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Abstract⎯We present a parallel algorithm for power matrix An in O(log2 n) time using O(n2.807/log n) number of  
processors. It is shown that the growth rate of  the proposed algorithm is the same as the parallel arithmetic complexity of  
matrix computations, including matrix inversion and solving systems of  linear equations. 
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1. INTRODUCTION 

Matrix computations, such as inversion of  a specific 
matrix, power matrix, solving a linear system of  equations, 
are very important to scientific and engineering 
computational practice (Padmini, Madan and Jain (1999), 
Pudlak (2000), Rojo, Soto and Rojo (2000)). Let A be an 
order n matrix and let TI(n), TE(n), TD(n), TP(n) and TPW(n) 
denote the parallel arithmetic complexity of  inverting order 
n matrices, solving a system of  n linear equations in n 
unknowns, finding order n determinants, calculating the 
characteristic polynomials of  order n matrices, and finding 
the nth order matrix, respectively. In the previous research 
Csanky (1976), it has shown that TI(n), TD(n), TE(n) and 
TP(n) have the same growth rate (order of  magnitude) in 
time O(log2 n) using O(n4) processors. 

The purpose of  this note is to develop a parallel power 
matrix algorithm running in O(log2 n) time using 
O(n2.807/log n) number of  processors. In addition, we show 
that the growth rate of  the proposed parallel An algorithm, 
TPW(n), is the same as TI(n), TD(n), TE(n) and TP(n). 

 
2. THE ALGORITHM 

Assume ri, i = 1, …, n, are the n roots of  r, where r is 
any complex number. Since An = An - rI + rI = [(An - 
rI)-1]-1 + rI, we can prove that 
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From Kung (1976), it is shown 
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and we thus have 
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We can therefore develop the power matrix algorithm 

based on its relationship with the matrix inversion 
algorithm, shown in (2). That is, by improving the 
complexity of  matrix inversion algorithm, we can further 
reduce the complexity of  the power matrix algorithm. 
 
2.1 Parallel algorithm for A-1 

The proposed matrix inversion algorithm is based on the 
combination of  Leverrier's method Lakshmivarahan and 
Dhall (1990) and parallel Strassen’s algorithm Paprzycki 
and Cyphers (1996). Let the characteristic polynomialsΦ
(λ) of  matrix A be denoted by det [I – A] = (λn+c1n-1λ
n-1+… +cn-1λ+cn = 0. Assumeλ1, λ2,…, λn are the 
roots ofΦ(λ).  From the theory of  similar matrices, it is 
known that the trace of  A, denoted by  
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We also can derive the following equations: 
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We can therefore obtain A-1 from the Cayley-Hamilton 

theorem, i.e. 
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Parallel algorithm A-1 

Step 1. Compute A ~ An-1. The parallel Strassen's algorithm 
performs block matrix multiplication in O(log n) time 
when using O(n2.807/log n) processors Grayson and Van De 
Geijn (1996). Adopting the concept of  fan-in algorithm 
Romine and Ortega (1988), we can calculate A ~ An-1 
running in O(log n) O(log n) = O(log2 n) time  
Using 
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processors. 
Step 2. Compute si. The traces si of  Ai, i ＝ 1, 2, ..., n are 
obtained in O(log n) time using O(n2) processors. 
Step 3. Compute ci. Using the lower triangular equations (3) 
to solve the coefficients of  characteristic polynomials ci, i = 
1, 2, …, n. This step can be executed in parallel in O(log2 n) 
time using O(n3) processors Sameh and Brent (1977). 
Step 4. Calculate A-1. Once ci and Ai are found, this step 
can be executed in parallel in O(log n) time using O(n3) 
processor Lakshmivarahan and Dhall (1990). 
 
Theorem 1. The parallel algorithm for computation of  the 
inversion of  A in O(log2 n) time using O(n3.807/log2 n) 
processors bound when n >128. 
 
Proof. We establish the theorem by exhibiting an 
algorithm. 
 
2.2  Parallel algorithm for power matrix 

We can then develop the parallel power matrix 
algorithm. 

 
Parallel algorithm An 

Step 1. Calculate A - riI, i = 1, 2, ..., n. This step can be 
executed in parallel in O(1) time using O(n2) processors. 
Step 2. Calculate (A - riI)-1, i = 1, 2, ..., n. The complexity of  
matrix inversion is TI(n) as defined before. 

Step 3. Calculate D = −− 1( )i
i

r
A r I

nr
. This step can be 

executed in parallel in O(2) time using O(n3) processors. 
Step 4. Calculate E = 

1

n

i
D

=∑ . This is the sum of  n 

matrices and can be executed in parallel in O(log n) time 
using O(n3) processors. 
Step 5. Parallel computation of  F = E-1. The complexity of  
matrix inversion is TI(n) as defined before. 
Step 6. Calculate An ＝ F + rI. The sum of  two matrices 
can be executed in parallel in O(1) time using O(n2) 
processors. 
 
3. COMPLEXITY AND GROWTH RATE 

We now derive the complexity of  TE(n), TD(n), TP(n) and 
TPW(n).  

 
Theorem 2. The computing time TE(n), TD(n), and TP(n) 
of  A are O(log2 n) with O(n3.807/log2 n) number of  
processors bound when n >128. 

 
Proof.  

(a) Using finite steps of  row operation and O(n 2) 
processors, we can transfer A x = b to A' x = I. It takes 
TI(n) steps to calculate (A')-1, and TE(n) is O(log2 n) 
using O(n3.807/log2 n) processors bound when n >128. 

(b) From − =( 1)   det[ ]n
nc A  and theorem 1, we can 

obtain TD(n) in O(log2 n) time using O(n 3.807/log2 n) 
processors bound when n >128. 

(c) Whileφ λ λ= −( ) det[ ]I A
λ λ λ λ− −

−= + + + + +1 2
1 2 1( ... )n n n

n nc c c c , by theorem 1, 
we obtain TP(n) is O(log2 n) time using O(n 3.807/log2 n) 
processors bound when n >128. 

 
Theorem 3. The computing time of  the parallel algorithm 
for An is TPW(n) is O(log2 n) with O(n 2.807/log n) processors 
bound when n >128. 

 
Proof. We establish the theorem by exhibiting an 
algorithm. 

 
Theorem 4. TI(n), TD(n), TE(n), Tp(n), and Tpw(n) are all of  
the same growth rate  
 
Proof. From the step 1 through step 6 of  the proposed 
parallel power matrix algorithm, we have TPW(n) ≤ 2TI(n) + 
O(log n)+O(4). By the definition of  equivalence theorems in 
Csanky (1976), we yield the result of  the theorem. 
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