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Abstract⎯Recently an algebraically derived optimal cost solution policy of  the integrated vendor-buyer problem with equal 
sized batch transfer was presented. The solution technique was illustrated with a numerical example and in comparison with 
two available methods in the literature a significant cost reduction was shown. This paper highlights that the optimal total 
cost obtained by them is about 5.8% higher than the optimal total cost derived for the same numerical example by another 
two methods in the literature. In this paper a model of  this integrated vendor-buyer problem with equal and unequal sized 
batch transfer is developed. A simple minimal cost solution technique of  the model, derived algebraically, is presented and a 
solution algorithm is provided. The model is also solved using derivatives and the same results of  numerical examples are 
found. For simplicity the algebraic approach is presented here. For three numerical examples, a comparative study of  this 
approach with one of  the best available methods (modified) in the literature is also carried out. For the numerical examples 
studied, the technique developed in this paper seems to provide better solution. 
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1. INTRODUCTION 

Integrated vendor-buyer inventory system has 
accelerated the success of  e-business. Clark and Scarf  
(1960) are pioneers in developing an optimal policy for a 
multi-echelon inventory system. Banerjee (1986) obtained 
a joint economic lot size model for vendor and purchaser 
based on lot-for-lot policy. Goyal (1988) assumed that 
items are sent to the buyer in equal sized batches. Hill 
(1997) suggested a more general class of  policy for 
determining successive shipment sizes. Hill (1999) 
determined, from first principle, the form of  the 
globally-optimal batching and shipping policy. Hoque and 
Goyal (2000) proposed a model with equal and unequal 
sized batch transfer but imposing capacity constraint on 
the transport equipment. For the same two numerical 
examples their approach gives almost similar solutions to 
that obtained by Hill (1999). To determine the economic 
lot size Goyal and Nebebe (2000) presented an optimal 
policy that was a particular case of  Hoque and Goyal 
(2000). Grubbstrom (1995) provided an EOQ without 
backlogging while Grubbstrom and Erden (1995) 
presented an EOQ with backlogging but both by algebraic 
method. Following the algebraic approach 
Cardenas-Barron (2001) derived an economic production 
quantity model by allowing shortage. Using the same 
algebraic approach Yang and Wee (2002) developed an 
optimal replenishment policy for an integrated 
vendor-buyer system by transferring the lot with equal 
sized batches. For a numerical problem they have shown 
significant cost reduction in comparison with two other 

techniques available in the literature. But for the same 
numerical problem solved by Hill (1999) and Hoque and 
Goyal (2000) gives 5.8% lower cost. Among all the models 
describedHill (1999) and Hoque and Goyal (2000) 
obtained the lowest cost for two numerical examples. But 
Hill’s optimal solution procedure sometimes leads to an 
infeasible optimal solution. This was demonstrated with a 
numerical example by these authors. 

In this paper a model for the same integrated 
vendor-buyer system is developed, based on equal and 
unequal sized batch transfer of  a lot from the vendor to 
the buyer. This approach of  minimizing the joint 
inventory cost in processing a single product in a 
multi-stage serial production system was used by Hoque 
and Kingsman (1995), originally presented by Goyal and 
Szendrovits (1986). The model is solved both algebraically 
and using derivative method. However, for simplicity of  
the algebraic approach, it is presented in this paper. 

A comparative study of  the technique developed in this 
paper with Hill (1999) (modified) on three numerical 
examples is carried out. The solution technique in this is 
found to provide better result. Besides, the solution 
technique in this paper developed algebraically, so it is 
simpler, straightforward and easy to follow specially for 
those who lack of  the background of  differential calculus. 

 
2. ASSUMPTIONS AND NOTATIONS 

The assumptions made in the paper are stated below: 
i) The production rate is finite and greater than the 
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demand. 
ii) The vendor and the buyer have complete knowledge of  

each other’s information. 
iii) Shortage is not allowed. 
iv) The set up or ordering times and transportation times 

and cost are negligible and hence ignored. 
The notations used in this paper are same as in Hill 

(1999). 
 

Variables 
Q: Uniform lot size (Q is infinitely divisible); 
C: The total cost per unit time 
m: total number of  batches (m is a positive integer); 
e: number of  unequal sized batches (e is a positive integer); 
z: the smallest batch size. 
Parameters 
D: average demand per year; 
P: annual production rate; 
A1: vendor’s set up cost per set up; 
A2: purchaser’s ordering cost per order; 

1h : vendor’s holding cost per unit per unit time; 

2h : buyer’s holding cost per unit per unit time; 
k: ratio of  the production rate and demand (P/D). 

 
3. MODEL FORMULATION. 

The lot Q is transferred from the vendor to the buyer in 
e unequal sized batches as 2 1, , , ..., ez kz k z k z−  and (m − e) 
batches of  size 1 .ek z−  Following Goyal and Szendrovits 
(1986), the total joint inventory for the vendor and the 
buyer is given by 

 
2 1 1

2
QzQ

D P P
⎛ ⎞− +⎜ ⎟
⎝ ⎠

 

 
There are D/Q cycles per year. So the total joint inventory 
per year is 
 

1
2

DzQ D
P P

⎛ ⎞− +⎜ ⎟
⎝ ⎠

 

 
The inventory at the buyer per year is 
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The inventory at the vendor per year is 
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So the total joint inventory cost at the vendor and the 

buyer per year is 
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The sum of  all batch sizes must equal the lot size, so 
equating this sum to the lot size implies 
 

1
1

0

, where ( , ) ( )
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Substituting for z in the total inventory cost, it becomes 
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In Appendix 1 it is shown that  
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The total inventory cost then transforms to 
 

1
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A2 is the ordering cost per order for the buyer. There 

are m orders per lot and D/Q lots in a year. So buyer’s 
ordering cost per year is mA2D/Q. A1 is the set up cost 
per set up for a lot, so the vendor’s set up cost per year is 
DA1/Q. 

Therefore, the total cost of  ordering or set ups and 
inventory holding is given by  
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which is to be minimized. 

 
4. SOLUTION TECHNIQUE 

The total cost function can be written as C =
2

Da Qb
Q

+ , 

where  
 

a = mA2 + A1; 
11

1 2 12 2
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That is,  
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So, C will be minimum when 
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and the minimum cost is 
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We have 1m e≥ ≥ . For the least value of  e, the 

expression under the square root here reduces to 
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This can be written as 
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The value of  this expression is minimum when 
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The lower of  the total costs calculated from (3) for the 

rounding up and rounding down value of  m thus found 
gives the minimal cost for e = 1. 

If  andm e represent the optimal value of  m and e, 
then from (3) we have 
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Where 
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This can be written as 
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Substituting the value of  f(m, e) inside the third brackets 

and then simplifying obtain 
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Since 1 2, and 1,e m h h k≤ < > m cannot be greater than 
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For more tighten upper bound reduce the inequality (5) to 
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which transforms to 
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which on simplification reduces to 
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Dividing by 2m yields 2
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For given value of  e, the left hand side of  this inequality 

is almost a form of  convex function in m, so value of  m 
converges to the optimal cost. Let 
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Therefore, 
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For given e, the optimal value of  m can be found out as 

the highest value of  m satisfying this constraint. But we are 
required to determine upper bound on e. Note that 

.e m≤  Thus the highest value of  e is m. Substituting for e 
= m in the expression under square root in (3) we have 
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implying k<1, a contradiction. 

So the total cost converges at a certain value of  m = e. 
Therefore, if  the inequality (7) does not satisfy for e = m, 
then it cannot be satisfied for any higher value of  m. 
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Hence, for optimal total cost, starting from e = 1 and 
increasing at each step by 1 we need to check up to e = m 
where the inequality (7) is unsatisfied. The initial value of  
C can be calculated for 1e = and m equal to the 
corresponding value of  m derived using (4). 
 
The Solution Algorithm 

Step 1: Initialization. 
Set 1e =  and m = rounding up or rounding 

down value of  
{ }1 1 2

2 1

(2 / 1)
,

(1 / )
A D P h h

m
A D P h

− +
=

−
 

which gives the minimum cost from (3) and record 
details of  this as the currently optimal solution 
with , , andm e Q C . 

Step 2: Calculate C ′with m m and e e= = from (4) and 
increase e by 1.  

Step 3: If  for m = e, 3 1 1 3( 1)
3 1 3

d cm m
a m m a

⎛ ⎞− − + ≤⎜ ⎟−⎝ ⎠
 in 

(7), determine the highest integral value of  m 
(increasing m at each step by 1) satisfying (7), and 
for that value of  m calculate the total cost from (3). 
If  it is less than the previous value of  C , set 
C equal to this cost and record details of  the new 
current optimal solution with m°, e°, Q° and C°and 
go to step 2. 

Step 4: The current optimal solution is the final optimal 
solution. 

 
5. NUMERICAL EXAMPLE 

We use the same numerical examples as used by Hill 
(1999). The data are as follows: 

 
A1 = 400, A2 = 25, 1 4h = , D=1000, P=3200 
 
Comparative results are given below. 
 
Example 11: 2( 5)h =  

 
Table 1. Summary of  comparison of  the results of  example 1 

Policy Shipment sizes 
Batch 
size 

Total 
cost 

Hill 
(Modified2) 

23.64, 75,63, 
229.27, 229.27 

557.8 1792.77

This 
Technique 

22.6, 72.32, 
231.43, 231.43 

557.8 1792.76

1 For this example Yang and Wee’s solution technique gives 5.8% 
higher cost than the cost found by Hill (1999) and Hoque and 
Goyal (2000). 

2 Hill’s solution algorithm is modified by these authors and 
submitted to the international Journal of  Production research 

 
Example 2: 2( 7)h =  

 
 

Table 2. Summary of  comparison of  the results of  example 2 

Policy Shipment sizes 
Batch 
size 

Total 
cost 

Hill 
(Modified) 

31.1, 99.53, 136.96, 
136.96, 136.96 

541.53 1938.97

This 
Technique 

39.18, 125.38, 
125.38, 125.38, 

125.38, 
540.7 1942.06

 
For these two numerical examples Hoque and Goyal 

(2000) found the same result as found by this technique. 
But it was developed using derivatives and imposing 
capacity constraint on the transport equipment. 

 
Example 3: This is a new example set by these authors. 
Data are as follows: 
 
A1=300, A2=20, 1 4.5h = , 2 5.5h = , D=1000, P =3000 

 
Table 3. Summary of  comparison of  the results of  example 3 

Policy Shipment sizes 
Batch 
size 

Total cost

Hill3 
(Modified)

42.08, 126.24, 
269.31 

437.63 1645.23 

This 
Technique

21.21, 63.63, 
190.89, 190.89 

466.6 1629.02 

3 Hill’s original method leads to an infeasible optimal solution for 
this example problem. 

 
 In case of  example 1 both the Hill’s policy and the 

technique developed in this paper produce almost the 
same result. But for example 2 the total cost obtained by 
Hill (1999) is less than the cost found by this technique by 
3.09. Though the lot sizes are found to be almost the same, 
the batch sizes are different. In case of  example 3 results 
are totally different. Hill’s original solution algorithm leads 
to an infeasible optimal solution in this case. But it is 
modified by these authors and submitted to ‘The 
International Journal of  Production research’. Here all 
results are found based on the modified policy. For this 
example the total cost obtained by the technique 
developed in this paper is less than the total cost found 
following the modified policy by 16.21. 

 
6. CONCLUSION 

In this paper a minimal cost solution technique of  the 
integrated vendor-buyer problem is derived algebraically. 
The model is developed based on equal and unequal sized 
batch transfer of  a lot from the vendor to the buyer. 
Though a lot of  research has been carried out on this 
topic, a few of  them derived their solution technique 
without using derivatives. Moreover, algebraically 
developed solution techniques have failed to provide 
better solution.  The solution technique developed in this 
paper algebraically is compared with Hill (1999), a 
well-known method in the literature, on three numerical 
examples. In one both the methods give almost the same 
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result. Out of  the remaining two, in one Hill (1999) leads 
to an infeasible optimal solution but based on 
modification on it, the optimal cost obtained is higher 
than the optimal cost found by this technique by 16.21. 
But for the remaining one, the optimal cost obtained by 
Hill is less than the optimal cost by this technique by 3.09. 
So for the example studied it seems our solution technique 
gives better result. Besides, our solution technique is 
straightforward, easier to understand and follow specially 
for those who lack of  knowledge of  differential calculus. 
Therefore, we would like to recommend our solution 
technique.  
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