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Abstract⎯We study the reliability and sensitivity analysis of  a system with M operating machines, S warm standbys, and a 
repairable service station. Failure times and service times of  each machine (operating or standby) are assumed to be 
exponentially distributed. While the service station is working, it is subject to breakdowns according to a Poisson process. 
When the station breaks down, it requires repair at a repair facility, where the repair times follow the negative exponential 
distribution. The K out of  M + S system is analyzed where K = 1, 2, …, M. This paper presents derivations for the system 
reliability, Ry(t), the mean time to system failure, MTTF, and numerical illustration. Several cases are analyzed to investigate 
the effects of  various parameters on the Ry(t) and the MTTF. Sensitivity analysis for the Ry(t) and the MTTF is also studied. 
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1. INTRODUCTION AND LITERATURE 
REVIEW 

In the open literature, most of  the papers analyze the 
queueing systems where the service stations have never 
failed. However, in real-life situations we often encounter 
cases where service stations may break down and can be 
repaired. We study a system with M + S identical machines 
and a single repairable service station. As many as M of  
these can be operating simultaneously in parallel, the rest 
of  the S machines are warm-standby spares. A repairable 
service station means that the service station is typically 
subject to unpredictable breakdowns and can be repaired. 

Several researchers have investigated some queueing 
systems in which a single service station subject to 
breakdowns is considered. Most of  the papers deal with 
only some queueing problems of  the system, rather than 
some reliability problems of  the system. Past work may be 
divided into two parts according to the system is studied 
from the viewpoint of  the queueing theory or from the 
viewpoint of  the reliability. In the first category we review 
previous papers which relate to a queueing theory 
viewpoint only. Infinite source M/M/1 queue with 
breakdowns was first proposed by Wang (1989). Wang 
(1990) developed steady-state analytic solutions of  the 
M/M/1 machine repair problem with a single service 
station subject to breakdowns. The M/Ek/1 machine 
repair problem with a non-reliable service station was 
proposed by Wang (1997). The second category of  authors 
deal with papers which relates to a reliability viewpoint only. 
Cao and Cheng (1982) first introduced reliability concepts 
into a queueing system with a repairable service station 
where the life time of  the service station is exponentially 
distributed and its repair time has a general distribution. 
Further, the reliability analysis of  an M/G/1 queueing 
system in which the service station has an m-unit reliability 

series structure was analyzed by Cao (1994). Wang and 
Sivazlian (1989) studied the reliability characteristics of  a 
multiple-server (m + w)-unit system with w warm standby 
units with exponential failure and exponential repair time 
distributions. Cao (1985) derived the reliability quantities 
of  an M/G/1 machine repair model with a repairable 
service station which consists a single unit. Liu and Cao 
(1995) extended Cao’s model to a repairable service station 
whose structure contains an m-unit reliability series. Li et al. 
(1997) examined the reliability analysis of  an M/G/1 
queueing system with server breakdowns and Bernoulli 
vacations. Tang (1997) investigated some reliability and 
queueing problems of  a single-server M/G/1 queueing 
system subject to breakdowns. Recently, the steady-state 
availability and the mean time to system failure of  a 
repairable system with warm standbys plus balking and 
reneging were studied by Ke and Wang (2002) and Wang 
and Ke (2003). 

In this paper, we study the reliability characteristics of  a 
repairable system to determine how reliability can be 
improved by providing sufficient spares as standbys. We 
also perform a sensitivity analysis for changes in the 
reliability characteristics along with changes in specific 
values of  the system parameters. System failure is defined 
to be less than K machines in active operation, where K = 1, 
2, …, M (K out of  M + S system). That is, the system 
failure is defined as: (i) the system fails when all M + S 
machines fail; or (ii) the system fails when at least one of  
the M operating machines fails (i.e. the standby machines 
are emptied). This paper should be distinguished from 
previous works in that: 
(a) the reliability problem with standbys has distinct 
characteristics which are different from the machine repair 
problem with standbys; 
(b) it considers an arbitrary number of  M machines 
operating simultaneously, and an arbitrary number of  S 
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machines are in preoperation (warm standby); 
(c) it considers a repairable service station which is subject 
to breakdowns; 
(d) it performs a sensitivity analysis. 

We first develop the explicit expressions for the 
reliability, ( )YR t , and the mean time to system failure, 
MTTF, by using Laplace transforms techniques. Next, we 
perform a parametric investigation which provides 
numerical results to show the effects of  various system 
parameters to the ( )YR t , and to the MTTF. Finally, we 
perform a sensitivity analyses for changes in the ( )YR t  
and the MTTF along with changes in specific values of  the 
system parameters. 

 
1.1 Notation 

M: number of  operating machines 
S: number of  warm standby machines 
n : number of  failed machines in the 

system 
λ : failure rate of  an operating machine 
η : failure rate of  a warm standby machine
µ : service rate of  a failed machine 
α : breakdown rate of  a service station 
β : repair rate of  a service station 

nλ : mean failure rate when there are n 
failed machines in the system 

( )np t : probability that the service station is 
working and there are n failed machines 
in the system at time t 

( )P t : probability vector consisting of  ( )np t  
( )nq t : probability that the service station is 

broken down and there are n failed 
machines in the system at time t 

( )Q t : probability vector consisting of  ( )nq t  
s: Laplace transform variable 

* ( )np s : Laplace transform of  ( )nP t  
* ( )P s : Laplace transform of  ( )P t  
(0)P : initial vector of  ( )P t  when 0t =  

* ( )nq s : Laplace transform of  ( )nq t  
* ( )Q s : Laplace transform of  ( )Q t  
(0)Q : initial vector of  ( )Q t  when 0t =  
Y : time to failure of  the system 

( )YR t : reliability function of  the system 
MTTF: mean time to system failure 

 
2. DESCRIPTION OF THE SYSTEM 

We consider a system with M identical machines 
operating simultaneously in parallel, S warm standbys, and 
a single service station which is subject to breakdowns. 

It is assumed that the switch is perfect and that the 
switchover time is instantaneous. Each of  the operating 
machines fails independently of  the state of  the others and 
has an exponential time-to-failure distribution with 

parameter λ . If  an operating machine fails, it is 
immediately replaced by a spare if  one is available. We 
assume that each of  the available spares fails independently 
of  the state of  all the others and has an exponential 
time-to-failure distribution with parameter η  (0 < η  < 
λ ). The failed machine is sent for service, and after service 
is treated as a spare. It is assumed that when a spare moves 
into an operating state, its failure characteristics will be that 
of  an operating machine. Whenever an operating machine 
or a spare fails, it is immediately sent to a service station 
where it is served in order of  breakdowns, with a 
time-to-service which is exponentially distributed with 
parameter µ . Further, the succession of  failure times and 
the succession of  service times are independently 
distributed random variables. Suppose that the service 
station can break down at any time with breakdown rate 
α . Whenever the service station breaks down, it is 
immediately repaired at a repair rate β . Again, breakdown 
times and repair times of  the service station are assumed 
to be exponentially distributed. We now assume that the 
service station can serve only one failed machine at a time, 
and that the service is independent of  the failure of  the 
machines. If  the service station breaks down, then a failed 
machine must wait until the service station is repaired. If  
service of  a failed machine is allowed to be interrupted by 
a breakdown, resumption takes place as soon as the service 
station is available or the repair completion terminates. If  
the service station breaks down, then a failed machine 
must wait until a service station is repaired. When the 
repair of  a service station is completed, the service station 
immediately serves a failed machine. Although no service 
occurs during the repair period of  failed service station, 
failed machines continue to arrive according to a Poisson 
process. If  an operating machine fails(or spare fails) and 
one spare is available at an instant when the service station 
is available, the failed machine at once goes for service, and 
the spare is put into operation. Once a service station is 
repaired, it becomes as good as new. 

System reliability is studied according to the assumptions 
that system failure is defined to be less than K machines in 
active operation, where K = 1, 2, …, M. Therefore, if  n  
denotes the number of  failed machines in the system, the 
system is failed if  and only if  1n L M S K≥ = + − +  
 
3. RELIABILITY ANALYSIS OF THE SYSTEM 

At time 0t = , the system has just started operation 
with no failed machines when the service station is working. 
The reliability function under the exponential failure time, 
exponential service time, exponential breakdown time, and 
exponential repair time distributions can then be developed 
through the birth and death process. Let 

( )np t ≡  probability that the service station is working and 
there are n failed machines in the system at time t, 

( )nq t ≡  probability that the service station is broken 
down and there are n failed machines in the 
system at time t, 

where 
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0,1, 2, ..., ,n L=  and 1,( 1, 2, ..., )L M S K K M= + − + = . 
 

The mean failure rate nλ  is given by: 
 

( )
( )
0

n

M S n
M S n
λ η

λ λ
+ −⎧

⎪= + −⎨
⎪
⎩

 
 0,1, ..., 1;
 , 1, ..., 1;

.

if n S
if n S S L
otherwise

= −
= + −  

 
The Laplace transforms of  ( )np t  and ( )nq t  are 

defined as: 
 

*

0

*

0

( ) ( ) , 0,1, ..., ,

( ) ( ) , 0,1, ..., .

st
n n

st
n n

p s e p t dt n L

q s e q t dt n L

∞ −

∞ −

= =

= =

∫

∫
 

 
The following Laplace transform expressions for * ( )np s  

and * ( )nq s  are obtained in terms of  nλ . 
 
(i) 0n =  

* * *
0 0 1 0 0( ) ( ) ( ) ( ) (0)s p s p s q s pλ α µ β+ + − − =          (1a) 

 
(ii) 1 2n L≤ ≤ −  

* *
1 1

* *
1

( ) ( ) ( )

( ) ( ) (0)
n n n n

n n n

p s s p s

p s q s p

λ λ µ α

µ β
− −

+

− + + + +

− − =
               (1b) 

 
(iii) 1n L= −  

λ λ µ α

β
− − − −

− −

− + + + +

− =

* *
2 2 1 1

*
1 1

( ) ( ) ( )

( ) (0)
L L L L

L L

p s s p s

q s p
          (1c) 

 
(iv) n L=  

* *
1 1( ) ( ) (0)L L L Lp s sp s pλ − −− + =                    (1d) 

 
(v) 0n =  

* *
0 0 0 0( ) ( ) ( ) (0)s q s p s qλ β α+ + − =                 (1e) 

 
(vi) 1 2n L≤ ≤ −  

* * *
1 1( ) ( ) ( ) ( ) (0)n n n n n nq s s q s p s qλ λ β α− −− + + + − =       (1f) 

 
(vii) 1n L= −  

* *
2 2 1 1

*
1 1

( ) ( ) ( )

( ) (0)
L L L L

L L

q s s q s

p s q

λ λ β

α
− − − −

− −

− + + +

− =
               (1g) 

 
(viii) n L=  

* *
1 1( ) ( ) (0)L L L Lq s sq s qλ − −− + =                    (1h) 

 
where 
 

1, 1, 2, ..., ,L M S K K M= + − + =  
 
and 
 

0 (0) 1, (0) 0, 1, 2, ..., ,

(0), 0,1, 2, ...,
n

n

p p for n L

q for n L

= = =

=
 

 
Equation(1) can be written in following matrix form 
 

*( ) ( ) (0)D s W s W=                             (2) 
 
where D(s) = 

λ α µ
λ λ µ α µ

λ λ µ α

λ µ α µ
λ λ µ α

λ
α

α
α

α
α

−

− −

−

+ + −⎡
⎢ − + + + −⎢
⎢ − + + +
⎢
⎢
⎢ + + + −
⎢

− + + +⎢
⎢ −⎢

−⎢
⎢ −⎢
⎢ −
⎢
⎢
⎢ −
⎢

−⎢
⎢
⎣

0

0 1

1 2

2

2 1

1

0 0 0 0
0 0 0

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

L

L L

L

s
s

s

s
s

s
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β
β

β

β
β

λ β
λ λ β

λ λ β

λ β
λ λ β

λ

−

− −

−

− ⎤
⎥− ⎥
⎥−
⎥
⎥
⎥−
⎥

− ⎥
⎥
⎥

+ + ⎥
⎥− + + ⎥
⎥− + +
⎥
⎥
⎥+ +
⎥

− + + ⎥
⎥− ⎦

0

0 1

1 2

2

2 1

1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0 0
0 0 0 0
0 0 0 0

L

L L

L

s
s

s

s
s

s

 

 
is a 2(L + 1) ×  2(L + 1) matrix. * ( )W s  is a column 

vector containing the set of elements * *( ), ( )
T

P s Q s⎡ ⎤⎣ ⎦ , 

where 
 

* ( )P s = * * * * *
0 1 2 1( ), ( ), ( ), , ( ), ( )

T

L Lp s p s p s p s p s−⎡ ⎤⋅ ⋅ ⋅⎣ ⎦ , 

* ( )Q s = * * * * *
0 1 2 1( ), ( ), ( ), , ( ), ( )

T

L Lq s q s q s q s q s−⎡ ⎤⋅ ⋅ ⋅⎣ ⎦ , 

 
and the symbols T denotes the transpose. (0)W  is a 
column vector containing the set of elements [P(0), Q(0)]T , 
where 
 

(0)P  = [ ]0 1 2 L-1 L(0), (0), (0),..., (0), (0) Tp p p p p  
  = [ ]1,0,0,...,0 T , 
 

(0)Q = [ ]−0 1 2 1(0), (0), (0), ..., (0), (0) T
L Lq q q q q  

 = [ ]0,0,0,...,0 T  
 

Sovling (2) in accordance with Cramer’s rule, we obtain 
the expression for * ( )Lp s  and * ( )Lq s  given by 
 

[ ]
[ ]

1* ( )
( )

( )
L

L

det N s
p s

det D s
+= ,           (3) 

 

[ ]
2( 1)*

( )
( )

( )
L

L

det N s
q s

det D s
+⎡ ⎤⎣ ⎦= ,     (4) 

 
where det[D(s)] denotes the determinant of matrix D(s), 
det[NL+1(s)] denotes the determinant obtained by replacing 
the (L + 1)th column in matrix D(s) by the initial vector 
W(0)=[1, 0, 0, 0, …, 0, 0]T and det[N2(L+1)(s)] is the 
determinant obtained by replacing the 2(L + 1)th column 
in matrix D(s) by the initial vector W(0)=[1, 0, 0, 0, …, 0, 
0]. 

It is too complex to derive the explicit solutions * ( )Lp s  
and * ( )Lq s  of (3) and (4), respectively. Therefore, we use 
the computer software MAPLE to obtain the solutions 

* ( )Lp s  and * ( )Lq s . We first consider the denominator 
det[D(s)] in (3) and (4). It is easy to know that the equation 
det[D(s)] = 0 has double zero roots. Let s = -r (r are 
unknown values), then we have 

( )D r A rI− = − , 
where A = D(0) is an 2( 1) 2( 1)L L+ × +  matrix and I is 
the identity matrix. Thus (2) becomes 
 

− =*( ) ( ) (0)A rI W s W .                         (5) 
 

We set the determinant of the matrix A rI−  equal to 
zero, and find the corresponding distinct eigenvalues rl (rl 
≠0 and l=1, 2, 3, …,2L) which may be real or complex. 
Suppose that there are i real distinct eigenvalues (excluding 
zero) say r1, r2, …, ri, and j pairs distinct conjugate complex 
eigenvalues, say 1 1( , )i ir r+ + , ( )1 2,i ir r+ + , …, ( )1 ,i i jr r+ + , 
where i and j satisfy i 2 2i j L+ =  It is to be noted that i 
= 0 denote all eigenvalues (excluding 0) are complex, and j 
= 0 represents all eigenvalues are real. 

Next, we consider the numerators det[NL+1(s)] and 
det[N2(L+1)(s)] in (3) and (4), respectively. The computer 
software MAPLE is used to evaluate det[NL+1(s)] and 
det[N2(L+1)(s)]. Thus, substituting det[D(s)] and det[NL+1(s)] 
into (3) yields 
 

= + + ⋅⋅⋅ +
+ +

0 1

1

* ( ) i
L

i

a aa
p s

s s r s r
 

( )

( )

+ + + +

+ + + +

+
+

+ + +

+
+ ⋅⋅ ⋅ +

+ + +

1 1
2

1 1 1 1

2

i i i i

j j

i j i j i j i j

b s c
s r r s r r

b s c

s r r s r r

                 (6) 

 
where 0 1 1 1 2 2, , ..., , , , , , ..., ,i j ja a a b c b c b c  are unknown real 
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numbers. Likewise, substituting det[D(s)] and det[N2(L+1)(s)] 
into (4), we obtain 
 

( )

( )

0 1

1

1 1
2

1 1 1 1

2

* ( )

              

              

i
L

i

i i i i

j j

i j i j i j i j

d dd
q s

s s r s r
e s f

s r r s r r
e s f

s r r s r r

+ + + +

+ + + +

= + + ⋅⋅ ⋅ +
+ +

+
+

+ + +

+
+ ⋅⋅ ⋅ +

+ + +

        (7) 

 
where 0 1 1 1 2 2, , ..., , , , , , ..., ,i j jd d d e f e f e f  are unknown real 
numbers .  

Let lu  and lv  represent the real part and the 
imaginary part of complex eigenvalue i lr +  respectively. 
Inverting the Laplace transform in (6) and (7), we get the 
explicit expressions for 

 

0
1

1

( )

           ( ) ( )

l

l l

i
r t

L l
l

j
u t u tl l l

l l l
l l

p t a a e

c b u
b e cos v t e sin v t

v

−

=

− −

=

= +

⎡ ⎤−
+ +⎢ ⎥

⎣ ⎦

∑

∑
     (8) 

 

0
1

1

( )

          ( ) ( )

l

l l

i
r t

L l
l

j
u t u tl l l

l l l
l l

q t d d e

f e u
e e cos v t e sin v t

v

−

=

− −

=

= +

⎡ ⎤−
+ +⎢ ⎥

⎣ ⎦

∑

∑
     (9) 

 
respectively. 

Since the system has failed during the infinite period of 
time. Therefore we obtain 
         

[ ]0 0 lim ( ) ( ) 1L Lt
a d p t q t

→∞
+ = + =               (10) 

 
3.1 The reliability function ( )YR t  

Let Y be the random variable and represent the time to 
failure of the system. Since ( )Lp t  is the probability that 
the system has failed on or before time t when the service 
station is working, and ( )Lq t  is the probability that the 
system has failed on or before time t when the service 
station is broken down, we have the reliability function 
given by 

( )YR t  = 1 ( ) ( )L Lp t q t− − , 0t ≥ .           (11) 
 
3.2 The mean time to system failure MTTF 

If ( ) ( )*

0

st
Y YR s e R t dt

∞ −= ∫  is the Laplace transform of 

( )YR t  and always finite, we have 
 

( ) ( )*

0 0
limY Ys

R t dt R s
∞

→
=∫ .                  (12) 

 
Thus the MTTF is given by 
 

MTTF = ( )
0

,YR t dt
∞

∫                       (13) 

 
or equivalently 
 
MTTF = ( )*

0
lim Ys

R s
→

 

=
( )

( )

=

→
= =+ + + +

= + + + +

⎡ ⎤− −
−⎢ ⎥

+⎢ ⎥
⎢ ⎥+⎢ ⎥− −

+ + + +⎢ ⎥
⎢ ⎥

+⎢ ⎥−⎢ ⎥+ + +⎣ ⎦

∑

∑ ∑

∑

0 0

1

20 1 11 1 1

2
1 1 1 1

1

lim

i
l

l l
j i

l l l

s l li i i i l l

j
l l

l i i i i l

a d a
s s r

b s c d
s r r s r r s r

e s f
s r r s r r

         

=
1 1 1 1

j ji i
l l l l

l l l ll i l i l l i l i l

a c d f
r r r r r r= = = =+ + + +

⎡ ⎤
− + + +⎢ ⎥
⎣ ⎦
∑ ∑ ∑ ∑         (14) 

 

4. SENSITIVITY ANALYSIS FOR ( )YR t  AND 

MTTF 

In this section we first perform a sensitivity analysis for 
changes in the Ry(t) along with changes in specific values of 
the system parameters λ , µ , α , and β . Numerical 
results of the sensitivity analysis for the Ry(t) along with 
changes in λ , µ , α , and β  are presented. 
Differentiating (2) with respect to λ , we obtain 

 
*( ) * ( )
( ) ( ) 0,

D s W s
W s D s

λ λ
∂ ∂

+ =
∂ ∂

 

 
or equivalently 
 

*
1 *( ) ( )
( ) ( )

W s D sD s W s
λ λ

−∂ ∂
= −

∂ ∂
.                 (15) 

 
Using the computer software MAPLE to solve (15), we 

can obtain the solutions λ∂ ∂* ( )/Lp S  and λ∂ ∂* ( )/Lq s . 
After inverting the Laplace transform solutions, we get 

λ∂ ∂( )/Lp t  and λ∂ ∂( )/Lq t . Differentiating (11) with 
respect to λ  yields 

 

λ λ λ
∂ ∂ ∂

= − −
∂ ∂ ∂

( ) ( ) ( )Y L LR t p t q t
.        (16) 

Substituting λ∂ ∂( )/Lp t  and λ∂ ∂( )/Lq t  into (16), we 
obtain ( )/YR t λ∂ ∂ . 

Using the same procedure listed above, we can get 
( )/YR t µ∂ ∂ , ( )/YR t α∂ ∂ , and ( )/YR t β∂ ∂ . 

Next, we perform a sensitivity analysis for changes in 
the MTTF along with changes in specific values of λ , µ , 
α , and β . Numerical results of the sensitivity analysis 
for the MTTF along with changes in λ , µ , α , and β  
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are also provided. Differentiating (13) with respect to λ , 
we obtain 

 

0

( )YR tMTTF dt
λ λ

∞ ∂∂
=

∂ ∂∫ .             (17) 

 
Substituting (16) into (17) yields /MTTF λ∂ ∂ . 

Using the same procedure listed above, /MTTF µ∂ ∂ , 
/MTTF α∂ ∂ , and /MTTF β∂ ∂  can be obtained. 

 
5. NUMERICAL ILLUSTRATION 

The purpose of this section is fourfold. The first is to 
analyze graphically to study the effects of various 
parameters on the system reliability. We fix λ = 0.6, η = 
0.05, µ = 1.0, α = 0.2, β = 3.0, choose the number of 
operating machines M = 3, and consider the cases when 
the number of warm standbys S changes from 1 to 4 and 
the values of K vary from 1 to 4. We can easily see from 
Figure 1 that moderate improvement in the system 
reliability is obtained by adding the number of warm 
standbys. Moreover, Figure 2 shows that the system 
reliability increases as K decreases. Obviously, the values of 

K affect the system reliability significantly. We shall restrict 
ourselves to the reliability analysis of selecting fixed values 
M = 3, S = 2, K = 1, and η = 0.05, for the following 
cases. 
Case 1: We fix µ = 1.0, α = 0.2, β = 3.0, and vary the 
values of λ  from 0.2 to 0.6. 
Case 2: We fix λ = 0.6, α = 0.2, β = 3.0, and vary the 
values of µ  from 0.5 to 2.0. 
Case 3: We fix λ = 0.6, µ = 1.0, β = 3.0, and vary the 
values of α  from 0.1 to 0.4. 
Case 4: We fix λ = 0.6, µ = 1.0, α = 0.2, and vary the 
values of β  from 3.0 to 9.0. 

It can be easily observed from Figure 3 that the system 
reliability increases as λ  decreases. Obviously, the values 
of λ  affect the system reliability significantly. One sees 
from Figure 4 that the system reliability increases with 
increasing µ . Figures 5-6 show that the system reliability 
rarely changes when α  or β  changes. Intuitively, the 
system reliability may be too insensitive to changes in α  
or β . It appears from Figures 3-6 that the most 
significant parameter on the system reliability is the 
parameter λ . 

 

 
Figure 1. System reliability with warm standbys and a repairable service station. System fails when all M+S machines fail. 

 

  
Figure 2. System reliability with warm standbys and a repairable service station for different values of K. 
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Figure 3. System reliability with warm standbys and a repairable service station. System fails when all M+S machines fail. 

 

 
Figure 4. System reliability with warm standbys and a repairable service station. System fails when all M+S machines fail. 

 

 
Figure 5. System reliability with warm standbys and a repairable service station. System fails when all M+S machines fail. 

 

 
Figure 6. System reliability with warm standbys and a repairable service station. System fails when all M+S machines fail. 
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The second purpose is to investigate the effects of 
various parameters on the MTTF. We fix M = 3 and 
choose η = 0.05. Various values of λ  are considered. 
Case 5: We fix K = 1, choose µ  = 1.0, α  = 0.2, β = 
3.0, and vary the number of warm standbys S from 1 to 4. 
Case 6: We fix S = 2, choose µ = 1.0, α = 0.2, β = 3.0, 
and vary the values of K from 1 to 4. 
Case 7: We fix S = 2, K = 1, choose α = 0.2, β = 3.0, 
and vary the values of µ from 0.5 to 2.0. 
Case 8: We fix S = 2, K = 1, choose µ = 1.0, β = 3.0, 
and vary the values of α  from 0.1 to 0.4. 
Case 9: We fix S = 2, K = 1, choose µ = 1.0, α = 0.2, 
and vary the values of β  from 3.0 to 9.0. 

The numerical results of the MTTF are shown in Tables 
1-5. From Tables 1-5, we can easily see that the MTTF 
decreases as λ  increases. Obviously, the MTTF can 
moderately decrease as λ  increases for small λ . 
Moreover, Tables 1-5 show that (i) the addition of warm 
standbys S, the decrease in K, and the increase in µ can 
moderately increase the MTTF for small λ ; and (ii) the 
increase in α  or β  rarely affects the MTTF. 

The third purpose is to perform a sensitivity analysis of 
the system reliability for changes in the system parameters 
λ , µ , α , and β . We fix M = 3, S = 2, K = 1, and 
select λ =0.6, η =0.05, µ =1.0, α =0.2, β =3.0. In 
Figure 7, along the time coordinate, the system reliability 
will be affected even by minute change of the system 
parameters λ , µ , α , and β . Intuitively, increasing 
the values of µ  and β  or decreasing the values of λ  
and α  will improve the system reliability. It seems that 
the order of impacts of these four parameters on the 
system reliability are: λ µ α β> > > . We observe that the 
effects of varying α and β on the system reliability can 
be neglected which matches the previous conclusions 
shown in Figures 5-6. Also, the effects of various 
parameters on the system reliability occur only in the time 
interval 0 < t < 50, and the most significant effect occurs 
around t = 8. 

The fourth purpose is to perform a sensitivity analysis 
on the change of the MTTF for various parameters λ , 
µ , α , and β . We fix M = 3, S = 2, K = 1, and select 
λ =0.6, η =0.05, µ =1.0, α =0.2, β =3.0. It can be 
easily seen from Table 6 that the order of impacts of these 
four parameters on the MTTF are: λ µ α β> > > . The 
gross effect of β  is negligible when comparing with the 
gross effects of λ , µ , and α . It should be noted that 
these conclusions are only valid for the above cases. We 
may reach other conclusions for other cases. 

Table 1. The MTTF for different values of λ  and S 
( 3, 1, 0.05, 1.0, 0.2, 3.0M K η µ α β= = = = = = ) 
λ  S=1 S=2 S=3 S=4 

0.20 76.99 122.76 173.85 222.45 
0.25 42.58 61.62 82.40 103.56 
0.30 27.27 36.71 46.08 54.98 
0.35 19.24 24.70 29.79 34.42 
0.40 14.51 18.04 21.24 24.10 
0.45 11.48 13.97 16.20 18.19 
0.50 9.42 11.29 12.96 14.47 
0.60 6.83 8.04 9.13 10.15 
0.70 5.31 6.19 7.00 7.76 
0.80 4.32 5.01 5.65 6.27 
0.90 3.63 4.20 4.73 5.25 
1.00 3.13 3.61 4.07 4.52 

 

Table 2. The MTTF for different values of λ  and K 
( 3, 2, 0.05, 1.0, 0.2, 3.0M S η µ α β= = = = = = ) 
λ  K=1 K=2 K=3 K=4 

0.20 122.76 31.32 12.18 5.00 
0.25 61.62 18.83 8.36 3.79 
0.30 36.71 12.87 6.24 3.03 
0.35 24.70 9.56 4.92 2.52 
0.40 18.04 7.50 4.04 2.14 
0.45 13.97 6.13 3.42 1.86 
0.50 11.29 5.16 2.95 1.65 
0.60 8.04 3.90 2.31 1.33 
0.70 6.19 3.12 1.89 1.12 
0.80 5.01 2.60 1.60 0.96 
0.90 4.20 2.22 1.60 0.84 
1.00 3.61 1.94 1.22 0.75 

 

Table 3. The MTTF for different values of λ  and µ  
( 3, 2, 1, 0.05, 0.2, 3.0M S K η α β= = = = = = ) 

 λ  µ =0.5 µ =1.0 µ =1.5 µ =2.0 
0.20 35.23 122.76 274.78 382.04 
0.25 22.20 61.62 153.58 270.44 
0.30 15.87 36.71 84.67 167.65 
0.35 12.24 24.70 51.47 100.72 
0.40 9.92 18.04 34.41 63.84 
0.45 8.32 13.97 24.72 43.42 
0.50 7.16 11.29 18.75 31.32 
0.60 5.59 8.04 12.11 18.59 
0.70 4.58 6.19 8.69 12.48 
0.80 3.88 5.01 6.68 9.11 
0.90 3.36 4.20 5.38 7.05 
1.00 2.96 3.61 4.49 5.69 
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Table 4. The MTTF for different values of λ  and α  
( 3, 2, 1, 0.05, 1.0, 3.0M S K η µ β= = = = = = ) 

 λ  α =0.1 α =0.2 α =0.3 α =0.4 
0.20 133.72 122.76 113.24 104.92 
0.25 66.57 61.62 57.38 53.72 
0.30 39.16 36.71 34.59 32.75 
0.35 26.08 24.70 23.49 22.43 
0.40 18.90 18.04 17.29 16.63 
0.45 14.54 13.97 13.47 13.02 
0.50 11.68 11.29 10.93 10.61 
0.60 8.26 8.04 7.84 7.66 
0.70 6.32 6.19 6.06 5.95 
0.80 5.10 5.01 4.92 4.85 
0.90 4.26 4.20 4.14 4.08 
1.00 3.66 3.61 3.56 3.52 
 

Table 5. The MTTF for different values of λ  and β  
( 3, 2, 1, 0.05, 1.0, 0.2M S K η µ α= = = = = = ) 

λ  β =3.0 β =4.0 β =6.0 β =9.0 
0.20 122.76 128.79 134.79 138.74 
0.25 61.62 64.28 67.00 68.82 
0.30 36.71 38.01 39.34 40.24 
0.35 24.70 25.42 26.16 26.67 
0.40 18.04 18.49 18.94 19.25 
0.45 13.97 14.26 14.57 14.77 
0.50 11.29 11.49 11.70 11.84 
0.60 8.04 8.15 8.26 8.34 
0.70 6.19 6.25 6.33 6.38 
0.80 5.01 5.05 5.10 5.13 
0.90 4.20 4.23 4.26 4.29 
1.00 3.61 3.63 3.66 3.67 

 
 
 

Table 6. Sensitivity analysis for the MTTF with case 
0.6, 1.0, 0.2, 3.0λ µ α β= = = =  

 θ λ=  θ µ=  θ α=  θ β=  

MTTF
θ

∂
∂

-23.68 6.28 -2.10 0.14 

 

6. CONCLUSIONS 

In this paper, we have developed the explicit expressions 
for the system reliability and the MTTF. It should be first 
noted from Figures 1-6 that α and β  rarely affect the 
system reliability, S has moderate effect, K, λ , and 
µ affect the system reliability significantly. Next, we 
should note from Tables 1-5 that (i) α and β  rarely 
affect the MTTF; and (ii) S, K, and µ affect the MTTF 
moderately for small λ . Finally, we have performed a 
sensitivity between the system reliability, the MTTF and 
specific values of λ , µ , α , and β . Our numerical 
investigations indicate that the order of impacts of these 
four parameters on the system reliability and the MTTF are: 
λ µ α β> > > . 

 

 
Figure 7. Sensitivity analysis for the system reliability with case 0.3,2.0,0.1,6.0 ==== βαµλ . 
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