth estimations, which are suitable for different 
network conditions as well as the influence of  buffer sizes on different bandwidth estimations. 
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1. INTRODUCTION 

The Broadband Integrated Services Digital Network 
(B-ISDN) based on the Asynchronous Transfer Mode 
(ATM) technology provides the multimedia (e.g., voice, 
video, data) services and the flexibility of  bandwidth 
adjustment and supports a wide range of  applications with 
different quality of  service (QoS) requirements in a flexible 
and cost-effective manner. The ATM provides the required 
flexibility for supporting diverse services in a B-ISDN 
environment and becomes an emerging standard for 
transport in it. 

Since the user requirements for using network services 
are continuously increasing and changing, the issues users 
focus on are the type and quality of  services provided by 
the network service providers. The future trends of  
network services are to provide an integrated multimedia 
information network to meet the diverse requirements of  
users in any circumstance. In order to satisfy the various 
requirements, the telecommunication companies are trying 
to provide users with enough resources, such as bandwidth, 
to make more other users pay attention to them and 
increase their competition ability. Under the limitation of  
bandwidth resource, one of  the most important issues is to 
effectively allocate proper bandwidth to the user’s requests, 
so that the link utilization can be increased and more users’ 
requirements can be achieved. 

The growing needs of  the Internet and the broadband 
services have created the demand for higher bandwidth 
from telecommunication networks. The bandwidth of  the 
current networking equipment is not enough. Except from 
extending the new networking equipments, it is necessary 
to develop a good planning approach to effectively utilize 
the limited bandwidth. The traffic of  broadband network 
becomes more complicated and hard to model than the 

traditional networking infrastructure and traffic model 
since it is difficult to describe the traffic characteristics, 
estimate the traffic parameters, and to allocate the 
bandwidth. The bandwidth allocation acts as an important 
mechanism in network planning and is considered in both 
route selection and call admission control. This paper 
proposes a bandwidth allocation process and applies it to 
the different traffic models and different self-similar 
parameters under different buffer sizes in order to allocate 
the bandwidth efficiently. 

This paper is organized as follows. In Section 2, the 
models and generations of  traffic and the bandwidth 
estimations are individually presented. Section 3 describes 
the proposed bandwidth allocation process. The 
experiments and results are presented in Section 4. 
Conclusions are made in Section 5. 
 
2. TRAFFIC MODELS AND BANDWIDTH 

ESTIMATION 

Traffic model is the core of  evaluating the performance 
of  telecommunication networks. Traffic models must be 
able to accurately capture the statistical characteristics of  
an actual traffic. If  the traffic models do not accurately 
represent the actual traffic, one may overestimate or 
underestimate network performance which causes the 
waste of  network resources or the loss of  cells. 

Traffic models in telecommunication networks include 
stationary or nonstationary models (Adas, 1997). Stationary 
traffic models can be divided into two classes: short-range 
and long-range dependent. Short-range dependent models 
include Markov processes and Regression models. 
Long-range dependent models include Fractional 
Autoregressive Integrated Moving Average (F-ARIMA) 
and Fractional Brownian motion (FBM). 



Yang, Hung, and Wen: Bandwidth Allocation for Broadband Transport Network 
IJOR Vol. 1, No. 1, 1−10 (2004) 
 

2

 
     id le  s ta te  burst state  

Figure 1. The two-state traffic. 
 
2.1 Poisson model 

Poisson traffic model is suitable to be used in modeling 
the voice traffic. In application, the traffic of  traditional 
telephone is essentially of  this kind. The model uses 
Poisson process as the modulated mechanism. Given a 
random process ( ){ }≥,  0N t t  is a Poisson process, 

where ( )N t  is the number of  arrival cells at time t , the 
properties of  Poisson process are: 
(1) The number of  arrival cells during each unit interval is 

equal to 1;  
(2) ( ) ( )N t s N t+ −  is independent of  ( ){ ,  0N u u≤  

}t≤ ; and  

(3) The distribution of  ( ) ( )+ −N t s N t  is independent 
of  t  for all ≥,  0t s . 

The property (2) describing the number of  arrival cells 
during any interval depends only on the length of  that 
interval and not on the endpoints. According to the 
Poisson process, the traffic arrival process follows the 
Poisson distribution with mean rate λ  and its service 
time follows the exponential distribution with mean rate 
λ1 . 

 
2.2 Fluid-flow model 

In order to characterize the effective bit rate of  a 
connection, a two-state fluid-flow model is adopted to 
capture the basic behavior of  the traffic source associated 
with a connection, where a source is either in an “idle 
state”, transmitting at zero bit rate, or in a “burst state”, 
transmitting at its peak rate (Guerin et al., 1994). Such a 
source model as shown in Figure 1 has the advantage of  
being simple and flexible. 

Based on this two-state fluid-flow model, idle and burst 
periods are defined to be those during which the source is 
idle or active, respectively. Assuming independent identical 
distribution burst and idle period, the peak rate of  a 
connection and distributions of  idle and burst periods 
completely identify the traffic statistics of  a connection. 
Assuming that the parameters of  a connection are 
stationary, its peak cell rate (PCR) and utilization 
coefficient, ρ , i.e., fraction of  time the source is active, 
completely identify other quantities such as mean m  and 
variance σ 2  of  the bit rate. For exponentially distributed 
burst and idle periods, the source is further completely 
characterized only by three parameters, namely PCR, ρ , 
and b , where b  is the mean of  the burst period (Guerin 
et al., 1994). 
 
2.3 Self-similar model 

Recent traffic measurements in corporate LANs, 

Variable-bit-rate video, WAN, and other communication 
systems show traffic behavior of  self-similar nature (Beran 
et al., 1995). Using self-similar model to characterize actual 
traffic in broadband networks can describe significant 
variance (burstiness) across a wide range of  time scales and 
the long-range dependence of  traffic. The traditional 
Markovian or Poisson models have been proven to be 
unable to predict network performance in the case of  
self-similar traffic since they do not take into account the 
inherently burst nature of  traffic. 

A few mathematical models can be used to present the 
random process of  self-similarity. Such models include 
fractional Gaussian noise (FGN), fractional autoregressive 
integrated moving-average (F-ARIMA) process, and Pareto 
process (Leland et al., 1994). Fractional Brownian motion 
(FBM) is a continuous zero-mean Gaussian process. It has 
stationary increments and is self-similar with the 
self-similarity parameter H . The increment process of  
FBM is called FGN. The FGN ( )= ≥:  0kX X k  with 
parameter ( )∈ 0,  1H  is a stationary Gaussian process 
with mean µ , variance σ 2 , and autocorrelation function 
( ) =r k ( + − + −2 2 21 1H H Hk k k ), > 0k . The FGN is 

exactly second-order self-similar with self-similarity 
parameter H , as long as < <1 2 1H . The 
F-ARMIA ( ),  ,  p d q  processes are asymptotically 
second-order self-similar with self-similarity parameter 

= +1 2H d , as long as < <0 1 2d . p  and q  are the 
integer 0 or 1. The F-ARMIA process is a long-range 
dependent self-similar process when < <0.5 1H . The 
arrival process of  self-similar packet is usually the 
distribution of  heavy-tailed or power-law interarrival time. 
The random variable T  has “heavy-tails” property when 
[ ] η η−≥ > → ∞~ ,   0,   P T t t t . Pareto distribution is one 

of  the simplest power-law distributions and can be 
represented as 
[ ] ( ) ( )ααβ β α β≥ = − = + >1 ,   ,  0P T t F t t  with the 

probability distribution function ( ) ( )αααβ β += + 1f t t . 
Pareto distribution is a heavy-tailed distribution when 

α< <1 2  and is a traditional queue behavior when 
α > 2 . The distribution of  interarrival time with 
parameter α< <0 1  and α< <1 2  satisfies the 
self-similar arrival process and has the fractional effect 
(Huang et al., 1996; Paxson and Sally, 1995). 

The characteristics of  self-similarity include slowly 
decreasing variance, long-range dependence, and noise. 
The random self-similar process is still self-similar after 
being divided. The sum of  independent self-similar 
processes is also self-similar. Based on the self-similar 
model to characterize traffic, the real traffic behavior can 
be described and the network planning and control 
mechanisms, such as call admission control and route 
selection, can be developed to precisely control the 
network performance. 
 
2.4 Traffic generation methods 

Two models that yield elegant representations of  the 
self-similar phenomena are FGN and F-ARMIA. The 
LAN traffic can be successfully modeled using FGN 
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process. The F-ARMIA processes seem to describe the 
variable bit rate video traffic reasonably accurately (Garrett 
and Willingerm, 1994). However, the difficulty is that the 
queuing theory behind these models is still under 
development. There are very few analytical results available. 
Therefore, generating long traces of  self-similar processes 
as input traffic becomes increasingly important and is 
essential for gaining better understanding of  the queuing 
behavior and network-related performance issues. In order 
to acquire the general traffic data, we adopt the Successive 
Random Addition (SRA) algorithm, derived from the 
Random Midpoint Displacement (RMD) algorithm, to 
generate the self-similar input traffic source. 

Assume we want to generate an FBM trace in time 
interval [ ]0,  T . The basic idea of  the RMD algorithm is 

to work inward, subdividing the interval [ ]0,  T  
recursively and constructing the values of  the process at 
the midpoints from the value at the endpoints. In 
constructing the values ( )( )+ 2Z a b  at the midpoints of  

an interval [ ],  a b  from the values [ ]Z a  and ( )Z b  at 
the endpoint, if  Z  were FBM, then the midpoint 
displacement ( )( ) ( ) ( )( )+ − +2 2Z a b Z a Z b  would 
have a zero-mean Gaussian distribution. Let ks  be the 
standard deviation used in generating the midpoint at step 
k  with σ 0  being the standard deviation of  the 
displacement at the time scale T , then σ = 2

0
HT . We 

also assume = 2nT . By the scaling properties of  FBM, we 
have 
 

σ−= − 2 2
0(1 2 ) 1 2k H H

ks                        (1) 
 

( ) −= 11 2  H
k ks s                               (2) 

 
and it is convenient to define the initial value 

−= − 2 2
0 1 2 Hs  (Lau et al., 1995). 

The approximate FBM ( )( )Z t  trace generated by the 
RMD algorithm can be interpreted as the cumulative 
arrival process ( )A t  (Lau et al., 1995): 
 

= +( ) ( )A t Mt aMZ t                          (3) 
 

where M is the mean rate, a is the peakedness factor 
which is defined as the ratio of  variance to the mean of  the 
number of  cells in a unit time interval. The increment from 
time t  to +1t  is then 
 

= + + −( ) [ ( 1) ( )]A t M aM Z t Z t                  (4) 
 

Although in the SRA algorithm, the midpoints are 
interpolated the same way as in the RMD algorithm, a 
displacement of  a suitable variance is added to all the 
points at each stage of  recursive subdivision. The SRA 
algorithm can generate self-similar traffic traces in very 

short instances and the results generated for < 0.9H  are 
very satisfactory (Prased et al.,1996). 
 
2.5 Bandwidth estimation 

As presented previously, the diverse traffic models 
describe the characteristics of  traffic with their specific 
parameters, so that the traffic behavior can be represented. 
Based on these traffic models, the bandwidth estimation 
equations are developed to allocate an adequate bandwidth 
to traffic in order to meet the desired QoS. 

According to the two-state fluid-flow model and its 
associated parameters, the equivalent capacity (EC) 
associated with a single connection in isolation for the 
desired overflow probability ε  is then taken to be 
(Guerin et al., 1994): 
 

[
2

(1 )

[ (1 ) ] 4 (1 )

/2 (1 )

EC b PCR x

b PCR x x b PCR

b

τ ρ

τ ρ τ ρ ρ

τ ρ

≅ − −

⎤+ − − + − ⎦
−

       (5) 

 
where τ ε= ln(1 )  and x  means a finite buffer size. 

Recent traffic measurements have indicated that traffic 
behavior is of  self-similar nature. The FBM model uses 
three parameters m , a , and H  where m  is the mean 
input rate, a  is a variance coefficient, and H  is the 
Hurst parameter to describe the self-similarity of  traffic. 
Based on this self-similar model, the equivalent capacity for 
the desired overflow probability ε  is (Norros, 1995): 
 

( )1/ 1/( 2 ) (1 )/ 1/( 2 )( ) 2 ln
H H H H HEC m k H a x mε − −≅ + −   (6) 

where ( ) ( ) −= − 11 HHk H H H . 
 
2.6 Estimation of  hurst parameter 

Hurst parameter is a very important parameter in 
describing the long-rang dependence or the self-similarity 
of  traffic. It is necessary to investigate the presence of  
self-similarity in a generating empirical input traffic trace. 
We will adopt Rescaled-Adjusted Range Statistics (R/S 
statistic) coupled with linear regression analysis to estimate 
the Hurst parameter H  in this study. The main process 
is as follows: 
Given a random process iX  at time i  and the 

cumulative bit rate 
=

= ∑ 1

j
j ii

Y X , then the expression: 

 
( )
( )

+ +≤ ≤

+ +≤ ≤

= − − −

− − − −
0

0

( ,  ) max[ ( )

             min[ ( )]

t i t t k ti k

t i t t k ti k

R t k Y Y i k Y Y

Y Y i k Y Y
         (7) 

 
is called the adjusted range. In order to study the 
properties, ( ),  R t k  is standardized by: 
 

+−
= +

= −∑1 2
,  1

( ,  ) ( )t k
i t ki t

S t k k X X                 (8) 
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where +−

= +
= ∑1,  1

t k
t k ii t

X k X  is the sample mean and 

( )2 ,  S t k  is the sample variance. The ratio: 
 

( ) ( )= ,  ,  R S R t k S t k                         (9) 
 
is called the rescaled adjusted range or R/S-statistic. 
According to Hurst’s work for large values of  k , 
log  R S  is scattered around a straight line with a slope 
that exceeds 1 2 . In probabilistic terminology this means 
that for large k , 
 

[ ] + ×log  ~ logE R S a H k                     (10) 
 
The coefficients a  and H  can be estimated by the 
linear regression equation or any similar method (Garrett 
and Willingerm, 1994). Therefore, the self-similarity 
parameter, H , can then be estimated. 
 
3. BANDWIDTH ALLOCATION PROCESS 

When there is traffic, we first estimate the required 
bandwidth meeting the desired QoS and the current 
network conditions for the traffic. Then based on the 
required bandwidth and the network states, traffic is 
accepted or rejected by the decision of  call admission 
control mechanism. After traffic is accepted, it is 
transmitted on the specific route decided by the route 
selection mechanism. In those decisions, bandwidth 
allocation plays an important role. 

We proposed a bandwidth allocation process model 
shown in Figure 2 to investigate the relationship between 
the bandwidth estimation equations and the characteristics 
of  traffic parameters. In Figure 2, Poisson model and SRA 
algorithm are used to generate the traditional traffic traces 
and the self-similar traffic traces, respectively. The 
R/S-statistic coupled with linear regression equation is 
used to estimate the Hurst parameter. The bandwidth 
estimation equations based on both the two-state fluid 
flow and the self-similar models are compared to find out 
the better one, which allocates the required bandwidth as 
low as possible to meet the requirement of  cell-loss-rate 
(CLR). Then the high utilization rate of  network resources 
and more accepted traffic can be expected. 

The generation of  long traces of  self-similar processes is 
essential for gaining better understanding of  the queuing 
behavior and network-related performance issues. By 
implementing the SRA algorithm with = 30M , = 5a , 
and = 1000t , four traffic traces are generated for 

=H 0.5, 0.7, 0.8, and 0.9 as shown in Figure 3. In Figure 
3, the traces for = 0.9H  have stronger similarity and more 
obvious wave than the traces for = 0.5H  and have no 
large fluctuation between any two adjacent time points. It 
implies that the self-similarity of  traffic is in positive 
correlation with the Hurst parameter, i.e., the larger the 
Hurst parameter, the stronger the self-similarity of  traffic. 
From the above observations, the Hurst parameter is 

capable of  characterizing the self-similarity of  traffic. 
Therefore, we will first generate the traffic traces on the 
base of  the input value of  Hurst parameter and estimate 
the traffic parameters and Hurst parameters from the 
traffic traces. Then the required bandwidth to traffic can be 
allocated by applying traffic parameters in the bandwidth 
estimation equations. We can investigate the relationships 
among the bandwidth estimation equations, buffer sizes, 
and Hurst parameters from the allocation process. 

In order to implement this experiment, the generation 
of  traffic traces is necessary. Figure 4 illustrates the process 
of  generating the traffic traces. Assume a random number 
in [a, b] is chosen as the input Hurst parameter to SRA 
algorithm. Traffic traces are generated by means of  an SRA 
algorithm, and the Hurst parameter of  generated traffic 
traces is estimated by the R/S-statistic and linear regression 
equation. If  the estimated value of  Hurst parameter was 
not in [a, b], the generated traffic traces should not be 
suitable. Otherwise, the generated traffic traces are suitable. 
The estimated value of  Hurst parameter from suitably 
generated traffic traces can accurately describe the behavior 
of  traffic and can be used in the bandwidth estimation 
equations to allocate the proper bandwidth. 

According to equation (10), H is the slope of  equation. 
Hurst parameters of  four traffic traces shown in Figure 3 
are estimated by R/S-statistic, and their R/S-statistic plots 
are presented in Figure 5. The two straight lines in Figure 5 
have slopes 0.5 and 1, respectively. The larger the Hurst 
parameter, the closer the R/S-statistic plot next to the 
straight line with slope 1. 

After the traffic-related parameters are estimated from 
the input traffic traces, they are used to calculate the 
required bandwidth by using equations (5) and (6). The 
results are compared to demonstrate the one which is 
better to allocate an adequate bandwidth without violating 
the desired cell loss rate (CLR) and wasting bandwidth to 
decrease the utilization rate of  network resources. 
The calculation of  CLR has different forms of  equation in 
different traffic models. In this paper, we assume that a 
switch completely transmits the whole traffic data in the 
buffer within the two adjacent unit interval times, so that 
the buffer is empty when the traffic comes in the next unit 
interval time. The major volume used to transmit the 
traffic will be the sum of  buffer size plus the allocated 
bandwidth under the above assumption. As shown in 
Figure 6, the condition of  cell loss only takes place when 
the traffic data is greater than the sum of  buffer size plus 
the allocated bandwidth during the unit interval time. 
The equation of  CLR can then be represented as: 
 

=CLR Number of cell loss
           Total number of cells

           (11) 

 
where the number of  cell loss means the number of  traffic 
data over the sum of  buffer size plus the allocated 
bandwidth, and total number of  cells means the total 
number of  arrival traffic data. 
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Figure 2. The bandwidth allocation process model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The traffic traces. 
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Figure 4. The process of  generating traffic traces. 
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Figure 5. The R/S-statistic plots. 
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Figure 6. The situation of  cell loss. 

 

4. EXPERIMENTS AND RESULTS 

The purpose of  experiments is to investigate the 
relationships among the bandwidth estimation equations, 
buffer sizes, and Hurst parameters under both the Poisson 
and the self-similar traffic models by applying the proposed 
bandwidth allocation process. The proposed bandwidth 
allocation process is coded in C language. In this study, we 
use the traffic parameters of  video telephony, which are 
given in Table 1 and are used to be the basic known 
parameters in the proposed bandwidth allocation process. 
Here, we assume that the utilization ρ  is 0.99. 

The experiments include two stages. The first stage is to 
study the relationships between bandwidth estimation 
equations and buffer sizes under both the Poisson and the 
self-similar traffic models when H  is within 0.5 and 0.6. 
The SRA algorithm is used as the self-similar traffic model 
to generate the self-similar traffic traces. The reasons for 
taking the value of  H  within 0.5 and 0.6 are that the 
Poisson traffic model can not represent the long-range 
dependence of  real traffic and the traffic data generated by 
Poisson model is independent of  each other without 
self-similarity. The second stage including four groups of  
self-similarity is to compare the results of  equation (5) 
named EXP mode and equation (6) named Self-similar mode 
in the condition of  buffer size from 10 cells to 100 cells 
when H  is 0.6~0.7, 0.7~0.8, 0.8~0.9, and 0.9~1.0, 
respectively. The estimates of  H  will change slightly in 
accordance with the conditions of  networks. Moving from 
the busier hours to the less busy hours, the estimates of  

H  seem to decline (Crovella and Bestavros, 1997). It is 
reasonable to use the traffic parameters of  video telephony 
in the SRA algorithm to generate the traffic traces with 
H  from 0.5 to 1.0. 

For each buffer size, the experiment is run ten times 
under the random generated values in the range of  H . 
Tables 2 and 3 present the average results of  the allocated 
bandwidth by Poisson model and self-similar model, 
respectively, when H  is within [0.5,0.6]. The allocated 
bandwidth of  Poisson traffic model is relatively smaller 
than the self-similar traffic model. The reason is that the 
self-similar traffic has the burstness but the traffic of  
Poisson model has not. Furthermore, the Self-similar mode 
requires the smaller bandwidth than the EXP mode under 
both the Poisson and self-similar traffic models. The results 
show that the performance of  Self-similar mode is 
significantly better than the EXP mode. 

Tables 4 ~7 represent the allocated bandwidth results of  
self-similar traffic model for H  within [0.6,0.7], [0.7,0.8], 
[0.8,0.9], and [0.9,1.0], respectively. Comparing the results, 
the Self-similar mode requires the smaller bandwidth than the 
EXP mode under the diverse ranges of  H . However, the 
overflow of  CLR, which is greater than 0.000155, will 
happen in the Self-similar mode when buffer size is between 
10 cells and 30 cells as shown by the shadowed areas. 
Those cases do not meet the requirement of  desired CLR 
and cause the Self-similar mode to be the unacceptable 
bandwidth allocation estimation. 
 

 
 

Table 1. Traffic parameters of  video telephony (Dzion, 1997; Sun and Lee, 1996) 

Service Type Mean rate (cell/sec.) CLR(10-6) Mean burst period (sec.) 

Video Telephony 38.642 154.566 1 

 
 

Traffic data 

T 

Buffer Capacity 

Allocated bandwidth

Cell loss 
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Table 2. Bandwidth of  Poisson traffic for =H 0.5~0.6 

Buffer EXP mode Self-similar mode Buffer EXP mode Self-similar mode 
Size Bandwidth CLR Bandwidth CLR Size Bandwidth CLR Bandwidth CLR 

10 61.3986 0 57.1112 0 60 61.6295 0 45.5805 0 

20 61.4127 0 51.8260 0 70 61.0279 0 44.5406 0 

30 61.2760 0 47.8572 0 80 62.9060 0 42.6468 0 

40 59.1716 0 45.7602 0 90 61.2169 0 42.1018 0 

50 59.4567 0 46.3124 0 100 61.6099 0 44.8527 0 

 
Table 3. Bandwidth of  Self-similar traffic for =H 0.5~0.6 

Buffer EXP mode Self-similar mode Buffer EXP mode Self-similar mode 
Size Bandwidth CLR Bandwidth CLR Size Bandwidth CLR Bandwidth CLR 

10 109.1063 0 92.4179 0.000097 60 109.5333 0 61.0504 0 

20 103.2921 0 78.2416 0.000118 70 99.9418 0 61.2899 0 

30 100.9456 0 70.1929 0.000055 80 104.5317 0 59.0925 0 

40 98.3400 0 67.6095 0.000052 90 104.9125 0 56.2890 0 

50 107.0654 0 65.6795 0 100 101.5753 0 56.9871 0 

 
Table 4. Bandwidth of  Self-similar traffic for =H 0.6~0.7 

Buffer EXP mode Self-similar mode Buffer EXP mode Self-similar mode 
Size Bandwidth CLR Bandwidth CLR Size Bandwidth CLR Bandwidth CLR 

10 106.7225 0 91.6588 0.000225 60 110.3172 0 67.5559 0 

20 106.1662 0 79.1408 0.000265 70 107.7139 0 65.5947 0 

30 107.8574 0 73.7854 0.000322 80 109.1281 0 61.1104 0 

40 107.1239 0 72.8254 0.000019 90 108.6097 0 66.8518 0 

50 109.4130 0 68.4870 0.000044 100 100.7761 0 64.0556 0 

 
Table 5. Bandwidth of  Self-similar traffic for =H 0.7~0.8 

Buffer EXP mode Self-similar mode Buffer EXP mode Self-similar mode 
Size Bandwidth CLR Bandwidth CLR Size Bandwidth CLR Bandwidth CLR 

10 112.0782 0 89.8168 0.000279 60 106.2905 0 76.6231 0 

20 117.2258 0 81.2526 0.000212 70 105.6379 0 71.9529 0 

30 107.1915 0 78.0204 0.000077 80 112.2464 0 68.5668 0 

40 113.2374 0 73.8871 0.000018 90 111.6642 0 67.0496 0 

50 108.8001 0 75.6291 0 100 113.9489 0 65.5915 0 

 
Table 6. Bandwidth of  Self-similar traffic for =H 0.8~0.9 

Buffer EXP mode Self-similar mode Buffer EXP mode Self-similar mode 
Size Bandwidth CLR Bandwidth CLR Size Bandwidth CLR Bandwidth CLR 

10 107.8920 0.000041 90.3032 0.000648 60 111.8472 0 77.9245 0 

20 103.8109 0 83.3318 0.000562 70 111.1094 0 76.1157 0 

30 107.2456 0 83.0976 0.000139 80 109.1324 0 75.7775 0 

40 107.3780 0 79.0972 0.000043 90 112.4863 0 76.0469 0 

50 113.7856 0 78.3251 0.000035 100 109.9077 0 69.9354 0 
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Table 7. Bandwidth of  Self-similar traffic for =H 0.9~1.0 

Buffer EXP mode Self-similar mode Buffer EXP mode Self-similar mode 
Size Bandwidth CLR Bandwidth CLR Size Bandwidth CLR Bandwidth CLR 

10 103.3283 0 90.8573 0.000349 60 98.0676 0 77.9508 0 

20 99.6348 0 87.0696 0.000014 70 101.2545 0 81.3086 0 

30 108.8584 0 84.4637 0.000031 80 99.6308 0 79.4993 0 

40 97.7144 0 81.1528 0 90 94.0271 0 81.5865 0 

50 100.3552 0 85.1461 0 100 92.1910 0 79.6777 0 

 
Table 8. The differences of  allocated bandwidth 

Hurst 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 
Difference 
(buffer size 10-buffer size 100) 

35.4308 27.6032 24.2253 20.3679 11.1796 

 
From the experimental results, the following conclusions 

are drawn. The EXP mode has the tendency of  
over-allocating the bandwidth. Consequently, the values of  
CLR in most of  the cases are zero. In addition, the 
allocated bandwidth estimated by the EXP mode will not 
obviously change with the different buffer sizes. Contrarily, 
the allocated bandwidth estimated by Self-similar mode is 
sensitive to the various buffer sizes. For the Self-similar mode, 
the differences of  the allocated bandwidth between buffer 
sizes 10 and 100 cells are shown in Table 8. The difference 
is getting smaller when H  is increasing. It implies that 
the allocated bandwidth estimated by Self-similar mode 
becomes more stable when H  increases. In all cases, the 
Self-similar mode has the better performance than the EXP 
mode because the former allocated smaller bandwidth to the 
traffic. However, the phenomena of  violating the 
requirements of  CLR may happen under the Self-similar 
mode with less buffer size. When the Self-similar mode is used 
to allocate the bandwidth, larger buffer size will be 
necessary in order to satisfy the requirements of  CLR. 

 
5. CONCLUSIONS 

The bandwidth allocation acts as an important 
mechanism in network planning and is considered in both 
route selection and connection admission control. This 
paper proposes a bandwidth allocation process and applies 
the proposed process to the different traffic models and 
the different self-similar parameters under different buffer 
sizes to investigate the relationship between the bandwidth 
estimation equation and the characteristics of  traffic 
parameters and to find out the superior bandwidth 
estimation method. 

Traffic traces are generated by means of  Poisson model 
and SRA algorithm. The Hurst parameter of  generated 
traffic traces is estimated by the R/S-statistic and linear 
regression equation. According to the two-state fluid-flow 
and self-similar model and their associated parameters, the 
bandwidth estimation equations are used to calculate the 
required bandwidth. Comparing the allocated bandwidth, 
the Self-similar mode has smaller bandwidth than the EXP 
mode under both the Poisson and self-similar traffic model. 

Furthermore, the allocated bandwidth estimated by 
Self-similar mode becomes more stable when H  increases. 
In conclusion, this paper has demonstrated that the 
self-similar traffic model can characterize real traffic in 
broadband networks. However, the bandwidth estimation 
model without violating the requirement of  CLR should be 
further investigated. 
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