
International Journal of Operations Research Vol. 1, No. 1, 59−60 (2004)

A Parallel Algorithm for Power Matrix Computation

JrJung Lyu1,∗, Ming-Chang Lee2
1Department of Industrial and Information Management, National Cheng Kung University, Tainan, Taiwan, ROC

2Department of Information Management, Fooyin University, Kaohsiung, Taiwan, ROC

Abstract⎯We present a parallel algorithm for power matrix An in O(log2 n) time using O(n2.807/log n) number of
processors. It is shown that the growth rate of the proposed algorithm is the same as the parallel arithmetic complexity of
matrix computations, including matrix inversion and solving systems of linear equations.
Keywords⎯matrix computations, parallel algorithms, computational complexity

∗ Corresponding author’s email: jlyu@mail.ncku.edu.tw

1. INTRODUCTION

Matrix computations, such as inversion of a specific
matrix, power matrix, solving a linear system of equations,
are very important to scientific and engineering
computational practice (Padmini, Madan and Jain (1999),
Pudlak (2000), Rojo, Soto and Rojo (2000)). Let A be an
order n matrix and let TI(n), TE(n), TD(n), TP(n) and TPW(n)
denote the parallel arithmetic complexity of inverting order
n matrices, solving a system of n linear equations in n
unknowns, finding order n determinants, calculating the
characteristic polynomials of order n matrices, and finding
the nth order matrix, respectively. In the previous research
Csanky (1976), it has shown that TI(n), TD(n), TE(n) and
TP(n) have the same growth rate (order of magnitude) in
time O(log2 n) using O(n4) processors.

The purpose of this note is to develop a parallel power
matrix algorithm running in O(log2 n) time using
O(n2.807/log n) number of processors. In addition, we show
that the growth rate of the proposed parallel An algorithm,
TPW(n), is the same as TI(n), TD(n), TE(n) and TP(n).

2. THE ALGORITHM

Assume ri, i = 1, …, n, are the n roots of r, where r is
any complex number. Since An = An - rI + rI = [(An -
rI)-1]-1 + rI, we can prove that

1

()
n

n
i

i

A rI A r I
=

− = −∏

From Kung (1976), it is shown

1 1

11

() ()
n n

i
i i

ii

r
A r I A r I

nr
− −

==

− = −∑∏ (1)

and we thus have

()

()

−
−

=

−
−

=

⎡ ⎤
= − +⎢ ⎥
⎣ ⎦

⎡ ⎤= − +⎢ ⎥
⎣ ⎦

∏

∑ 　　　　　　　　　　

1
1

1

1
1

1

n
n

i
i

n
i

i
i

A A r I rI

r A r I rI
nr

(2)

We can therefore develop the power matrix algorithm

based on its relationship with the matrix inversion
algorithm, shown in (2). That is, by improving the
complexity of matrix inversion algorithm, we can further
reduce the complexity of the power matrix algorithm.

2.1 Parallel algorithm for A-1

The proposed matrix inversion algorithm is based on the
combination of Leverrier's method Lakshmivarahan and
Dhall (1990) and parallel Strassen’s algorithm Paprzycki
and Cyphers (1996). Let the characteristic polynomialsΦ
(λ) of matrix A be denoted by det [I – A] = (λn+c1n-1λ
n-1+… +cn-1λ+cn = 0. Assumeλ1, λ2,…, λn are the
roots ofΦ(λ). From the theory of similar matrices, it is
known that the trace of A, denoted by

λ
=

= ∑ 1

n k
k ii

s ,

and

(1) det[]n
nc A− =

and

λ
=

= − ∏
1

(1)
n

n
n i

i

c .

We also can derive the following equations:

−

−

⎛ ⎞ ⎡ ⎤ ⎡ ⎤
⎜ ⎟ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎢ ⎥ ⎢ ⎥= −⎜ ⎟ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦

1 1

1 2 2

2 1

1

1 1

1 0 0 0
2 0

k

n n n n

c s
s c s
s s

s

s s s n c s

 (3)

We can therefore obtain A-1 from the Cayley-Hamilton

theorem, i.e.

1 2
1 1 1(...)n n

n

n

A c A c IA
c

− −
− −+ + +
= − (4)

Lyu and Lee: A Parallel Algorithm for Power Matrix Computation
IJOR Vol. 1, No. 1, 59−60 (2004)

60

Parallel algorithm A-1

Step 1. Compute A ~ An-1. The parallel Strassen's algorithm
performs block matrix multiplication in O(log n) time
when using O(n2.807/log n) processors Grayson and Van De
Geijn (1996). Adopting the concept of fan-in algorithm
Romine and Ortega (1988), we can calculate A ~ An-1
running in O(log n) O(log n) = O(log2 n) time
Using

2.807 3.807

2log log log
n n nO O O

n n n
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

processors.
Step 2. Compute si. The traces si of Ai, i ＝ 1, 2, ..., n are
obtained in O(log n) time using O(n2) processors.
Step 3. Compute ci. Using the lower triangular equations (3)
to solve the coefficients of characteristic polynomials ci, i =
1, 2, …, n. This step can be executed in parallel in O(log2 n)
time using O(n3) processors Sameh and Brent (1977).
Step 4. Calculate A-1. Once ci and Ai are found, this step
can be executed in parallel in O(log n) time using O(n3)
processor Lakshmivarahan and Dhall (1990).

Theorem 1. The parallel algorithm for computation of the
inversion of A in O(log2 n) time using O(n3.807/log2 n)
processors bound when n >128.

Proof. We establish the theorem by exhibiting an
algorithm.

2.2 Parallel algorithm for power matrix

We can then develop the parallel power matrix
algorithm.

Parallel algorithm An

Step 1. Calculate A - riI, i = 1, 2, ..., n. This step can be
executed in parallel in O(1) time using O(n2) processors.
Step 2. Calculate (A - riI)-1, i = 1, 2, ..., n. The complexity of
matrix inversion is TI(n) as defined before.

Step 3. Calculate D = −− 1()i
i

r
A r I

nr
. This step can be

executed in parallel in O(2) time using O(n3) processors.
Step 4. Calculate E =

1

n

i
D

=∑ . This is the sum of n

matrices and can be executed in parallel in O(log n) time
using O(n3) processors.
Step 5. Parallel computation of F = E-1. The complexity of
matrix inversion is TI(n) as defined before.
Step 6. Calculate An ＝ F + rI. The sum of two matrices
can be executed in parallel in O(1) time using O(n2)
processors.

3. COMPLEXITY AND GROWTH RATE

We now derive the complexity of TE(n), TD(n), TP(n) and
TPW(n).

Theorem 2. The computing time TE(n), TD(n), and TP(n)
of A are O(log2 n) with O(n3.807/log2 n) number of
processors bound when n >128.

Proof.

(a) Using finite steps of row operation and O(n 2)
processors, we can transfer A x = b to A' x = I. It takes
TI(n) steps to calculate (A')-1, and TE(n) is O(log2 n)
using O(n3.807/log2 n) processors bound when n >128.

(b) From − =(1) det[]n
nc A and theorem 1, we can

obtain TD(n) in O(log2 n) time using O(n 3.807/log2 n)
processors bound when n >128.

(c) Whileφ λ λ= −() det[]I A
λ λ λ λ− −

−= + + + + +1 2
1 2 1(...)n n n

n nc c c c , by theorem 1,
we obtain TP(n) is O(log2 n) time using O(n 3.807/log2 n)
processors bound when n >128.

Theorem 3. The computing time of the parallel algorithm
for An is TPW(n) is O(log2 n) with O(n 2.807/log n) processors
bound when n >128.

Proof. We establish the theorem by exhibiting an
algorithm.

Theorem 4. TI(n), TD(n), TE(n), Tp(n), and Tpw(n) are all of
the same growth rate

Proof. From the step 1 through step 6 of the proposed
parallel power matrix algorithm, we have TPW(n) ≤ 2TI(n) +
O(log n)+O(4). By the definition of equivalence theorems in
Csanky (1976), we yield the result of the theorem.

REFERENCES

1. Csanky, L. (1976). Fast parallel matrix inversion
algorithms. SIAM Journal of Computing, 5: 618-623.

2. Grayson, B. and Van De Geijn, R. (1996). A high
performance parallel Strassen implementation. Parallel
Processing Letters, 6(1): 3-12.

3. Kung, H.T. (1976). New algorithms and lower bounds
for the parallel evaluation of certain rational expressions
and recurrences. Journal of the Association for Computing
Machinery, 23(2): 252-261.

4. Lakshmivarahan, S. and Dhall, S.K. (1990). Analysis and
Design of Parallel Algorithm, McGraw-Hill, New York.

5. Padmini, M.V., Madan, B.B., and Jain, B.N. (1999). A
linear array for large sparse matrix operations -
Triangular system solvers and matrix multiplication,
Parallel Algorithms and Applications, 13: 217-237.

6. Paprzycki, M. and Cyphers, C. (1996). Using Strassen’s
matrix multiplication in high performance solution of
linear systems, Computers and Mathematical Applications, 31:
55-61.

7. Pudlak, P. (2000). A note on the use of determinant for
proving lower bounds on the size of linear circuits,
Information Processing Letters, 74: 197-201.

8. Rojo, O., Soto, R., and Rojo, H. (2000). Bounds for sums
of eigenvalues and applications, Computers and Mathematics
with Applications, 39: 1-15.

9. Romine, C.H. and Ortega, J.M. (1988). Parallel solution
of triangular systems of equations, Parallel Computing, 6:
109-114.

10. Sameh, A.H. and Brent, R.P. (1977). Solving triangular
systems on a parallel computer, SIAM Journal on
Numerical Analysis, 14: 1101-1113.

