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Abstract⎯This study presents a novel mathematical model using Bayesian model for demand forecasting with 
non-homogenous Poisson process model. This study aims to construct a framework to minimize the overproduction and 
underproduction costs by using the time-dependent uncertainty of  accumulative demand curve. Specific models were 
derived as the fundamentals of  this approach. Furthermore, this study also proposed a method to evaluate demand 
forecasting using Bayesian experiment with non-homogenous Poisson process model.  
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1. INTRODUCTION 

Successful performance of  revenue management 
systems heavily relies on forecasting and optimization 
(Rajopadhye et al., 1999). Based on the historical demand 
data, researchers have applied time series or other 
statistical analysis methods for demand forecast. For 
example, Holt-Winters exponential smoothing model for 
optimal forecasting is applied for short-term forecasts for 
series of  sales data or levels of  demand for goods (Segura 
and Vercher, 2001). Rather than using single forecasting 
method, Witt and Witt (1995) proposed auto-regression, 
exponential smoothing, and econometrics for forecasting 
tourism demand. With aggregate slack control or 
multistage production control, the master planning 
procedure with the variance of  production and inventory 
levels can avoid the unrestrained growth of  inventory and 
the uncontrollable consumption of  capacity (Bartezzaghi 
and Verganti, 1995, Hirakawa, 1996). 

Alternatively, this study aims to construct a framework 
to minimize the overproduction and underproduction 
costs by using the time-dependent uncertainty of  
accumulative demand curve in which some properties of  
the Poisson process are introduced and the relation 
between the Poisson process and Bayes’ theory is 
identified. Due to the stochastic characteristics of  the 
future capacity needs by input and output process 
(Lattimore and Baker, 1997), the Poisson process and 
Bayes’ theory (Cinlar, 1975) are adopted herein. This 
approach is different from the Bayesian analysis of  the 
Muth model and mixed Markov with latent class model 
e.g., Urban et al. (1996), Goulias (1999). Because this 
mathematical model is derived from the past sales 
experiment, the technology of  pre-market forecasting of  
new product may not be suitable by lacking of  the 
historical data (Gavirneni et al., 1998). Furthermore, this 

study also proposed a method to evaluate demand 
forecasting using Bayesian experiment with 
non-homogenous Poisson process model. These indices 
of  evaluation are essential in revenue management. 

The rest of  this paper is organized as follows. Section 2 
establishes the theoretical foundation and describes the 
proposed mathematical models. Section 3 introduces the 
evaluation process that considers overproduction and 
underproduction costs to assess the accumulative demand 
curve and its uncertainty. Concluding remarks are finally 
made in section 4, including the merits and limitations of  
the proposed procedure. 

 
2. MATHEMATICAL MODEL 

The following terminology and notations are generally 
used in this study. 

( , )n tλ : the event rate for each n event occurs in t period. 
( )nλ : the average of  random event rate. 
( )h t : the accumulative demand function of  time t. 

( )c λ : constant of  event rate. 
( )kn t : volume of  product nk at time t. 

t : time period or time interval. 
( | , ( , ))P n t n tλ : a Poisson process presents the probability 

of  product n’s demand at given time t and event 
rate ( , )n tλ . 

( | , ( , ))f t n n tλ : a conditional probability function of  
gamma distribution for time interval t given n and ( , )n tλ . 

Herein, the Poisson process is adopted for demand 
forecasting. Especially, the linkage between demand 
forecasting and inventory management can be applied in a 
model with condensed and compounded Poisson mixed 
over time (Boylan and Johnston, 1996). In the general 
model of  Poisson process, researchers usually use the 
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constant event rate as the parameter of  λ  (Hogg and 
Tanis, 1983). Some gaps exist between the Poisson process 
and Bayes’ theory in terms of  the event rate updated. That 
means the λ  could be variable instead of  constant 
parameter. 
 
Theorem 1: If  a specific event in a system occurs as a 
Poisson experiment, the derived Bayesian model on the 
event rate will have the likelihood function as a Poisson 
distribution. That is,  
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Proof: see Wang and Chien (2000). 
 

In Theorem 1, the Poisson process and Bayes’ theory 
are related in terms of  the randomness of  event rate. The 
intuition of  this conversion comes from the model in 
Drinking Water Company of  Limburg (WML) who 
changes the constant production flow into optimization of  
the quantitative control Baker et al. (1998). 

From the above theorem, we can infer that the 
posterior distribution of  event rate is gamma distribution. 
For the randomness of  event rate, we assume there is a 
demand curve with time dependent function ( )h t  that 
affects the mean of  that event rate. The non-homogenous 
Poisson process model can be applied to deal with the 
randomness of  an event rate can combine the Poisson 
process and Bayes’ theory to solve the problem of  time 
dependency on the event rate. 
 
Theorem 2: If  a specific event in a system occurs as a 
Poisson experiment with the time dependent event rate, 
the derived Bayesian model will have the likelihood 
function as a Poisson distribution. That is, 
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Proof: see appendix 1. 

 
Hence, Theorem 2 links the non-homogenous Poisson 

process and the Bayes’ theory. Then, the demand curve 
( )h t  is the accumulative and the event rate ( , )n tλ  is 

equal to 1( ) ( )
t

o
n h d

t
λ τ τ× ∫  with the randomness of  

( )nλ  which ( ) ( )c nλ λ=  in equation (9). From the 
properties of  Poisson process, we know that the 
probability distribution of  the random variable ni, 

representing the number of  products demand in a given 
time interval denoted by t. 
 
Theorem 3: If  concurrent specific events n1(t), n2(t), …, 
nm(t) in a system or component occur as its Poisson 
experiment respectively on the same event rate λ , the 
derived Bayesian model with maximum likelihood 
estimator (Cinlar, 1975) will satisfy 
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Proof: see appendix 2. 

 
Theorem 3 specifies the relationship between the 

randomness event rate ( )nλ  and the accumulative 
demand ( )h t  is of  relevant concern. 
 
Theorem 4: If  concurrent specific events n1(t), n2(t), …, 
nm(t) in a system occur as its Poisson experiment 
respectively on the same event rate ( , )n tλ , the derived 
Bayesian model with maximum likelihood estimator will 
satisfy 
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Proof: see appendix 3. 
 

Because the accumulative demand curve is a 
non-decreasing function as time goes by, the larger 
demand requirement implies a smaller uncertainty of  
event rate. 
 
Theorem 5: Mentioned about average time case of  

0

1 ( )
t

h d
t

τ τ∫  there is a saddle point in warning productivity 

strategy with increasing ( )h t  
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Proof: see appendix 4. 
 
3. EVALUATION PROCESS 

The above theorems and properties in the 
non-homogenous Poisson process can be applied to 
develop an evaluation process of  demand forecasting as 
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shown in Figure 1. In this evaluation process, to collect 
demand curve based on historical data of  similar products 
is the main processing of  data analysis in the proposed 
framework (Lertpalangsunti and Chan, 1998).  

As illustrated in Figure 1, the evaluation process 
consists of  six steps.  

Firstly, the historical demand data of  a specific product 
or similar products with n1(t), n2(t), …, nm(t)  at some 
certain time are collected. Following the nature of  a lumpy 
demand (Bartezzaghi et al., 1999), if  this product is a new 
one, some similar products can be used to replace the 
average demand data n1(t), n2(t), …, nm(t). If  the demand 
data can not be collected, the accumulative sales data can 
also be used to substitute the average demand data, though 
the underproduction cost (Fisher and Raman, 1996) may 
be underestimated. 

Secondly, the unbiased minimum variance estimator is 
used as the average demand data. There are some specific 
time points for collecting the average demand data. The 
unbiased minimum variance estimator uses the mean value 
of  these data as the prediction of  the accumulative curve 

at the selected time points. That is, 
0

1 ( )
t
h d

t
τ τ =∫  

1
( )m

kk
n t m

=∑  is a point estimator of  the average demand 

at time t. 
Thirdly, the cubic spline technique in numerical analysis 

(Burden et al., 1985) is employed to smooth the average 
demand curve. Since only the data at some specific time 
points are derived in the second step, the continuous 
demand rate ( )h t  can be derived, which is easier to 
derive the average demand curve by integration.  

Fourthly, Theorem 4 is employed to obtain the mean 
and variance value of  event rate λ  for measuring the 
demand uncertainty. In particular,  
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implies a large uncertainty at the beginning of  sales, if  
there is an idle time passed. The product strategy 
significantly affects the profit outcome at the beginning of  
sales and thus makes the product sales more uncertain of  
the beginning than some sales periods later after some 
sales period. 

Fifthly, Theorem 2 is employed to evaluate the 
randomness of  event rate λ  after some sales periods. 
According to equation (17), the variance of  the 
randomness in event rate λ  is convergent with an 
increase of  the accumulative demand. 

Finally, reduced cost of  demand uncertainty technology 
(Fisher and Raman, 1996) can be applied to minimize the 
overproduction and underproduction costs. When sales 
rate of  ( )h t is increasing and before reaching the saddle 

point of  
0

1 ( )
t
h d

t
τ τ∫ , we can expand our productivity by 

the average demand curve and its randomness to derive 
the probabilities of  overproduction and underproduction. 

The expected value of  overproduction cost can be derived 
from the product of  discount cost in each product and its 
overproduced probability. Similarity, the expected value of  
underproduction cost can be derived from the product of  
shortage cost in each product and its underproductive 
probability. Moreover, the production plan and schedule 
can be evaluated by the total overproduction cost and 
underproduction cost during the sales periods. 

There is a significant difference between this model and 
origin-destination (OD) demand prediction (Camus et al., 
1997). Rather than using the time slice in OD demand 
matrices, this model provides an integral estimation at any 
time. Indeed, the product of  ( )h tλ ×  is similar to the 
simplified formula in exponential smoothing models 
(Winter, 1960, Salem and Jacques, 1999). The feedback 
loop of  evaluation process is the results refinement and 
validation in that framework. 
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Figure 1. Evaluation process of  demand forecasting. 

 
4. CONCLUDING REMARKS 

This study derives mathematical models in demand 
forecasting and proposes a corresponding process for 
evaluating demand forecast. The proposed model can 
provide useful information such as variation of  product 
demand at different times. With the uncertainty of  
accumulative demand curve being estimated, this method 
can be used to minimize the overproduction and 
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underproduction costs. Therefore, the proposed model 
can be used to evaluate the production plan and schedule 
based on the total production costs including 
overproduction and underproduction costs. The results 
for demand forecasting derived in this approach can be 
integrated with revenue management to maximize the 
revenue in light of  the fixed discount cost, shortage cost, 
and stochastic average demand curve during a sales period. 

Further study is needed to use empirical data for validating 
the practical viability of  the proposed model. 
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APPENDIX 1 

Consider that there is a functional random variable ( , )n tλ  in a Poisson process such that 
0

1( , )= ( ) ( )
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n t n h d
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λ λ τ τ× ∫  

with λ(n) is a random event rate and h(n) is a function of  time t. Here, we use the average of  random event rate to represent 
the parameter λ(n). Then, for each n event occurs in t period, we can get 
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In addition, let ( | , ( , ))f t n n tλ  be a conditional probability function of  gamma distribution for time interval t given n 

and λ(n, t), where time t is a continuous variable Thus,  
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From equation (4), we derive: 
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Compare the result of  equation (7) and equation (3), we obtain: 
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For the case ( ) ( ) , 1c n nλ λ= ≥ , the constraint of  equation (8) is satisfied. 

So,  
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APPENDIX 2 

Suppose there are concurrent m Poisson process, the events occur at n1(t), n2(t), …, nm(t) during time period t with the 
same event rate ( , )n tλ . 

From Theorem 2, we can get 
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For the purpose of  optimal λ, 
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APPENDIX 3 

Suppose there are concurrent m Poisson processes, n1(t), n2(t), …, nm(t) are events occurrence during time period t with 
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APPENDIX 4 
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That means if  we build a monitor with 
0

1 ( ) ( )
t
h d h t

t
τ τ =∫ and the increasing rate of  h(t) (i.e. '( ) 0h t > ), there is a 

warning of  saddle point to warn the decreasing rate of  h(t) (i.e. '( ) 0h t < ) in the near future. 
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