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Abstract ⎯It is well known that the solution set of  fuzzy relational equations with max-product composition can be 
determined by the maximum solution and a finite number of  minimal solutions. There exists an analytic expression for the 
maximum solution and it can be yielded easily, but finding the complete set of  minimal solutions is not trivial. In this paper 
we first provide a necessary condition for any minimal solution in terms of  the maximum solution. Precisely, each nonzero 
component of  any minimal solution takes the value of  corresponding component of  the maximum solution. We then 
propose rules to reduce the problem so that the solution can easily be found. A numerical example is provided to illustrate 
our procedure. 
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1. INTRODUCTION 

Let A = (aij) denote a m×n nonnegative matrix with aij ≤ 
1 and b ∈ Rn a nonnegative vector with bj ≤ 1. The fuzzy 
relational equations that we consider in this paper are as 
follows. 

 
1 1 2 2  

  1, 2, , ,
j j mj m ja x a x a x b

for all j n

∨ ∨ ∨ =

=
                 (1) 

 
where ∨  denotes the max operation. We denote the 
solution set of  (1) as ( , )X A b . Precisely, X(A, b):= 

{ [0,  1]  }mx x A b∈ = , where the operation  denotes 
the max-product composition. 

The original study of  fuzzy relational equations with 
max-product composition goes back to Pedrycz (1985). 
Recent study of  (1) can be found in Bourke and Fisher 
(1998), Loetamonphong and Fang (1999). Furthermore, 
the monograph by Di Nola, Sessa, Pedrycz and Sanchez 
(1989) contains a thorough discussion of  this class of  
equations. The notion of  fuzzy relational equations with 
max-min composition was first proposed and studied by 
Sanchez (1976) (see Czogala, Drewniak and Pedrycz (1982), 
Higashi and Klir (1984) as well.) Applications of  fuzzy 
relational equations can be found in Sanchez (1977). 

Related topics are optimization problems with objective 
functions subjected to the fuzzy relational equation 
constraints. Fang and Li (1999) was the first paper to 
consider the fuzzy relational equations with a linear 
objective function, where the algebraic operations 
employed in fuzzy relational equations are the max-min 
composition. Wu, Guu and Liu (2002) improved Fang and 
Li's method by providing an upper bound for the branch 

and bound procedure. Since ( , )X A b  is non-convex, Lu 
and Fang (2001) proposed a genetic algorithm to solve the 
problems. Lee and Guu (2003) proposed a fuzzy relational 
optimization model for the streaming media provider 
seeking a minimum cost while fulfilled the requirements 
assumed by a three-tier framework. Wang (1995) was the 
first paper to explore the same optimization problem yet 
with multiple linear objective functions. Recently, 
Loetamonphong, Fang and Young (2002) have studied the 
multi-objective optimization problem with nonlinear 
objective functions. A genetic algorithm was employed to 
find the Pareto optimal solutions. 

On the other hand, Loetamonphong and Fang (2001) 
was the first paper to consider similar optimization models 
where the algebraic operations in fuzzy relational equation 
constraints are the max-product composition. Motivated by 
the network reliability problems, Guu and Wu (2002) 
studied such models and provided a necessary condition 
for an optimal solution to hold. Based on this necessary 
condition, efficient procedures were proposed to find an 
optimal solution. 

For convenience, we let I={1, 2, …, n} and J={1, 2, …, 
n}. If  we define x1 ≤ x2 if  and only if  1 2

i ix x≤  for i ∈ I, 
then the operator ≤ forms a partial order relation on 

( , )X A b . An ( , )x X A b∈  is the maximum solution if  
x x≤  for all ( , )x X A b∈ . On the other hand, an 

( , )x X A b∈  is a minimal solution if   ( , )x X A b∀ ∈ , 
x x≤  implies that x x= . It is well known (see, for 
instance, Bourke and Fisher (1998)) that when ( , )X A b  
is nonempty, the complete solution set ( , )X A b  can be 
determined by a unique maximum solution and a finite 
number of  minimal solutions. Moreover, the potential 
maximum solution can be obtained by the following 
operation: 
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[min( )] ,ij j i Ij J
x A b a b ∈

∈
= ◊ = ◊                     (2) 

Where 
1 if ;

:  
if .j

ij

ij j
bij j

ij ja

a b
a b

a b

≤⎧⎪◊ = ⎨ >⎪⎩
 

 
Note that ( , )X A b  is nonempty if  and only if  the vector 
A b◊  is a solution of  (1). We assume in this paper that 

( , )X A b  is nonempty. 
Although the maximum solution can be easily obtained, 

finding the complete set of  minimal solutions is not trivial. 
Bourke and Fisher (1998) were the first to propose 
algorithms to find the complete set of  minimal solutions. 
Since the solution set ( , )X A b  is non-convex, it turns 
out that the total number of  minimal solutions has a 
combinatorial nature in terms of  the problem size. To 
overcome the combinatorial nature, Leotamonphong and 
Fang (1999) explored the special structure of  the solution 
set to reduce the problem size. Leotamonphong and Fang 
reported that their procedure is more effective than those 
in Bourke and Fisher. 

Our contribution in this paper is for computing the set 
of  minimal solutions. Let *x  be a minimal solution of  (1) 
and x  be its maximum solution. We prove that *

ix  is 
either 0 or ix  for each 1, 2, ,i m= , that is, each 
nonzero component of  any minimal solution of  (1) takes 
the value of  corresponding component of  the maximum 
solution. Based on this necessary condition, we then 
improve Leotamonphong and Fang's method by proposing 
four rules to reduce the problem size (let us note that the 
rule employed in Leotamonphong and Fang (1999) is the 
rule 1 here.) An example is proposed to illustrate the 
difference between Leotamonphong and Fang and our 
procedure. 

This paper is organized as follows. In Section 2, we 
prove a necessary condition for a minimal solution to hold 
and provide four rules to reduce the problem. Section 3 
contains an example to illustrate the procedure in our 
algorithm. Brief  conclusion is given in Section 4. 

 
2. NECESSARY CONDITION AND RULES FOR 

REDUCING THE PROBLEM 

In this section we investigate the properties of  the 
solution set of  equation (1). 

 
Lemma 1: Assume ( , )x X A b φ∈ ≠ . If  there exists an 
index j with 0jb =  and 0ija >  for all i I∈  in 

problem (1), then equation (1) has only zero solution. 
 
Proof: Due to bj = 0, the j equation becomes 
max{ } 0i ij
i I

x a
∈

= . Since 0 1ix≤ ≤  and 0 1ija< ≤ , this 

leads 0ix =  for all i ∈ I. 
Lemma 1 illustrates that if  for some j there exists bj = 0  

and aij > 0 for all i ∈ I in (1), then the solution set is trivial. 

In the following, we shall assume that bj > 0 for all j ∈ J. 
 

Lemma 2: If  there exists an index j with ij ja b<  for 

each i ∈ I in (1), then ( , )X A b φ= . 
 
Proof: Obviously. 

If  ( , )X A b φ≠  and ( , )x X A b∈ , then there exists at 
least one index i0 ∈ I such that 

0 0i i j jx a b=  for each 
j J∈ . 

 
Definition 1: For any solution x in ( , )X A b , we call the 
component 

0ix  a binding variable if  there exists j ∈ J 

such that
0 0i i j jx a b= . 

Due to the assumption of  bj > 0 for all j ∈ J, if  0
0i ja =  

in the jth equation, then variable 0ix  can't be binding in 

jth equation. On the other hand, if  0ix  is binding in jth 

equation, then 0
0i ja > . 

 
Lemma 3: If  there exists aij < bj for all j ∈ J, then 0ix =  
for any minimal solution x. 
 
Proof: Since 0 ≤ xi ≤ 1, when aij < bj for all j ∈ J, this leads 
xiaij < bj, ∀ j ∈ J  in (1). This result shows that variable xi 
can't satisfy any equation in (1). Hence, setting xi = 0 does 
not affect the solution set. 

Lemma 3 also reveals that if  aij < bj for any j ∈ J, then xi 
can't be binding in jth equation. On the other hand, a 
necessary condition for ix  to be binding in jth equation 
is aij ≥ bj.. 

 
Lemma 4: Let ( , )x X A b∈ . If  ix  is a binding variable, 

then min{  | 0 and }.j

ij

b
i ijax a j J= ≠ ∈  

 
Proof: For a solution ( , )x X A b∈ , we have 
max{ } ,   i ij j
i I

x a b j J
∈

= ∀ ∈ . For the variable ix , we have 

,   i ij jx a b j J≤ ∀ ∈ . Since xi is a binding variable, we have 

xiaij = bj, hence i j ijx b a=  for some j and 

min{  | 0  and }.j

ij

b
i ijax a j J= ≠ ∈  

In fact, Lemma 4 shows that if  ix  is a binding variable 
for any feasible solution, then the solution value of  ix  is 
unique and xi > 0. Moreover, employing above mentioned 
Lemmas and maximum solution (2), we are ready to 
provide a necessary condition of  problem for a minimal 
solution. 

 
Theorem 1: Let x  be the maximum solution and x be a 
solution of  (1). If  ix  is a binding variable, then i ix x= . 
 
Proof: Since x  is the maximum solution, we have 
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[min( )] ,ij j i Ij J
x A b a b ∈

∈
= ◊ = ◊  

where 
1 if ;

:  
if .j

ij

ij j
bij j

ij ja

a b
a b

a b

≤⎧⎪◊ = ⎨ >⎪⎩
 

For each i I∈ , we can rewrite min { 1,   }j

ij

b
i j J ax ∈= . 

Since ix  is a binding variable, we have ij ja b≥ . It 

follows that min{  | 0  and }.j

ij

b
i ijax a j J= ≠ ∈  By 

Lemma 4, we have i ix x= . 
 
Theorem 2: If  *x  is a minimal solution, then we have 
either * 0ix =  or *

i ix x=  for each i I∈ . 
 
Proof: Each variable in a minimal solution is either 
non-binding or binding. Suppose that *

ix  is not a binding 

variable and * 0ix > . Then there exists a solution ! *x x<  

and ! *0i ix x= <  since that we can choose ! *
k kx x=  for 

all k I∈  and k i≠ . This implies that *x  is not a 
minimal solution. Hence, a non-binding *

ix  implies 
* 0ix = . On the other hand, if  *

ix  is a binding variable, 

then by Theorem 1, we have *
i ix x= . 

In fact, Theorem 2 reveals the necessary condition of  a 
minimal solution. It describes that for any minimal solution 

*x , if  *
ix  is not a binding variable, then *

ix  can be 

assigned to zero. On the other hand, if  *
ix  is a binding 

variable, then *
ix  equals to ix . It turns out that the 

maximum solution x  can provide useful information in 
searching for the minimal solutions. To do so, we define 
the following index sets. 

 
: {    }i i ij jJ j J x a b= ∈ = ,  i I∀ ∈  and 

: {    }j i ij jI i I x a b= ∈ = ,  j J∀ ∈ . 

 
The index set iJ  indicates those equations satisfied by 

ix . For any minimal solution x, iJ  is the number of  
equations in which ix  may become binding; while the 
index set jI  indicates those possible components 
(decision variables) of  x to be binding in the jth equation. 
Therefore, we have 1I  ways to select a binding variable 

in the first equation and 2I  in the second equation, etc. 

In total, we have 1 2 nI I I× × ×  ways for problem (1). 
This quantity can be employed as the problem complexity. 

 
Since for any minimal solution x each component of  x is 

either 0 or ix , to compute a minimal solution, we only 
need to determine which component is zero and which 

component is not zero (and hence assign the 
corresponding component of  x  to it.) Theorem 2 
implies that the indices of  those nonzero components of  
any minimal solution *x  are contained in the index set 

i I iJ∈∪ . Hence, we define a matrix [ ]ijM m=  with 
i I∈  and j J∈  by 

 
 1 if   ;
0 otherwise.

i
ij

j J
m

∈⎧
= ⎨
⎩ 

 

 
Note that the entry 1ijm =  in M corresponds to a 

possible selection of  the ith component of  some minimal 
solutions to be binding in the jth equation. Since each 
solution must satisfy all equations, thus, the procedure of  
finding minimal solutions can be transformed into the 
selection of  one entry with value 1 in each column of  
matrix M. Moreover, the selection should use the least 
number of  binding variables (hence the entries with value 1 
in matrix M) to satisfy all equations. 

 
Rule 1: If  there exists a singleton Ij = {i} for some j ∈ J in 
matrix M, we assign ix  to the ith component of  any 
minimal solutions. (This is the rule employed by 
Loetamonphong and Fang (1999).) The index set Ij = {i} 
identifies the jth equation that can be satisfied only by 
variable xi in problem. This leads that the ith component 
of  any minimal solutions (hence, the variable xi) must be 
binding in the jth equation. Thanks to i ix x=  by 
Theorem 2, we can delete the jth column of  M with j ∈ Ji 
from further consideration. The corresponding row of  ix  
in M can be deleted as well. Note that, after deletion during 
the process of  finding minimal solutions, we let Ĵ  
represent the index set of  the remaining columns in the 
reduced matrix. Set Î  denotes the remaining variables 
which associated with the rows of  the reduced matrix. 
 
Rule 2: In the process of  finding minimal solutions, for 
some ˆ

kx I∈  if  there exists kJ φ=  in the reduced 
matrix, then we can assign the value 0 to the kth 
component of  minimal solutions. Since kJ φ= , this 
implies that the kth component of  minimal solutions is not 
a binding variable to the remaining equations. Hence, we 
can assign 0 to the kth component of  minimal solutions. 
Moreover, the row of  the reduced matrix that associated 
with kx  can be deleted from further consideration. And 

kx  can be eliminated from set Î . 
 
Rule 3: In the process of  finding minimal solutions, for 
some ˆ

sx I∈  if  there exists ˆ
sJ J=  in the reduced 

matrix, then we assign *
s sx x=  as a binding variable to 

yield a minimal solution. It implies that all equations have 
been satisfied by the assigned binding variables. Hence, it 
yields a minimal solution *x  with components *

i ix x=  
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if  *
ix  is a binding variable (surely includes *

s sx x= ) and 
* 0ix =  if  *

ix  is not a binding variable. Moreover, the 
row of  the reduced matrix that associated with sx  can be 
deleted from further consideration. And sx  can be 

eliminated from set Î . 
 
Rule 4: In the process of  finding minimal solutions, for 
some ˆp J∈  if  there exists pI φ=  in the reduced matrix, 

then we can't find any minimal solutions for the remaining 
equations. During the process of  finding minimal solutions, 
it may happen the situation that we have some assigned 
binding variables, say 

1

* *, ,
ki ix x , but some remaining 

equations, assume the pth equation is included, still 
unsatisfy. If  there exists pI φ= , ˆp J∈ , it implies that the 

pth equation can't be satisfied by the remaining variables. 
Hence, we can't find any minimal solution with the type of  

1

* *( , , , 0, , 0)
ki ix x . This situation indicates that the 

process of  finding minimal solutions should turn to next 
iteration or stop (to be identified shortly in Step 9). 

Employing these rules on matrix M, we are ready to 
present the procedure to find the complete set of  minimal 
solutions for equation (1). The intuition behind the 
procedure is to apply rules 1-4 to fix as many as possible 
the binding variables such that some components of  
minimal solutions can be determined. Then the problem 
size is reduced by eliminating the corresponding rows and 
columns associated with binding variable from matrix M. 
When the problem can't be reduced any more, we arrange 
the rows of  the reduced matrix to the decreasing order of  

iJ . The arranged matrix shows that the first variable can 
satisfy the largest number of  equations for the reduced 
problem. So we select it as the binding variable to find 
minimal solutions. Rules 1-4 apply again to fix some 
variables to fill in the missing equations. We iterate the 
process step-by-step until the Stop flag is switched on (i.e. 
the rule 4 is satisfied) or all of  the variables have been 
considered. Now the procedure for obtaining the complete 
set of  minimal solutions can be summarized as follows. 
Step 1 Compute the maximum solution x  by (2). 
Step 2 Check the consistency by verifying whether 
x A b= . If  inconsistent, then Stop. 
Step 3 Compute index sets jI  for all j J∈  and iJ  
for all i I∈ . 
Step 4 Obtain the matrix M. 
Step 5 Apply rule 1, rule 2 and rule 3 to fix as many as 
possible values of  components of  minimal solutions. If  
rule 4 is satisfied, then Stop the procedure. 
Step 6 Arrange the rows of  matrix M according to the 
decreasing order of  ( )iJ M  and denote the arranged 

matrix by M . (Now the cardinality of  ( )iJ M  represents 
the number of  columns with value 1 in the ith row of  
matrix M.) Then record the variables associated with the 
rows of  matrix M  in order and denote it by set I . 

Step 7 Select the first entry from set I  as a binding 
variable, say ix , then eliminate the corresponding rows 
and columns associated with binding variable ix  from 
matrix M . Denote the reduced matrix by iM  and 

arrange the rows in decreasing order of  ( )i iJ M . By the 

reduced matrix iM , we obtain set Î  and index set Ĵ . 
Step 8 Apply rules 1-3 to fix values of  components of  
minimal solutions to the reduced matrix iM  until no any 
rules can be satisfied again. 
Step 9 We have two cases to be considered. Case 1: if  there 
don't leave any remaining rows or columns in iM  (i.e. set 

Î φ=  or Ĵ φ= ), then eliminate the first row from matrix 
M  and first entry from set I . Check the rule 4 to matrix 
M , if  the rule 4 satisfies then go to Step 10, otherwise set 
the assigned binding variable 0ix =  and go to Step 7 
until set I  equals to empty set. Case 2: if  there exists 
some remaining rows in iM  (i.e. set Î φ≠  and Ĵ φ≠ ), 
then we arrange the remaining rows of  iM  according to 

the decreasing order of  ( )i iJ M . Record the variables 

associated with the rows of  matrix iM  in order and 
denote it by set new- I . Look upon set new- I  as set I  
as if  we were facing a reduced-problem and go to Step 7. 
Step 10 Delete the nonminimal solution and print the 
complete set of  minimal solutions. 
 
3. AN EXAMPLE 

In this section, an example is applied to demonstrate 
how our procedure employs a matrix and rules 1-4 to 
determine the complete set of  minimal solutions efficiently. 
This example also illustrates that Leotamonphong and 
Fang's method will generate nonminimal solutions. 
Example: Consider the following problem of  fuzzy 
relational equations with max-product composition. 
 
x A b=  
where 

1 2 3 4 5 6[   ]x x x x x x x= , 
0.5 0.6 0.12 0.45 0.4 0.45 0.3
0.4 0.35 0.3 0.7 0.35 0.4 0.4
0.5 0.96 0.42 0.5 0.64 0.32 0.2

 
0.5 0.8 0.35 0.3 0.28 0.6 0.1
0.8 0.5 0.25 0.98 0.64 0.72 0.6
0.2 0.8 0.35 0.36 0.42 0.6 0.5

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

[  0.4 0.48 0.21 0.49 0.32 0.36 0.3 ]b = . 
 

Step 1. Compute the maximum solution 
[  0.8 0.7 0.5 0.6 0.5 0.6  ]x = . 

Step 2. Direct computing shows that x A b=  holds. 
Hence, the problem is solvable and ( , )X A b φ≠ . 
Step 3. Compute index sets jI  for all j J∈  and iJ  
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for all i I∈ . They are 
1 { 1,  5 }I = , 2 { 1,  3, 4, 6 }I = , 3 { 2,  3, 4, 6 }I = , 

4 { 2,  5 }I = , 5 { 1,  3, 5 }I = , 6 { 1, 4,  5,  6 }I = , 

7 { 5,  6 }I = ; 1 { 1,  2, 5, 6 }J = , 2 { 3, 4 }J = , 

3 { 2,  3, 5 }J = , 4 { 2,  3, 6 }J = , 5 { 1, 4, 5, 6,  7 }J = , 

6 { 2,  3, 6, 7 }J = . 
Note that the problem complexity is 1,536 ( = × × ×2 4 4  
× × ×2 3 4 2 .) 

Step 4. Obtain the matrix M. We have 
 

1

2

3

4

5

6

equation 1 2 3 4 5 6 7
( ) 1 1 0 0 1 1 0
( ) 0 0 1 1 0 0 0
( ) 0 1 1 0 1 0 0

   
( ) 0 1 1 0 0 1 0
( ) 1 0 0 1 1 1 1
( ) 0 1 1 0 0 1 1

x
x
x

M
x
x
x

→

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Step 5. Apply rule 1, rule 2 and rule 3 to fix as many as 
possible values of  components of  minimal solutions. If  
rule 4 is satisfied, then Stop the procedure. 

In this stage, no rules can be applied to reduce or Stop 
the original problem. 
Step 6. Arrange the rows of  matrix M according to the 
decreasing order of  ( )iJ M  and denote the arranged 

matrix by M . 
We compute ( )iJ M  and yield the order 
 
5 1 6 3 4

2

( ) 5 ( ) ( ) 4 ( ) ( )

3 ( ) 2.

J M J M J M J M J M

J M

= > = = > =

= > =
 

 
Then we obtain the arranged matrix M  as follows. 
 

5

1

6

3

4

2

equation 1 2 3 4 5 6 7
( ) 1 0 0 1 1 1 1
( ) 1 1 0 0 1 1 0
( ) 0 1 1 0 0 1 1

   
( ) 0 1 1 0 1 0 0
( ) 0 1 1 0 0 1 0
( ) 0 0 1 1 0 0 0

x
x
x

M
x
x
x

→

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Recording the variables associated with the rows of  

matrix M  in order, we have index set 

5 1 6 3 4 2{ ,  ,   ,   ,   ,   }I x x x x x x= . 
Step 7. Select the first entry from set I  as a binding 
variable, say ix , then eliminate the corresponding rows 
and columns associated with ix  from matrix M . 

Now there are six variables in set I . Each of  these 
variables can be binding. However, in order to use the least 
number of  binding variables satisfies the remaining 
equations to find minimal solutions, we select first variable 

5x  as a binding variable. By Theorem 2, we assign 

5 5 0.5x x= = . 
Note that 5x  is binding in equations 1,4,5,6 and 7 (or 

columns 1,4,5,6,7 of  M ). Hence, these columns and first 
row can be deleted from consideration. After deletion and 
arrangement by order of  

3 5 4 5 6 5 1 5 2 5( ) ( ) ( ) 2 ( ) ( ) 1J M J M J M J M J M= = = > = =

, the reduced matrix (denoted by 5M ) becomes 
 

3

4

5 6

1

2

equation 2 3
( ) 1 1
( ) 1 1
( ) 1 1  
( ) 1 0
( ) 0 1

x
x
xM
x
x

→

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
By the reduced matrix 5M , we obtain 

sets 3 4 6 1 2
ˆ { ,  ,   ,   ,   }I x x x x x=  and ˆ {2,  3}J = . 

Step 8. Apply rules 1-3 to fix values of  components of  
minimal solutions to matrix 5M  until no any rules can be 
satisfied again. 

For 5M , it is the situation as if  we were facing two 
equations with 5 variables. We can compute the index sets 
with respect to 5M  to yield 

3 5 4 5 6 5( ) ( ) ( ) {2,  3}J M J M J M= = = . It just satisfies the 

remaining equations in index set Ĵ . By rule 3, this implies 
that we can yield three minimal solutions. And they are 

1 (  0,   0,   0.5,   0,   0.5,   0 )x = , 
2 (  0,   0,   0,   0.6,   0.5,   0 )x =  and 
3 (  0,   0,   0,   0,   0.5,   0.6 )x = . 
Note that the variables 3x , 4x  and 6x  in 5M  have 

been considered as binding variables respectively. Hence, 
we delete the corresponding rows of  variables 3x , 4x  
and 6x  from 5M . The reduced matrix becomes 

 

1
5

2

equation 2 3
( ) 1 0

 
( ) 0 1
x

M
x

→

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

.

 

 
For the current matrix, we have set 1 2

ˆ { ,   }I x x=  and 
assign 1 1 0.8x x= =  and 2 2 0.7x x= =  as binding 
variables by rule 1. The remaining equations have been 
satisfied to yield another minimal solution 

4 (  0.8,   0.7,   0,   0,   0.5,   0 )x = . 
We delete the corresponding rows of  1x  and 2x  in 

5M  by rule 1. Now no remaining rows or columns in 

5M  are left to be considered and set Î φ= . 
Step 9. Now the reduced matrix 5M  with set Î φ= , 
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hence, the case 1 should be considered. We eliminate the 
first row from M  and it becomes 
 

1

6

3

4

2

equation 1 2 3 4 5 6 7
( ) 1 1 0 0 1 1 0
( ) 0 1 1 0 0 1 1
( ) 0 1 1 0 1 0 0   
( ) 0 1 1 0 0 1 0
( ) 0 0 1 1 0 0 0

x
x
xM
x
x

→

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
We eliminate the first entry 5x  from set I  and it 

becomes 1 6 3 4 2{ ,   ,   ,   ,   }I x x x x x= . Now the rule 4 is 
unsatisfied to matrix M , we set 5 0x =  to the follow-up 
process and go to Step 7. 
Step 7.  Now finding minimal solutions, we select first 
entry 1x  from set I  as a binding variable and with 5x  
a nonbinding variable. We assign 1 1 0.8x x= =  and 

5 0x = . 
Note that variable 1x  is binding in the first, second, 5th 

and 6th equations to M  now. Hence, these 
corresponding columns and row can be deleted. After 
deletion and arrangement by order of  

2 1 6 1 3 1 4 1( ) ( ) 2 ( ) ( ) 1J M J M J M J M= = > = = , the 

reduced matrix (denoted by 1M ) becomes 
 

2

6
1

3

4

equation 3 4 7
( ) 1 1 0
( ) 1 0 1

   
( ) 1 0 0
( ) 1 0 0

x
x

M
x
x

→

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

By the reduced matrix 1M , we obtain sets 

2 6 3 4
ˆ { ,  ,   ,   }I x x x x=  and ˆ {3,  4,  7}J = . 

Step 8. Apply rules 1-3 to fix values of  components of  
minimal solutions to matrix 1M  until no any rules can be 
satisfied again. 

For matrix 1M , it is as if  we were facing three 
equations with 4 variables. We compute the index set 

4 1( ) {2}I M =  and 7 1( ) {6}I M = . By rule 1, we shall set 

2 2 0.7x x= =  and 6 6 0.6x x= = . Since all equations are 
satisfied by 2x  and 6x , the remaining variables 3x  and 

4x  are assigned to be zero by rule 2. We obtain the fifth 
minimal solution as follows: 

 
5 (  0.8,   0.7,   0,   0,   0,   0.6 )x = . 

 
Now no remaining rows or columns in 1M  are left to 

be considered and set Î φ= . 
Step 9. Now the reduced matrix 1M  with set Î φ= , 
hence, the case 1 should be considered. We eliminate the 
first row from M  and it becomes 

6

3

4

2

equation 1 2 3 4 5 6 7
( ) 0 1 1 0 0 1 1
( ) 0 1 1 0 1 0 0

   
( ) 0 1 1 0 0 1 0
( ) 0 0 1 1 0 0 0

x
x

M
x
x

→

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
We eliminate the first element 1x  from set I  and it 

becomes 6 3 4 2{ ,   ,   ,   }I x x x x= . 
For the current matrix M , we discover set 1( )I M φ= . 

The rule 4 is satisfied, it implies that the first equation can't 
be satisfied again by remaining variables. In this situation, 
no more potential minimal solutions can be generated and 
Stop flag is switched on. Hence, the complete set of  
minimal solutions has been found. Go to Step 10. 
Step 10. Delete the nonminimal solutions and print the 
complete set of  minimal solutions. 

For this Example, our procedure yields five minimal 
solutions and doesn't generate any nonminimal solutions. 
They are 

1
3 5(  0,   0,   ,   0,   ,   0 )x x x= , 

2
4 5(  0,   0,   0, ,   ,   0 )x x x= , 

3
5 6(  0,   0,   0,   0,   ,    )x x x= , 

4
1 2 5( ,   ,   0,   0,   ,   0 )x x x x=  and 

5
1 2 6( ,   ,   0,   0,   0,  )x x x x= . 

Now, we apply the method proposed by 
Leotamonphong and Fang in 1999 to solve Example again. 
The step-by-step results generated by their method, we 
find that their algorithm reports 11 solutions as following 
Table 1. Among them, 5 solutions are the minimal 
solutions (which we have attached a * in the “minimal 
solution” column.) 
Numerical Experiment: In Table 2, we have compared the 
performance of  our procedure and Leotamonphong and 
Fang's method. Here we use the same test examples. The 
current experiment was programmed by Visual Basic 6.0 
on a Pentium III PC with 1000 MHZ and 256-MB RAM. 
Note that the largest test problem for Table 2 is as 
following matrix A with size 15 20×  and vector b with 
size 1 20× . All of  the other test problems derive mainly 
from the largest test problem. For example, we delete the 
last three rows and five columns from the largest matrix A 
and delete last five entries from vector b, then the test 
problem No. 9 contains matrix A with size of  problem 

12m =  and 15n =  and the corresponding vector b with 
size 1×15. Moreover, the other test problems with different 
size of  problem can be generated by the same pattern. In 
general, the testing problems of  numerical experiment may 
randomly generate, but the max-product fuzzy relational 
equations with large number of  equations, say 20n ≥ , 
seem very difficult to be consistent. Although Table 2 
shows that our procedure determines fewer solutions than 
Leotamonphong and Fang's method in each test problem, 
it still obtains a few nonminimal solutions.  
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Table 1. Results of  Leotamonphong and Fang’s method for Example 
Minimal solution Remark 

1
1 2 5( ,   ,   0,   0,   ,   0 )x x x x=  *  

2
1 3 5( ,   0,   ,   0,   ,   0 )x x x x=  nonminimal solution 

3
1 4 5( ,   0,   0,  ,   ,   0 )x x x x=   nonminimal solution 

4
1 5 6( ,   0,   0,   0,   ,    )x x x x=  nonminimal solution 

5
3 5(  0,   0,   ,   0,   ,   0 )x x x=  *  

6
4 5(  0,   0,   0, ,   ,   0 )x x x= *  

7
5 6(  0,   0,   0,   0,   ,    )x x x=  *  

8
1 2 6( ,   ,   0,   0,   0,  )x x x x=  *  

9
1 2 3 6( ,   ,   ,   0,   0,  )x x x x x=  nonminimal solution 

10
1 2 4 6( ,   ,   0,   ,   0,  )x x x x x=  nonminimal solution 

11
1 2 6( ,   ,   0,   0,   0,  )x x x x=   duplicated 

Table 2. Performance of  our procedure and Leotamonphong and Fang's method 
Our procedure Leotamonphong and Fang’s method

No. Size of  
problem (m, n) 

problem 
complexity

Number of  
minimal 
solutions No. of  solutions cpu time (sec.) No. of  solutions cpu time (sec.)

1 (15, 20) 5.12E+14 93 113 0.2734 3,152 17.8906 
2 (15, 18) 1.71E+13 85 91 0.2578 2,787 14.2031 
3 (15, 16) 7.11E+11 90 96 0.2344 1,510 4.9063 
4 (15, 15) 1.78E+11 100 110 0.2734 1,486 4.7813 
5 (15, 12) 2.22E+09 84 95 0.1875 544 0.9375 
6 (12, 20) 3.66E+12 16 17 0.0313 41 0.0469 
7 (12, 18) 1.46E+11 16 17 0.0234 41 0.0547 
8 (12, 16) 2.09E+10 27 28 0.0547 370 0.4531 
9 (12, 15) 6.97E+09 30 33 0.0547 362 0.4531 
10 (12, 12) 2.58E+08 34 38 0.0469 185 0.1797 
11 (10, 20) 1.88E+10 6 7 0.0234 17 0.0313 
12 (10, 18) 1.18E+09 6 7 0.0234 17 0.0234 
13 (10, 16) 1.96E+08 10 10 0.0234 128 0.1016 
14 (10, 15) 9.80E+07 12 13 0.0156 123 0.0859 
15 (10, 12) 1.22E+07 21 22 0.0313 97 0.0703 
 
The largest test problem of  fuzzy relational equations 

for Table 2 with max-product composition is described as 
follows: 
x A b= . Where 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15[ ]x x x x x x x x x x x x x x x x= ,  
0.560 0.100 0.720 0.100 0.100 0.960 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.960 0.100 0.100
0.210 0.100 0.100 0.300 0.320 0.100 0.400 0.100 0.100 0.100 0.100 0.630 0.100 0.700 0.100 0.800 0.900 0.360 0.480 0.5

A=

60
0.420 0.480 0.540 0.100 0.100 0.720 0.800 0.100 0.960 1.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
0.400 0.100 0.100 0.100 0.100 0.100 0.100 0.800 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
0.100 0.300 0.100 0.375 0.400 0.450 0.500 0.525 0.100 0.625 0.700 0.100 0.800 0.100 0.900 1.000 0.100 0.450 0.600 0.700
0.350 0.400 0.450 0.500 0.100 0.600 0.100 0.100 0.800 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.600 0.100 0.100
0.336 0.384 0.100 0.100 0.100 0.576 0.640 0.672 0.100 0.800 0.896 0.100 0.100 0.100 0.100 0.100 0.100 0.576 0.768 0.100
0.100 0.375 0.100 0.100 0.500 0.100 0.625 0.100 0.750 0.100 0.100 0.100 1.000 0.100 0.100 0.100 0.100 0.100 0.750 0.875
0.300 0.100 0.100 0.100 0.100 0.100 0.100 0.600 0.100 0.100 0.800 0.900 0.100 1.000 0.100 0.100 0.100 0.100 0.100 0.800
0.100 0.100 0.375 0.100 0.100 0.500 0.100 0.100 0.100 0.100 0.100 0.875 0.100 0.100 1.000 0.100 0.100 0.500 0.100 0.100
0.280 0.320 0.360 0.400 0.100 0.480 0.100 0.560 0.640 0.100 0.100 0.840 0.100 0.100 0.960 0.100 0.100 0.100 0.100 0.100
0.100 0.300 0.100 0.375 0.400 0.450 0.500 0.100 0.100 0.625 0.100 0.100 0.800 0.875 0.100 1.000 0.100 0.450 0.600 0.700
0.240 0.100 0.100 0.100 0.100 0.100 0.100 0.480 0.100 0.100 0.640 0.100 0.100 0.800 0.100 0.100 0.100 0.100 0.100 0.100
0.100 0.100 0.300 0.100 0.100 0.400 0.100 0.100 0.100 0.100 0.100 0.700 0.100 0.100 0.800 0.100 1.000 0.100 0.100 0.1

,

00
0.100 0.100 0.270 0.300 0.320 0.360 0.400 0.100 0.100 0.500 0.100 0.100 0.640 0.700 0.100 0.800 0.900 0.360 0.480 0.100

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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[ ]0.210 0.240 0.270 0.300 0.320 0.360 0.400 0.420 0.480 0.500 0.560 0.630 0.640 0.700 0.720 0.800 0.900 0.360 0.480 0.560b =  
 

4. CONCLUSIONS 

In this paper, we added new theoretical results for the fuzzy 
relational equations with max-product composition problem 
in finding the complete set of  minimal solutions. We 
proposed the necessary condition possessed by a minimal 
solution in terms of  the maximum solution, which can be 
easily computed. Precisely, for any minimal solution, each of  
its components is unique and either 0 or the corresponding 
component's value of  the maximum solution. With the help 
of  this necessary condition, a simple matrix includes all of  
minimal solutions was derived. By this simple matrix, we then 
proposed four rules to fix as many as possible the values of  
components of  any minimal solution to reduce the problem. 
Thanks to these rules, we developed an efficient procedure to 
obtain the complete set of  minimal solutions. The proposed 
procedure can obtain less the possible redundant solutions 
than Leotamonphong and Fang's method. 

Although the necessary condition enables us to propose 
some rules to reduce the problem size and avoid 
combinatorial enumeration, it is not a universal one for 
general fuzzy relational equations. Actually, a similar necessary 
condition for fuzzy relational equations with max-min 
composition becomes much complicated than the one 
mentioned above. The following simple problem of  fuzzy 
relational equations with max-min composition illustrates this 
point. 

 

[ ]1 2
0.4 0.5 0.8

[ ] 0.4 0.6 0.8
0.2 0.6 0.8

x x
⎡ ⎤

=⎢ ⎥
⎣ ⎦

. 

 
Direct computing shows that the maximum solution 
1 2( ,  ) (1,  1)x x = . Furthermore, the minimal solutions of  this 

problem are 1 2( ,  ) (0.4,  0.8)x x =  and 1 2( ,  ) (0.8,x x =  
0.6) . Note that 1 1x x≠ , 2 2x x≠ . This problem implies 
that such a necessary condition possessed by a minimal 
solution in terms of  the maximum solution is not a universal 
one for the class of  fuzzy relational equations with 
max-t-norm. Therefore, in the future works, we shall consider 
a smaller subclass of  fuzzy relational equations with 
max-strict-t-norm to find the complete set of  minimal 
solutions. 
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