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Abstract⎯The study describes a Grammatical Evolution (GE) system and applies it to establish the inflow prediction 
model of  Der-Ji Reservoir in central Taiwan. GE is a new computing architecture in the area of  optimization. It provides 
system identification in a transparent and structured way; a fittest function type of  input-output relationship will be obtained 
automatically from this method. A multi-regressive (MR) method and a GE model were fitted to the inflow data series and 
their performances were compared in the dry year. The results indicate that this new model, GE, is better than traditional 
MR in all criteria. Then the real-time reservoir operation policy was developed through the genetic algorithms (GAs) and 
rule curves operation and their performance was compared. It was found that the GA model releases had the best objective 
function value. 
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1. INTRODUCTION 

Water is becoming a scarce resource as a result of  the 
growing demand for its use in various purposes. Therefore, 
reservoir operation forms an important part in water 
resources development. Real time reservoir operation 
concerns the optimal operation of  an existing reservoir 
system. A real time optimization model generally is 
operated on the basis of  forecasted information. Forecasts 
of  streamflow and other input deteriorate with time (Yeh, 
1985). Systems analysis, which involves use of  optimization, 
simulation, and other decision-making techniques, is a set 
of  powerful tools to solve reservoir operation problems 
(Jain et al., 1999). 

Traditional optimization techniques including linear 
programming (LP) and dynamic programming (DP) have 
been used to solve the reservoir operation problems. Yeh 
(1985) presents a comprehensive in-depth state-of-the-art 
review of  reservoir-operation models, with a strong 
emphasis on optimization techniques. Generalized 
computer codes are available for solving LP problems, but 
the strict linear form of  LP does limit its applicability 
(Wurbs, 1993). Nonlinear properties of  a problem can be 
readily reflected in a DP formulation. However, the 
usefulness of  DP for multireservoir systems is limited by 
the huge demand that it can induce on computational 
resources. The choice of  methods depends on the 
characteristics of  the reservoir system being considered, on 
the availability of  data, and on the objectives and 
constraints specified. Most of  these models, however, are 
valid only for simplified reservoir systems. Genetic 
Algorithms (GAs) have received much attention for their 
potential use as optimization techniques for complex 

systems recently (Chen, 2003a). 
Evolutionary algorithms have been used with much 

success for the automatic generation of  programs. In 
particular, genetic programming (GP) has enjoyed 
considerable popularity and widespread use (Chen, 2003b, 
c). Unlike GP, grammatical evolution (GE) does not 
perform the evolutionary process on the actual programs, 
but rater on variable-length binary strings. A mapping 
process is employed to generate programs in any language 
by using the binary strings to select production rules in a 
Backus-Naur form (BNF) grammar definition. The result 
is the construction of  a syntactically correct program from 
a binary string which can then be evaluated by a fitness 
function (O’Neill and Ryan, 2001). 

The average annual rainfall in Taiwan is abundant, i.e., 
2500 mm, as compared to the global average of  970 mm. 
However, over 75 percent of  the annual rainfall occurs 
during the wet season (from May to October). Typhoons 
usually occur in July, August, and September, bringing 
much of  the needed rainfall for the coming dry season 
(from November to April), during which an enormous 
amount of  water is provided for irrigating rice paddies. 
Such a significant season variation in annual rainfall makes 
reservoir operation complicated. During a drought, water 
rationing and water share reallocation for different 
established users are common remedial measures (Cheng et 
al., 2000). There, a driest year 1964 is chosen as inflow data 
to establish the real-time operation of  Der-Ji Reservoir in 
central Taiwan. The main purpose of  this paper was 
attained through the following steps: 
(1) The multi-regressive (MR) method and GE approach 

were used to model reservoir inflows. The inflows were 
forecast by both approaches and the results were 
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compared. 
(2) The real-time reservoir operation policy was developed 

through GA and rule curves operation and their 
performance was compared.  

 
2. GENETIC ALGORITHMS 

Recently, there has been an increasing interest in solving 
optimization problems. The genetic algorithms (GAs) is 
one of  the most promising techniques in that domain and 
has received a great deal of  attention regarding optimizing 
complex systems. The GA is essentially a Darwinian 
natural selection process, which combines an artificial 
survival of  the fittest with natural genetic operators 
(Holland, 1975). Through the genetic evolution method, an 
optimal solution can be found and represented by the final 
winner of  the genetic evolution. The GA is an iterative 
procedure, which maintains a population of  individuals 
that are candidate solutions to specific domain. During 
each generation, the individuals in the current population 
are rated for their effective evaluations, and a new 
population of  candidate solutions is formed using specific 
genetic operators such as reproduction, crossover, and 
mutation (Grefenstette, 1986). Then, Goldberg (1989) and 
Davis (1991) reviewed many important applications of  
GAs. 

In the reservoir operation system fields, GAs have been 
demonstrated as powerful optimization approaches but 
there are few references in the literature. Esat and Hall 
(1994) applied a GA to the four-reservoir problem. They 
concluded GAs have potential in water resources 
optimization and that significant savings could be achieved 
in both memory and execution times. Olivera and Loucks 
(1997) used GAs to develop operating policies for 
multi-reservoir systems, and concluded that GAs are 
practical and robust methods, which could lead to effective 
operating policies. Chang and Chen (1988) applied 
real-coded GA for rule-based flood control reservoir 
management. The results show that the real-coded GA 
perform better in terms of  efficiency and precision than 
the binary-coded GA. Wardlaw and Sharif  (1999) 
demonstrated that using GAs can provide a robust and 
acceptable solutions for a four reservoir deterministic 
problem. Further, they could acquire the known global 
optimum. Sharif  and Wardlaw (2000) presented 
multi-reservoir systems optimization using GAs. They 
compared with discrete differential dynamic programming 
(DDDP) that GA results are very close to the optimum, 
and the technique appears to be robust. Chen (2003a) 
applied the real-coded GA for the optimization of  
long-term reservoir in Taiwan. The results indicate that the 
real-coded GA with several revised operators significantly 
improves the performance of  system, and could be 
expected to be very efficient for other highly nonlinear 
systems. 

 
3. GRAMMATICAL EVOLUTION 

GE has been applied to all manner of  automatic 

programming problems, from symbolic regression, to C 
programs, or generation of  graphical objects. The common 
view of  Genetic Programming is that, given a particular 
problem statement, a program that satisfied the fitness 
function is to be generated. GE is an evolutionary 
automatic programming type system, that uses a 
combination of  a variable length binary string genome and 
a BNF (Backus-Naur Form) grammar to evolve interesting 
structures. GE presents a unique way of  using grammars in 
the process of  automatic programming. Variable-length 
binary string genomes are used with each codon 
representing an integer value where codons are consecutive 
groups of  8 bits. The integer values are used in a mapping 
function to select an appropriate production rule from the 
BNF definition, the numbers generated always 
representing one of  the rules that can be used at that time. 
This technique draws inspiration from the overlapping 
genes phenomenon exhibited by many bacteria, viruses, 
and mitochondria that enables them to reuse the same 
genetic material in the expression of  different genes 
(Elseth and Baumgardner, 1995). 

 
3.1. Backus-Naur form 

BNF is a notation for expressing the grammar of  a 
language in the form of  production rules (Naur, 1963). 
BNF grammars consist of  terminals, which are items that 
can appear in the language, e.g., +, -, etc., and nonterminals, 
which can be expanded into one or more terminals and 
nonterminals. A grammar can be represented by the tuple 
｛N, T, P, S｝, which N is the set of  nonterminals, T the set 
of  terminals, P a set of  production rules that maps the 
elements of  N to T, and S is a start symbol that is a 
member of  N. When there are a number of  productions 
that can be applied to one particular N, the choice is 
delimited with the ‘|’ symbol. 

Below is an example BNF, where 
N =｛expr, op, pre_op｝ 
T =｛Sin, +, -, /, X, 1.0, (, )｝ 
S = <expr> 

And P can be represented as 
(1) <expr> :: = <expr><op><expr>            (0) 

| (<expr><op><expr>)         (1) 
|<pre-op> (<expr>)              (2) 
| <var>                        (3) 

 
(2) <op> :: = +                             (0) 

| -                             (1) 
| /                           (2) 
|*                             (3) 

 
(3) <pre-op> :: = Sin                      (0) 

| Cos                     (1) 
| Tan                        (2) 
| Log                       (3) 

 
(4) <var> :: = X                          (0) 

| 1.0                            (1) 
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In GE, the BNF definition is used to describe the 
output language to be produced by the system, i.e., the 
compilable code produced will consist of  elements of  the 
terminal set T. As the BNF is a plug-in component of  the 
system, it means that GE can produce code in any 
language thereby giving the system a unique flexibility. 
Therefore, the C language is used for plugging in to GE 
easily in this study.  

 
3.2. Mapping process 

The genotype is used to map the start symbol onto 
terminals by reading codons of  8 bits to generate a 
corresponding integer value from which an appropriate 
production rule is selected by using the following mapping 
function: 
Rule = (codon integer value) 

 MOD 

(number of  rules for the current nonterminal)        (1) 
Considering the following rule, i.e., given the 

nonterminal op, there are four production rules to select 
from: 
(2) <op> :: = +                             (0) 

| -                              (1) 

| /                              (2) 
| *                              (3) 

If  we assume the codon being read produces the integer 
6, then 
6 MOD 4 = 2 
would select rule (2) /. Each time a production rule has to 
be selected to map from a nonterminal, another codon is 
read. In this way, the system traverses the genome. 

Consider the individual in Figure. 1. 
(1) First, concentrating on the start symbol <expr>, we can 
see that there are four productions to choose from. To 
make this choice, we read the first codon from the 
chromosome and use it to generate a number. This number  
will then be used to decide which production rule to use 
according to equation (1) in BNF. Thus, we have 200 
MOD 4 = 0, meaning we must take the zeroth production 
so that <expr> is now replace with 
<expr><op><expr>. 
(2) Continuing with the first <expr>, i.e., always starting 
from the leftmost nonterminal, a similar choice must be 
made by reading the next codon vale (160) and again using 
the given formula we get 160 MOD 4 = 0，i.e., rule (0). 
The leftmost <expr> will now be replaced with 
<expr><op><expr> to give  
<expr><op><expr><op><expr>. 
(3) Again, we have the same choice for the first <expr> 

by reading the next codon value 206, the result being 
the application of  rule (2) to give 

<pre-op>(<expr>)<op><expr><op><expr>. 
(4) Now, the leftmost <pre-op> will be determined by the 
codon value 96 that gives us rule (0), which is <pre-op> 
becomes Sin. We have the following:  
Sin(<expr>)<op><expr><op><expr> 
(5) The next codon will determine what <expr>，This is 27 
MOD 4 = 3, i.e., rule (3). It is a <var> to give 
Sin(<var>)<op><expr><op><expr> 
(6) The next codon then determines what value <var>，
which has two possible production rules, shall take. This is 
72 MOD 4 = 0, i.e., rule (0)，which turns out to be X. We 
now have 
Sin(X)<op><expr><op><expr> 
(7) The next codon will determine what <op>，will 
become, so we have 107 MOD 4 = 3，which gives a *, and 
the resulting expression is 
Sin(X)*<expr><op><expr> 
(8) The mapping continues until eventually we are left with 
the following expression: 
Sin(X)*Cos(X)+1.0 

 
3.3. An example- symbolic regression 

Symbolic regression problems involve finding some 
mathematical expression in symbolic form that represents 
a given set of  input and output pairs. The aim is to 
determine the function that maps the input pairs onto the 
output pairs. The particular function examined is 

 
3 2( ) = + +f x x x x  

 
with the input values in the range [-1…1]. 
  The grammar used in this problem is given below 
N＝｛expr, op, pre_op｝ 
T＝｛Sin, Cos, Tan, Log, +, -, /, *, X, 1.0, (, )｝ 
S＝｛expr｝ 
And P can be represented as 
(1) <expr> :: = <expr><op><expr>            (0) 

| ( <expr><op><expr>)          (1) 
|<pre-op> (<expr>)              (2) 
| <var>                        (3) 

 
(2) <op> :: = +                             (0) 

| -                              (1) 
| /                              (2) 
| *                              (3) 

 
(3) <pre-op> :: = Sin                         (0) 

| Cos                         (1) 
| Tan                         (2) 
| Log                         (3)
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11001000 10100000 11001110 01100000 00011011 01001000 01101011       

 
200 160 206 96 27 72 107 62 21 55 88 100 203 41 

Figure 1. Example individual expressed as integers. Integer values are generated by converting the 8-bit binary number that is each codon 
into its corresponding integer value. 

 
(4) <var> :: = X                             (0) 

| 1.0                            (1) 
 

The fitness for this problem is given by the sum of  
square errors, taken over 20 fitness cases, of  the error 
between the evolved and target functions. Several 
parameters of  GA are described as follows: the population 
size = 400, crossover rate = 0.8 and mutation rate = 0.01. 
The results demonstrate that GEGA could obtain the 
optimal function type, 3 2( ) = + +f x x x x , within sixty 
generations, shown in Fig. 2. GE was successful in finding 
correct solution to the problem described here. The same 
problem was tackled using a standard GP (Chen, 2003b, 
2003c). In this case, GE outperforms GP on this problem 
from around the fifteenth generation. 
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Figure 2. Objective function values of  GE on the symbolic 

regression problem. 
 

4. A CASE STUDY IN TAIWAN 

The Der-Ji reservoir, which was completed in 1974 and 
has an efficient storage capacity of  169*106 m3, is one of   
the major storage reservoirs in central Taiwan. The 
hydropower plant at Der-Ji has a generating capacity of  
234 MW. This reservoir is a multi-purpose reservoir for 
hydroelectric power generation, agricultural irrigation, 
water supply, flood control, and recreation. The primary 
water use in the basin is hydroelectric power generation. 

 
4.1. Forecast through GEGA modeling 

Historical ten-day (the traditional time period of  
reservoir operation in Taiwan) inflows to the reservoir for 
a period of  40 years (1959-1998), i.e. 1440 data were used 
for modeling. According to the correlation analyses, the 
first (t-1), second (t-2), third (t-3), 36th (t-36) ahead ten-day 
inflow and the average of  inflow were chosen as the input 
variables. These five input variables were shown in Table 1. 

The main consideration of  objective function of  the 
inflow prediction model is to minimizing the mean 

absolute error (MAE). This MAE for the ten-day periods is 
defined as follows: 

 

MAE = ∑
=

－
1 ˆ| |

1

N
QQ ttN t

                     (2) 

Where tQ ：the actual inflow at time t   

tQ̂ ：the predicted inflow at time t  

N：the total number of  time steps  (N = 1440) 

t：time steps (ten-day) 
 
To compare with traditional multiple regression (MR), 

the same input variables were used to construct the model, 
shown as follows. 

 
ˆ

tQ = b0＋b1 −1Qt ＋b2 − 2Qt ＋b3 − 3Qt ＋b4 − 36Qt  

＋b5 Qavg                               (3) 

where Q̂ t : the predicted inflow at time step t 

1Qt − : the actual inflow at time step t-1   

2Qt − : the actual inflow at time step t-2 

3Qt − : the actual inflow at time step t-3 

36Qt − : the actual inflow at time step t-36 

Qavg : the average of  actual inflow of  time step t 

t: time step (ten-day) 

b0, b1, b2, b3, b4 and b5: the coefficients  
 
Table 1. The correlations between output and input variables 

Input variables (ten-day) correlations 

The first ahead 0.5414 

The second ahead 0.3114 

The third ahead 0.2102 

The 36th ahead 0.1576 

The average 0.4669 
 

4.2. Simulation results 

The historical flow of  the driest year 1964 was 
considered as a test example in this study. Several 
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parameters within GE are shown in Table 2. Through 8000 
generations, the optimal equations of  each time steps are 
obtained. The MAE of  GE is 34.512; and the MAE of  
MR is 105.774. Obviously, the result of  GE is much better 
than the traditional method. The predicted inflows by 
using GE and MR as well as the actual inflows of  the year 
1964 are shown in Fig. 3 and 4. Several criteria including 
root mean squared error (RMSE), percentage absolute 
error (PAE), coefficient of  correlation (CC) and coefficient 
of  efficiency (CE) are compared deeply with these two 
models, shown in Table 3. It is indicated that the 
performance of  GE is better than MR in all these five 
criteria. 

 
Table 2. The parameters setting of GE 

Population size 1000 
Length of  codon 8 

Length of  individual 160 
Rate of  crossover 0.8 
Rate of  mutation 0.01 
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Figure 3. Inflow prediction by GE. 
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Figure 4. Inflow prediction by MR. 

 
Table 3. The deep comparisons between GEGA and MR 

Criteria GEGA MR 

MAE 34.512 105.774 
RMSE 60.868 143.498 

CC 0.923 0.724 
PAE 0.859 0.568 
CE 0.842 0.120 

 
4.3. Development of  reservoir operation policy 

The genetic algorithm (GA) was used to find the 

optimal reservoir releases. It constructed the real-time 
operation model, which combined with the inflow 
prediction by GE. There are 36 decision variables within 
GA in one year. The ten-day water supply demand target 
of  this reservoir is in year 2021. The objective function of  
the GA was to maximize energy production subject to 
typical system constraints and minimize the deficit of  
water supply. Therefore, the objective function chosen was 
expressed as follows (Guo, 1996; Chio, 2000).  

 

Max Z = 
1

t
n SH

t tt
CP ENE CS A WSH

=
× − × ×∑      (4) 

where 

t: 1, 2, 3,……………,n  

n: 36 (ten-day) 

CP: the coefficient of  net benefit per hydropower 

generation (2NT dollars/KWH) 

ENEt: the hydropower generations of  Der-Ji Reservoir at 

time t (KWH) 

CS: the loss benefit per water shortage (4NT dollars/m3) 

A: a constant (10) 

SHt: the percent of  water shortage at time t 

WSHt: the water shortage at time t (m3) 
The water balance of  the reservoir system is considered 

as the system constraint. The other constraints are 
described as follows. Water levels at any period must be 
higher than the minimum level (intake elevations), and 
below flood control level or other limitations. All diversion 
facility and power-plant equipment capacity limitations in 
the system must be satisfied. 

The real time operation was optimized with genetic 
algorithms (GAs). A GA incorporating ME selection and 
BLX-0.5 crossover (Chen 2003a), is concluded to produce 
the best results. The process of  generating and evaluating 
decision parameters is repeated until no further 
improvement in performance is obtained. The main 
parameters which control the GA are shown in Table 4. 

 
Table 4. The parameters setting of GA in the real time operation 

Population size 1000 

Number of  variables 36 

Rate of  crossover 0.8 

Rate of  mutation 0.01 
 
The management of  most reservoirs in Taiwan uses 

operating rule curves. These curves primarily guide the 
release of  the reservoir system according to the current 
storage level and the time of  year. The results of  the 
optimal operation obtained from GA combined with 
inflow prediction by GE and the traditional rule curves 
operation were compared in Table 5. A reservoir behavior 
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was prepared with important reservoir attributes, namely, 
water shortage index, maximum water deficit rate, total 
water release, total spill and total hydropower generations. 
It is shown that the objective function value of  real time 
operation optimized by GA and GE is better than the 
result of  original rule curves operation. In other words, the 
real-time operation could obtain more hydropower 
generations and less water shortage compare with the 
conventional operation. 
 

Table 5. Comparisons between the Real Time and Rule Curve 
Operation 

Items Real time Rule curve

Water shortage index in year (SI) 2.01 2.63 

Maximum water deficit rate in ten-day（%） 76.12 76.89 

Total water shortage in year (104 tons) 16,546.7 17,083.8

Total water release in year (104 tons) 96,272.6 94,946.7

Total hydropower generations in year (MWH) 209,740 193,268

Objective function value (106 NT dollars) 2036.5 -3947.8

 
5. CONCLUSIONS 

This study used multi-regressive (MR) method, grammar 
evolution (GE), system simulation, and genetic algorithm 
(GA) for the operation of  a single, multipurpose reservoir. 
The objective of  this paper was to assess the application 
potential of  the GE in attaining the reservoir operational 
objectives, compared with the conventional models. GE is 
a system that can produce code in any language with 
arbitrary complexity. The only inputs are a Backus-Naur 
Form (BNF) definition for the genotype-to-phenotype 
mapping process and a fitness function. 

For reservoir inflow prediction, regression analysis and 
GE were used. It was found that the low flows are 
modeled better through the GE. Thus, GE can be 
effectively used in drought regulation by reservoirs. As for 
reservoir operation, the optimal releases were computed 
using GA. It was found that the GA model releases had 
the best objective function value. Thus, GA combined with 
GE is an effective tool for reservoir real-time operation. 
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