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Abstract⎯This paper investigates the case where a failed product can be detected only through inspections. During the 
lifetime of  the product, it is inspected once and then must be replaced by either corrective or preventive replacement 
depending on the result of  the inspection. By incorporating a discount factor, a mathematical model is established to take 
the time value of  costs into account. Based on the model, the optimal time epoch for inspection is derived such that the 
present value of  the expected total cost is minimized. Since there is no closed-form solution of  the optimal time epoch for 
inspection, some properties are investigated and an efficient algorithm is provided to search for the optimal policy. Finally, 
numerical examples for products having Weibull lifetime distributions are given to investigate the effects of  the continuous 
discount rate and cost parameters on the optimal policy and the corresponding present value of  the expected total cost. 
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1. INTRODUCTION 

In reliability studies, there are situations where failures 
of  a product/item can only be detected through 
inspections. Here, a product/item as defined in MIL-STD 
721 B (Military Standard, Department of  Defense, U.S.A.) 
could be a system, material, part, component, etc (Osaki, 
1992). For some products, inspection can only be carried 
out once during the lifetime of  a product. Practical 
examples for this kind of  products can be found in Nelson 
(1982) such as a cracked component inside a turbine, fan 
blades of  jet engines, and metal specimens in a fatigue test 
for endurance limit. For some cases, the product after 
inspection must be replaced either correctively or 
preventively. In this paper, we will focus on deriving an 
optimal time epoch for inspection for this kind of  
products. 

Since Barlow et al. (1965) proposed a basic inspection 
model without any repair and replacement, there are a 
variety of  inspection models proposed and investigated for 
different practical situations. Munford and Shahani (1972) 
focus on the computational complexity of  Barlow’s model 
and propose a nearly optimal inspection policy by 
introducing a single control variable. Furthermore, using a 
continuous inspection density function and the methods of  
calculus of  variations, Keller (1974, 1982) makes the 
derivation of  the optimal policy more tractable. Other 
extensions of  using the inspection density to easily derive 
the optimal inspection policy can be found in Kaio and 
Osaki (1984) and Leung (2001). 

Without considering the inspection time, Schneeweiss 
(1977) proposes a random check scheme and derives the 

probability density function of  the time delay between 
product failure and inspection. Nakagawa and Yasui (1979) 
focus on the periodic inspection policies and derive an 
approximate checking time for a product with Weibull 
lifetime. Under a periodic inspection policy, Nakagawa 
(1984) takes preventive maintenance into account and 
derives the mean time to failure and the expected number 
of  checks before failure. Furthermore, Schultz (1985) 
investigates a new approximation for the optimal periodic 
inspection policy to improve the cost performance of  the 
approximation given in Munford (1981).  

There is a common assumption in the works mentioned 
above, which is the time required for inspection is 
negligible. Luss and Kander (1974) and Luss (1977) coped 
with inspection models in which the duration of  inspection 
and repair is non-negligible and the optimal policies are 
obtained for different objective functions. Chelbi and 
Ait-Kadi (1999) develop a condition-based monitoring 
scheme and an algorithm is provided to find the optimal 
inspection sequence over an infinite span. 

In spite of  all kinds of  inspection policies developed the 
time value of  cost (measured by the discount factor) in 
determining the optimal policies was seldom considered in 
the area of  reliability engineering. In production research, 
Trippi and Lewin (1974) and Chung (1989) adopt the 
discount factor and find the optimal inventory policy in the 
long run. However, due to improvement in product 
reliability, the average lifetime of  a product has increased 
significantly recently and hence the time value may play an 
important role in determining an inspection policy as 
pointed out in Abdel (2004).  
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In this paper, we focus on deriving the optimal time 
epoch for inspection for a stochastically failing product, in 
which failures are only detected by inspection. A detailed 
description of  the inspection scheme is given in Section 2, 
and a mathematical model is developed in Section 3. 
Furthermore, the properties of  the optimal time epoch for 
inspection are investigated and an efficient algorithm is 
given in Section 3. Some numerical analysis is conducted in 
Section 4 to evaluate the impact of  the discount factor on 
the optimal policy. Finally, a brief  conclusion is drawn in 
the last section.   
 
2. SYSTEM DESCRIPTION 

Consider that the failure of  a product can only be 
revealed by inspection. Following an inspection, the 
product is replaced by an identical new product. Upon the 
completion of  a replacement, the product is renewed and 
the failure process starts over again. Hence, the time 
duration between two successive replacements is called a 
maintenance cycle. Suppose that each inspection incurs a 
cost 1c  and requires I  units of  time. After each 
inspection, the product is identified as either failed or 
non-failed. Once a failed product is found, a corrective 
replacement is carried out with cost 2c . For a non-failed 
product, it is also replaced by performing a preventive 
replacement with cost <3 2( )c c . Both corrective and 
preventive replacements require R  units of  time to 
complete.  

Since failures can only be detected by inspections, if  the 
product failed before an inspection, it keeps operating until 
the time epoch of  performing an inspection. During this 
period of  time, there is a cost δ1  per unit time incurred 
for operating a failed product. Furthermore, the product 
stops operating when inspection and replacement are 
performed and there is a downtime loss of  δ 2  per unit 
time. Although frequent inspections could reveal failures 
early to avoid operating a failed product, it also incurs more 
inspection and replacement costs, which may not be cost 
effective. Therefore, there is a need to find an optimal time 
epoch for inspection such that the expected total cost in a 
maintenance cycle is minimized. 

Let X be the failure time of  the product. In this paper, 
we consider the case where X follows a Weibull 
distribution since it is one of  the most frequently used 
lifetime distributions in the area of  reliability engineering. 
The probability density function (p.d.f.) of  a two-parameter 
Weibull distribution is 
 

( )1( ) ( )
xxf x e

β
β αβ

α α
−−= , x ≥ 0,                   (1) 

 
where α > 0  and β > 0  are the scale and shape 
parameters, respectively. Furthermore, the mean time to 
failure is µ α β= Γ + (  1 1  ) . It is well-known that the 
Weibull distribution has a decreasing failure rate when 
β < 1 , a constant failure rate when β = 1 , and an 

increasing failure rate when β > 1 . Since most products 
deteriorate or age as operating time increases, in this paper, 
we will focus on the case when β > 1 . 

For the product mentioned above, the Lemma below is 
very helpful in deriving and investigating the properties of  
an optimal time epoch for inspection. Let’s first define the 
log-concavity of  a function. Any function ( )g x  is said to 
be log-concave if  the first derivative of  log ( )g x  is a 
strictly decreasing function of  x  (Hariga, 1996). The 
following Lemma shows that the p.d.f. of  a Weibull 
distribution is log-concave. 
 
Lemma 1: When β > 1 , the p.d.f. of  a Weibull 
distribution ( )f x  is log-concave. 
 
Proof: From Eq. (1), we have log ( ) (log log )f x β α β= −  

( 1) log ( / ) .x x ββ α+ − −  It is obvious that the first and 
second derivatives of  log ( )f x  are given by 
 

ββ β
α α

−−
= − 1log ( ) 1 ( )d f x x

dx x
                   (2) 

 
and 
 

ββ β β
α α

−− −
= − −

2
2

2 2 2

log ( ) ( 1) ( 1) ( )d f x x
dx x

.          (3) 

 
When β > 1 , we have <2 2log ( ) 0d f x dx  for all x  
from Eq. (3). Hence, log ( )d f x dx  is a strictly 
decreasing function of  x and f(x) is log-concave when 
β > 1 . 
 

Using Lemma 1, the structural property of  the optimal 
time epoch for inspection can be easily obtained as 
discussed in the next section. 
 
3. THE OPTIMAL POLICY 

To derive the expected total cost in a maintenance cycle, 
we first introduce the discount factor. As defined in 
financial theory, the discount factor is the value today of  $1 
received in the future. In other words, the true value of  a 
delayed cost could be uncovered by the discount factor. 
Such true value generally is represented by the present 
value. For example, under a continuous discount rate r > 0, 
$1 at time s has a present value −rse , which is called the 
discount factor.  

Now, if  the product is inspected at time t, then it will be 
replaced at time (t + I) and be renewed at time + +( )t I R . 
Hence, there is an inspection cost 1c  incurred at time t . 
If  the failure time ≤x t , then the product failed before 
inspection. In this case, there is a cost δ1  per unit time 
during the interval [ , ]x t  and a corrective replacement 
cost 2c  occurred at time +( )t I . On the other hand, if  
>x t , then the product does not fail at inspection and 
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there is a preventive replacement cost incurred at time 
+( )t I . For both cases, there is a downtime loss δ 2  per 

unit time during the interval + +[ , ]t t I R . Therefore, 
under a continuous discount rate > 0r , the present value 
of  the expected total cost in a maintenance cycle is 
 

( )
1 2 1 2

0

( )
3 2

( )

 ( )

                         ( ) .

t t t I R
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(4) 
 
Using Eq. (1) and integration by parts, we have  
 

β

α
− −− − −= − + −∫ ∫
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Combining Eqs. (4) and (5), the present value of  the 
expected total cost becomes 
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Hence, our objective here is to find an optimal time epoch 
for inspection *t  such that Eq. (6) is minimized. 
Obviously, there are two trivial policies, which are = 0t  
and = ∞t . When = 0t , the product is constantly being 
inspected and replaced, which is not applicable in practice. 
However, we have δ− − += + + − ( )

1 3 2(0) [1 ]rI r I RPV c c e r e  
that provides an upper bound for *( )PV t . One the other 
hand, when = ∞t , the product is never inspected. In this 
case, we have δ −∞ = 2( ) [ ]rxPV E e r  from Eq. (4). Again, 
this value provides another upper bound for *( )PV t . 
 

Taking the first derivative of  Eq. (6) with respect to t , 
we have 
 

( )( )
2 2 3 2 3 3

( )

( ) ( ) (( )(1 ) )
t

r t I R rR

dPV t
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β
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                   (7) 

 
To simplify the notations, let θ δ= − −1 1 2 3( )rIe c c r  and 

θ δ −⎡ ⎤= + + − −⎣ ⎦2 1 3 2 2 3( ) ( ) ( )rI rI rRr c e c e e c c . Since >2 3c c  

and −>rI rRe e , we have θ >2 0  for all r . After 
rearranging the terms, Eq. (7) can be rewritten as 
 

( )

( )

( )
2 3 1 2

( )
2 3

( ) ( ) (1 )

            ( )

βt( )r t I α

r t I

dPV t e c c f t θ e
dt

e c c t

θ
−− +

− +

⎡ ⎤
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= − Λ
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where 
-

1 2( ) ( ) (1 )
t

t f t θ e
β

α θ
⎛ ⎞
⎜ ⎟
⎝ ⎠Λ = + − − . It is clear that 

( )dPV t dt  has the same sign as Λ( )t . Setting Eq. (8) 
equal to zero, the necessary condition for t  to be optimal 
is Λ =( ) 0t . However, the solution for Λ =( ) 0t  may not 
be unique. Since θ

→
Λ = − <20

lim ( ) 0
t

t  and 

θ θ
→∞

Λ = −1 2lim ( )
t

t  may be less or larger than zero, the 

number of  sign changes of  Λ( )t  depends on the 
relationship between θ1  and θ2 . 
 

To investigate the shape of  Λ( )t , let’s take the first 
derivative of  Λ( )t  with respect to t  as follows. 
 

Λ ⎡ ⎤= +⎢ ⎥⎣ ⎦
1

( ) log ( )( )d t d f tf t θ
dt dt

.                   (9) 

 
From Lemma 1, we know that log ( )d f t dt  is a strictly 
decreasing function of  t . Hence, Λ( )d t dt  changes its 
sign exactly once from positive to negative. This result 
implies that there exists a unique solution for 
Λ =( ) 0d t dt , say t̂ , and Λ( )t  increases for ≤ ˆt t  and 

then decreases for > ˆt t . In other words, the shape of  
Λ( )t  is concave downward. Let ∈ ˆ[0, ]t t  be the solution 
of  Λ =( ) 0t  whenever it exists. Then, based on the above 
discussion, the possible ranges of  the optimal time epoch 
for inspection *t  are summarized in Theorem 2. 
 
Theorem 2: When β > 1 , if  Λ <ˆ( ) 0t , then = ∞*t . 
Otherwise, 
(i) when θ θ− >1 2 0 , there exists a unique ∈* ˆ(0, ]t t , 
(ii) when θ θ− ≤1 2 0 , if < ∞(  ) ( )PV t PV , then =*t t ; 
otherwise, = ∞*t . 
 
Proof: It is clear that if  Λ <ˆ( ) 0t , then Λ <( ) 0t  for all 
t , which means ( )PV t  decreases in t . Therefore, 
= ∞*t . Otherwise, we will focus on the sign of  θ θ−1 2  

since θ
→
Λ = − <20

lim ( ) 0
t

t . When θ θ− >1 2 0 , Λ( )t  
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changes its sign exactly once from negative to positive in 
the interval ˆ(0, ]t  and so does ( )dPV t dt . Therefore, 
there exists a unique ∈* ˆ(0, ]t t  such that ( )PV t  is 
minimized.  

Now, when Λ ≥ˆ( ) 0t  and θ θ− ≤1 2 0 , Λ( )t  changes 
its sign exactly twice from negative to positive in the 
interval ˆ(0, ]t  and from positive to negative in the 
interval ∞ˆ( , ]t . In this case, a local minimum occurs at 
∈ ˆ[0, ]t t . Therefore, if < ∞(  ) ( )PV t PV , then =*t t ; 

otherwise, = ∞*t . 
 

Using the results in Theorem 2, the optimal time epoch 
for inspection *t  can be easily obtained by the following 
algorithm. 
 
Step 1. Compute θ1 , θ2 , and ∞( )PV .  
Step 2. Search for t̂ such that θ= − 1 log ( )d f t dt and 

evaluate Λ ˆ( )t . 
Step 3. If  Λ <ˆ( ) 0t , then set = ∞*t  and STOP. 
Step 4. If  θ θ− >1 2 0 , then search for ∈ ˆ[0, ]t t  such 

that Λ =( ) 0t . Set =*t t  and STOP. 
Step 5. If  θ θ− ≤1 2 0 , then search for ∈ ˆ[0, ]t t  such 

that Λ =( ) 0t  and evaluate (  )PV t . 
  If  < ∞(  ) ( )PV t PV , then set =*t t ; otherwise, 

set = ∞*t . STOP. 
 
4. NUMERICAL RESULTS 

In this section, some numerical examples are given to 
analyze the impact of  the discount rate and cost 
parameters on the optimal time epoch for inspection 

*t and the resulting present value of  the expected total cost 
*( )PV t . The lifetime distribution of  the product is 

assumed to be Weibull distributed with 
 (  1 1  ) 1.µ α β= Γ + =  The corresponding scale and 

shape parameters for the distributions are (α, β) = (1.1284, 
2) and (α, β) = (1.1198, 3). The other cost and time 
parameters are listed in Table 1. Using these parameters 
and MATLAB 6.5 software, the numerical results are 
summarized in Table 2.  
 

Table 1. Illustration of  the parameter settings 
Parameter Assigned Values 

α  1.1198, 1.1284 
β  2, 3 

1c  0.1 

2c  1 

3c  0.5 
1δ  20 
2δ  1, 4, 40 

I  0.01 
R  0.02 
r  0.001, 0.01, 0.05, 0.1, 0.3 

In Table 2, the optimal time epoch for inspection *t and 
the resulting present value of  the expected total cost 

*( )PV t  are obtained using the algorithm given in Section 
3 for various discount rates r and ratios δ δ1 2 . For 
example, when δ δ =1 2 5  and r = 0.05, we have t* = 
0.1163 and PV(t*) = 0.7289 for α β =( , ) (1.1284,2) . Here, 
the δ δ1 2  represents the ratio of  operating a failed 
product to the downtime loss. 
 

Table 2. Numerical results of  t* and PV(t*) for different 
parameter combinations 

α = 1.1284  β = 2 α = 1.1198  β = 3  r t* PV(t*) r t* PV(t*)
0.001 0.0216 0.6302  0.001 0.0214 0.6300
0.01 0.0583 0.6319 0.01 0.0577 0.6297
0.05 0.1105 0.6380 0.05 0.1095 0.6273
0.1 0.1440 0.6438 0.1 0.1428 0.6230

1

2
20δ

δ =

0.3 0.2167 0.6559 0.3 0.2149 0.5996
0.001 0.0231 0.7203 0.001 0.0228 0.7200
0.01 0.0616 0.7222 0.01 0.0610 0.7196
0.05 0.1163 0.7289 0.05 0.1153 0.7167
0.1 0.1514 0.7352 0.1 0.1501 0.7116

1

2
5δ

δ =  

0.3 0.2275 0.7470 0.3 0.2256 0.6835
0.001 0.0344 1.8006 0.001 0.0340 1.7999
0.01 0.0889 1.8049 0.01 0.0881 1.7986
0.05 0.1645 1.8176 0.05 0.1631 1.7883
0.1 0.2127 1.8260 0.1 0.2109 1.7704

1

2
0.5δ

δ =

0.3 0.3171 1.8167 0.3 0.3145 1.6737
 

From Table 2, we have the following observations. 
1. When δ δ1 2  decreases, the optimal time epoch for 

inspection *t  increases. This result is reasonable since a 
failed product may allow operating for a longer period 
of  time when the operating cost is relatively smaller or 
the downtime loss is relatively larger.  

2. When the discount rate r  increases, the optimal time 
epoch for inspection *t  also increases. In practice, the 
discount rate may represent the interest rate or the rate 
of  return. If  the rate of  return is higher, we may prefer 
to pay the inspection cost and replacement cost later, 
even though a failed product may operate for a longer 
period of  time. As a result, the present value of  the 
expected total cost *( )PV t  decreases. 

3. When the shape parameter β  increases, the optimal 
time epoch for inspection *t  decreases. The higher the 
shape parameter β  is, the faster the product 
deteriorates. Hence, the optimal time epoch for 
inspection *t  becomes shorter. However, the present 
value of  the expected total cost *( )PV t  decreases in 
this case since there is a shorter maintenance cycle. 

 

5. CONCLUSIONS 

In this paper, an inspection model is developed for a 
product that is inspected once in its lifetime. After 
inspection, the product is replaced by either corrective or 
preventive replacement. Taking the time value of  costs into 
account, the discount factor is incorporated in the model. 
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Based on the model, some properties of  the optimal time 
epoch for inspection are obtained, which are then used to 
develop an efficient algorithm to derive the optimal time 
epoch for inspection such that the present value of  the 
expected total cost is minimized. 

Numerical examples for products with Weibull lifetime 
distributions are given to investigate the effects of  the 
discount rate and cost parameters on the optimal policy 
and the corresponding present value of  the expected total 
cost. The numerical results show that the optimal time 
epoch for inspection becomes longer when the discount 
rate increases, cost ratio 1 2δ δ  decreases, or shape 
parameter β  decreases. 
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