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Abstract⎯We consider a queueing model with finite capacities. External arrivals follow a Coxian distribution. Due to the 
limitation of  the capacity, arrivals may be lost if  the buffer is full. Our goal is to study the probability of  blocking. In order 
to obtain the steady-state probability distribution of  this model, we construct an embedded Markov chain at the departure 
points. The solution is solved analytically and its analysis is extended to semi-Markovian representation of  performance 
measures in queueing networks. 
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1. INTRODUCTION 

In this paper we consider an open and finite capacity 
system which is constructed by a series of  queue. There are 
only one server and one queue in each station. The service 
discipline is First-Come-First-Served. 

Customers come to this system with interarrival times, 
denoted by a random variable A. An arrival may enter the 
system with a token, or he will be rejected. When a 
customer gets a token he will join server 1 if  the server is 
idle, but waits for service in queue 1 when the server is 
busy. After finishing service in server 1, he then joins 
server 2 if  the server is idle or stays in queue 2 if  server 2 
is busy. He leaves the system when finishing all services 
and returns the token to the token queue. Such a 
fundamental model can be used for studying the 
performance on a manufacturing line in which tokens may 
represent workers or machines while the customers are 
jobs. 

If  there is only one server in the network and assume A 
has an exponential distribution then the model is the same 
as the M/G/1/N loss system where N is the maximum 
number of  the customer in the system. If  there is no 
external arrival, and N tokens are replaced by N jobs in the 
network, the model becomes a closed model which has 
been considered in Daduna (1985). In this paper, we will 
provide a probability that an arriving customer finds no 
token in the token queue, which is called a probability of  
blocking. 

The paper is organized in the following. In Section 2, we 
give a detail description of  this model and construct an 
embedded Markov chain. In Section 3, by considering the 
embedded Markov chain we obtain the steady-state 
distribution at the system. In Section 4, we will provide a 
formula for the probability of  blocking. 

 
2. THE MODEL 

2.1.  Definition and notations 

To make a model whose solution analysis is attainable 
without loss of  generality. Consider a semaphore queueing 
system consisting of  a series of  servers in which server S 
has the slowest service rate, namely the bottleneck, which 
is shown in Figure 1. Instead of  a series of  servers, assume 
S has a general service time in order to capture the 
property of  a flow time that spent in finishing all services. 
The customers following a Coxian distribution with M 
phases will ask for the permission to enter the system. 
Only those customers who have tokens from queue Q3 are 
legitimate to enter queue Q2. Otherwise, they wait in Q1 
until tokens are available in Q3. Once the customer enter 
queue Q2, he shall get the service from S immediately if  
server S is idle. Otherwise, the customer waits in Q2 if  
server S is busy. The service discipline is first-come- 
first-serve. The server can only serve one customer each 
time and its service distribution is general which is 
assumed independent with the arrival process. Suppose the 
number of  tokens N is finite which may be considered as 
the maximal capacity of  Q2 but the size of  Q1 is infinite. 
Any token by itself  along can not enter Q2. 

Each customer arriving at the network is assigned one 
token from Q3 in order to enter Q2 if  Q3 is not empty. This 
token shall not be returned to Q3 until the customer taking 
 

 
Figure 1. A semaphore queue. 

it finishes the service in S and leaves the system. Assume 
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there is no delay for returning a token to Q3. This is a 
general description of  a semaphore queue. Although it is 
originally designed to study the queueing problems in 
Telecommunication. See Fdida et al. (1990). 

The interarrival times, A, are assumed characterized by a 
Coxian distribution with M phases, denoted by KM(t) which 
has mean 1/λ. Its phases are numbered in backward order 
shown in Figure 2. This approach has been widely applied 
to many queueing models. For example, they were applied 
in Carroll et. al (1982), Perros (1983) and Bertsimas (1990). 
The parameters of  this distribution are kη , k = 1, 2, …, 
M. and ka , k = 1, 2, …, M- 1, where kη  is the service 
rates with respect to phase k, and ka  is the probability 
that a customer is assigned to phase k from phase k+1. All 
the service times in each phase are independent 
exponentially distributed. Its Laplace-Stieltjes transform  
φ ( )M s  is written as follows, 
 

1
1 1 1 1

1 1

( ) (1 )
M

i M j
M M M M i M j

i M j

s a a a a
s
η

φ
η
− +

− − + − =
= − +

= −
+∑ ∏"  

 
where �  1Ma  and �0  0a . The service times at S have 
a general distribution function H(t), t ≥  0, with H(0 + ) < 
1 where H( ⋅ ) has a finite expectation 1/µ. Furthermore, 
the set of  all service times is assumed a stochastically 
independent family. 
 

Let ( nτ : n = 0, 1, 2, …) be the sequence of  departure 
time instants at S, where τ0 = 0. Consider the process 
Λ ={ (i n , j n , k n ) : n=0, 1, 2, …}embedded at (τn: n = 0, 1, 
2, …), where i n  and k n  are the number of  customers 
presenting at Q1 and Q3, respectively; nj  is the number 
of  phases left in the current interarrival times of  A. It is 
cleared that at any instant nτ , 0n ni k⋅ = . Note that 
customers arrive at the system according to a phase-type 
process and the interarrival times of  each phase is 
exponential, so we have a Markov chain embedded in the 
process Λ . Then we may claim that the process Λ  is a 
Markov chain with state space 
 

{0,1, 2, ...} {1, 2, ..., } {0,1, 2, ..., }M Nν ≡ × ×  

 
Figure 2. A M-phase Coxian distribution 

 
Let p(s 1 ; s 2 ) be the transition probability from state s 1  to 
state s 2  and 

( ) 1 1 1 2 2 2 1 1 1 2 2 2( (( ,  ,  ), ( ,  ,  )) : ( ,  ,  ), ( ,  ,  ) )NP p i j k i j k i j k i j k= ∈Λ

 
be the transition probability matrix of  the embedded 

markov chain. We shall deter-mine P(N) and claim the 
Markov chain is ergodic. For this objective, we define a set 
of  independent random variables (r.v.) with corresponding 
distributions in the following: Denoted by iA  the arrival 
time instant for the ith customer entering the system, i = 0, 
1, 2, …, where A0 = 0. Let Ti = Ai−Ai-1 be the interarrival 
time between the (i-1)th customer and the ith customer for 
i = 1, 2, …. Assume T1, T2, … are independent and 
identically distributed. Since Ti has a Coxian distribution 
with M phases, we may think of  each Ti as being the sum 
of  M exponential random variables with corresponding 
branching probabilities, that is 1

1

MM
ji j ii

X a−

− =∑ ∏ , where  

1,  if .k
ii j

a j k
=

>∏ �  Denote by T the random variable 

with the distribution function KM(t). Let 
k∆  := r.v. distributed according to jK ; 

Xi := r.v. distributed according to an exponential 
distribution with mean 1/ iη , i = 1, 2, … , M; 
Y := r.v. distributed according to ( )H t  
Define 
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= = +
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Based on the symbols defined, we derive the state 
transition probabilities in Λ  in the following lemma. 

Lemma 1 Consider all states in Λ , the probabilities of 
their transitions are given below: 
(a) For 0 ,  0,  1 ,  1k N n j M m M≤ ≤ ≥ ≤ ≤ ≤ ≤  
 

Pr((0, j, N), (n, m, k)) = Pr((0,M,N -1), (n, m, k)) 
 

(b) For 0≤ k ≤N-1, 1≤ m ≤ j ≤M, 
 

σ
−− >⎧

+ = ⎨ =⎩

, , 1   if  
((0, , ),  (0, , 1))

              if  
j m j m

j

r r j m
Pr j k m k
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(c) For 1 ≤ j ≤M, 1 ≤ m ≤M, i≥ 0, n > 0 
 

Pr((n, j, 0),(n + i, m, 0)) = , 1, , 1, 1j i m j i mδ δ+ + −−  
 

(d) For 1≤m ≤ j≤M, i ≥ 0, 
 

σ
−− >⎧

+ = ⎨ =⎩

, , 1   if  
Pr(( 1, , 0),  ( , , 0))

              if  
j m j m

j

r r j m
i j i m
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(e) For 1 ≤ j≤M, 1 ≤m ≤M, i > k, 0≤ k <N 
 

Pr((0, j, k), (i-k,m,0)) = , 1, , 1, 1j i m j i mδ δ+ + −−  
 

(f) For 1≤ j ≤M, 1≤m ≤M, 0≤ i ≤ k, 0≤ k < N 

…….. M M 1 
aM-1 aM-2 a1 

1-aM-1 1-aM-2 1-a1 
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Pr((0, j, k), (0, m, k- i)) = , 1, , 1, 1j i m j i mδ δ+ + −−  
 

Proof: The proof may be found in Luh (1999). 
 
2.2. Transition probability matrix 

To be concise in matrix representation, the following 
M M×  matrices are defined. 

  for 1  and 1jmB b j M m M⎡ ⎤ ≤ ≤ ≤ ≤⎣ ⎦�  

( ) ( )( )where 0, , , 0, , 1jmb Pr j k m k= +  

  0   for 1  and 1jmC d j M m M⎡ ⎤ ≤ ≤ ≤ ≤⎣ ⎦�  

( ) ( )( )where 1, , 0 , , , 0  for any fixed  , 0jmd Pr i j i m i i= + ≥

  1   for 1  and 1i
i jmC c j M m M+ ⎡ ⎤ ≤ ≤ ≤ ≤⎣ ⎦�  

( ) ( )( )where , , 0 , , , 0 , 0,1, 2,i
jmc Pr n j n i m i= + = "  

    for 1  and 1i
i jmE e j M m M⎡ ⎤ ≤ ≤ ≤ ≤⎣ ⎦�  

( ) ( )( )where e 0, , , , , 0 , 1, 2,i
jm Pr j k i k m i= − = "  

    for 1  and 1i
i jmF f j M m M⎡ ⎤ ≤ ≤ ≤ ≤⎣ ⎦�  

( ) ( )( )where 0, , , 0, , , 0,1, 2, , 1i
jmf Pr j k m k i i N= − = −"  

Obviously, B is equal to C0 from our definition. 
However, we distinguish them be- cause they stand for the 
different conditions on state transitions. Define 1 as a 

n-dimensional column vector of 1. 
�B  1 ⎡ ⎤⋅ ⎣ ⎦"1 2   M M MMb b b  

�iE  1 ⎡ ⎤⋅ ⎣ ⎦"1 2   i i i
M M MMe e e  

�iF  1 ⎡ ⎤⋅ ⎣ ⎦"1 2   i i i
M M MMf f f  

 
The state space of this system can be organized into 

three groups: 
{(i ≠ 0, j , k = 0)}, {( i = 0, j , k = 0)}, {(i = 0, j , k ≠ 0)}.  

Within each group, for fixed i and j, the states can be 
ordered lexicographically in accordance with each phase k. 
For example, this ordering of {(i ≠ 0, j , k = 0)} is 

described in the following table: 
 

( ){ }= =1, , 0i j k ( ){ }= =2, , 0i j k  … 

( )
( )

( )
#

1,1,0
1, 2,0

1, ,0M

 

( )
( )

( )
#

2,1,0
2, 2,0

2, ,0M

 … 

 
The transition probability in matrix form among {(i ≠ 0, j , 

k = 0)} is written as 

 
 

{(1, ,0)} {(2, ,0)} {(3, ,0)}     j j j "  
{1, ,0}
{2, ,0}
{3, ,0}
    
    

j
j
j
#
#

 

1 2 3 4

0 1 2 3
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0 1 2
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"
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⎝ ⎠

% % %

 

 
 

Consider the group {(i = 0, j , k = 0)} and {(i = 0, j , k 

≠ 0)}, that is no customers in queue Q1 but tokens may or 
may not appear in queue Q3. The transition matrix occurs 

among {(i = 0 , j , k = 0)} and {(0, j , 1), (0, j , 2), 
" ,(0, j , N)}may be written as 
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Consider the transition probability between the group{(i 

= 0, j , k = 0)}, {(i = 0, j , k ≠ 0)} and {(i = 0, j , k = 
0)}.The transition matrix occurs among, {(i = 0, j , k = 0)}, 

{(0, j , 1), (0, j , 2), " ,(0, j , N)} and {(i ≠ 0 , j , k = 
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0)}may be written as 
 

{(1, , 0)} {(2, ,1)}  {(3, , 2)}   j j j "  
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Hence, the infinitesimal generator P(N) is written as 
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3. STATE BALANCE EQUATIONS 

Let π  be the vector of the steady-state probability 
associated with ( )NP , i.e. ( )NPπ π= . To solve ( )NPπ π= , 
we partition π  conformed with the blocks of matrix 

( )NP  Thus, we let 

( )π π π π π+ += 0 1 1 2,  ,  ... ,  ,  ,  ... ,N N   
where the vector ,  1i iπ > , are of dimension M and the 
vector 0π , which corresponds to the states in the 
boundary level 0, is of dimension M as well. The equations 
can be written out as follows: 
 

π π π π++ + + ="0 0 1 1 1 0 0NF F C                (1) 
 

π π π π−
− −− −=

+ + =∑ 1
11 1

N
N ii j j N ii j

B F F              (2) 

for 1, 2, , 1i N= −…  
 

π π π− + =1N N NB B                          (3) 
 

1
1 10 0

N k N
kj j k N N k j j kj j

E E Cπ π π π− −
−+ − + −= =

+ + =∑ ∑     (4) 

for 1, 2,k N N= + + …  
 

π∞

=
⋅∑ 0 ii
1 = 1                     (5) 

To solve π , it may refer to Neuts (1989). His solution 
procedures require a series of computational efforts which 
solve several nonlinear matrix equations involving the 

inverse of matrices of the order (N+1)M. In our approach, 
it does not need solving any system of equations because 
all vectors can be expressed by Nπ  only which is the 
probability of N tokens in Q3 associated with different 
arrival phases. Rearranging the equations (3) (2) (1), we 
have 

1
1 ( )N N I B Bπ π −

− = −                            (6) 
 

1 1
11 [ ]N

N ii i j j i Nj i
F F Bπ π π π− −

− −− −=
= − −∑            (7) 

 
for 1, 2, ,1.i N N= − − …  
 

1 1
11 0 0 01
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NN j j Nj
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−+ =

= − − −∑       (8) 

 
1As to Eq.(4), write  in term of  for all 1k N k Nπ π+ ≥ +  

 

π π π π

π π
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+ + − −
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− −
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+ − + −
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⎡
= + −⎢
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⎤
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⎦
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1

1 1
0

1
1

1 1 0
1

           

N

k k j j k N N k
j

k N

N k N k j j
j

E E

C C C

              (9) 

for k = N+1, N+2, … 
In order that π  is unique, it is necessary that B and C0 

are nonsingular. It implies 0jσ >  for every j because B 
and C0 are lower triangular matrices and their determinant 

1

M
jj

σ
=∏  must not equal to 0. Since the stability is 
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implicitly satisfied by this assumption, this quarentees the 
existence and uniqueness of π , for n = 1, 2, …. Since all 

nπ  can be written in terms of Nπ , it is essential to 
determine the value of Nπ  first. Because the probability 
that the system is idle in GI/G/1 in steady-state at any time 
is 1 /λ µ− , it gives the probability of that at a departure 
point Nπ ⋅1 = (1 /λ µ− )ν , where ν  is the normalizing 
factor and can be found by a formula at closed queueing 
models. Therefore, if each of its elements is given, the 
remaining nπ  for n = 0, 1, 2, … is determined in Eq.(6), 
(7) (8) and (9) with substitution recursively. 

Then, Nπ ⋅1  is interpreted as the probability of no 
customers in the system, i.e. probability of idle. In other 
words, 1− Nπ ⋅1 is the probability that one of servers is 

busy. The value of π∞

= +∑ 1i N i
⋅1 may be interpreted as the 

probability of no tokens available for arrivals in the system 
in the long run. For a GI/G/1 model, N nπ − ⋅1 is the 
probability of n customers in the system, as 0≤ n≤N; when 
n > N, the probability of that is nπ . The average queue 
length, the average number of customers in the system and 
the mean waiting time are expressed as follows. 
 

qL : queue length in Q1 in average, 
 

qL = { 1· 1Nπ + + 2· 2Nπ + + …+ n· N nπ +  + …}· 1 
 

*
0π : Pr{no token in Q3} 

 
*
0π  = 0π  + π∞

+=∑ 1 N nn
·1 

 
L Q : average number of customers staying in Q2 and in 
service, 
 
L Q =

=
−∑ 1

( )N

n
N n · nπ ·1+ N· *

0π ·1 

 
By Little's formula, the mean waiting time of the system is  
 
1
λ

[Lq+ LQ] 

 
where λ  is the average arrival rate. 
 
4. A MODEL WITH FINITE CAPACITIES 

The formulation previously described can be generalized 
to allow the case of being lost in which arrivals may be lost 
due to the limited buffer sizes. Suppose in the system taken 
into account here the buffer size of Q1 is set to 0 while the 
other assumptions are the same as shown before in Figure 
1. Such a system may be considered as a GI/G/1/N queue 
in which N is the maximum capacity of the system. Thus, 
there are no more than N customers staying in the system 
at any time. In general, the probability that customers who 

are rejected and the effective arrival rate are of interest in 
this case. After the semaphore queueing model has been 
introduced, it becomes convenient to solve these 
problems.  

Following the same notations, the state balance 
equations will take the equations (2), (3) and the 
normalization equation (5) which is 
 

π
=

⋅∑
0

N

i
i

1=1 

 
Hence, iπ  is obtained by solving the system of such 
equations. Thus, iπ ⋅1 is the probability of N-i customers 
in the system, for 0 < i ≤  N. 0π ⋅1 is the probability of 
being lost, i.e. the probability when the system is full and 
customers are rejected. The effective arrival rate is 
 

λ λπ
=

= ⋅∑
1

N

i
i

1=λ π− ⋅0(1 1) .  

 

The following theorems are only stated for conclusion 
without proofs. 

 
Theorem 1: Assume that the service rate µ ( )j jn  is a 
nondecreasing function of nj for each station j. The 
throughput of this system, denoted by TH(N), is a concave 
function of the number of the tokens if the service rates 
µ ( )j jn  as a function of  the local queue length nj, has 
the same property for each j. 
 
Theorem 2: If the service rate at every station is a 
nondecreasing and concave function of the queue length at 
that station, then the blocking probability is a 
nonincreasing convex function of the maximum total 
tokens available in the network. 
 

The proofs are omitted here. Similar results may be 
found in Shanthikumar and Yao (1988). 
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