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Abstract⎯Due to the lack of  a structure way in determining the free parameters of  support vector machines (SVMs), this 
study uses genetic algorithms (GAs) to select parameters of  SVMs. In addition, the developed SVMG (support vector 
machine with genetic algorithms) model is applied to reliability prediction. Two numerical examples in the literature are 
employed to illustrate the performances of  various prediction models. Empirical results reveal that the proposed model 
provides more accurate prediction results than the other forecasting models. Therefore, the presented SVMG model offers a 
promising alternative in reliability prediction. 
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1. INTRODUCTION 

Modeling and forecasting of  reliability had received 
increasing attentions in the field of  production and 
operations management systems. In general, system 
reliability changes with time. Therefore, the reliability 
changes could be viewed as a time series process. 
Predicting the variability of  reliability with time is difficult. 
The difficulty arises from assumptions concerning failure 
distributions and a lack of  appropriate reliability models. 
The methods for forecasting reliability include lifetime 
distribution, Markov models, part count and part stress, 
and fault tree analysis. Traditional reliability prediction is 
usually based on some probability distributions of  time to 
failure. The probability distributions are mostly obtained 
through analysis of  testing data, which is sampled from 
testing population. However, these works are limited in 
some variations of  individual systems under dynamic 
operating conditions, such as life time of  systems, features 
of  production, and operation conditions. Therefore, the 
determination of  the parameters in a forecasting model is 
important to the forecasting performance.  

Recently, Support vector machines (SVMs) have been 
developed for solving pattern recognition and nonlinear 
regression estimation problems. The SVM model is able to 
increase forecasting accuracy by selecting suitable 
parameter. Therefore, constructing an adapted procedure 
to select suitable parameters is an essential task. In this 
study, a SVM model with genetic algorithms (GAs) is 
proposed to examine the feasibility of  predicting system 
reliability. The rest of  this paper is organized as follows. 
Literatures of  reliability prediction are reviewed in section 

two. The proposed SVMG model is introduced in section 
three. Two numerical examples are used in section four to 
demonstrate the forecasting performance of  the proposed 
model. Finally, conclusions are presented in the fifth 
section. 
 
2. RELIABILITY PREDICTION 

Duane model is one of  the most popular models in 
reliability growth prediction (Duane, 1964). This approach 
is a non-homogeneous Poisson process (NHPS) and 
expresses a relationship between the expected cumulative 
Mean Time Between Failure (MTBF, θ) and the cumulative 
test time (t). The slope of  the fitted line is estimated by the 
historical reliability data. Ho and Xie (1998) proposed an 
ARIMA model to analyze the failures of  repairable systems. 
The experimental results indicated that the proposed 
model substantially outperform the Duane model in terms 
of  MAD (mean absolute deviation). Ho et al. (2002) 
conducted a comparative analysis of  neural networks and 
ARIMA techniques to forecast the reliability of  repairable 
systems. Their experimental results demonstrated that both 
recurrent neural networks and the ARIMA approach are 
superior to multi-layer forward neural networks in terms of  
the mean square error (MSE) and MAD. Su et al. (1997) 
combined ARIMA models with neural network techniques 
to predict engine reliability. They reported that the 
proposed model results in more accurate forecasting results 
than ARIMA models and BPNN (back-propagation neural 
networks) models. Sitte (1999) applied neural network 
technology to predict software-reliability-growth, two 
neural networks, namely the fee-forward- network and the 
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Elman-recurrent-network were used in this investigation. 
The input is the normalized failure-occurrence time; the 
output is the accumulated failure number. The empirical 
results indicate that these two neural networks outperform 
the parametric-recalibration models in terms of  forecasting 
accuracy. Cai et al. (2001) applied a multi-layer perceptron 
(MLP) neural network to forecast software reliability. The 
authors claimed that proposed models are more suitable 
for a smooth reliability data set than a fluctuating one. Xu 
et al. (2003) applied feed-forward MLP neural networks 
and radial basis function (RBF) neural networks to forecast 
engine reliability. The sensitivity analysis is employed to 
determine the appropriate architectures of  neural networks. 
The experimental results illustrate that the proposed model 
has better forecasting performance than traditional MLP 
model and the ARIMA model. 

SVMs, proposed by Vapnik(1995), is a novel learning 
technique applying statistical learning theory (SLT) to 
structural risk minimization (SRM). SVMs were originally 
developed to solve pattern recognition and classification 
problems. Recently, with the introduction of  Vapnik’s 
ε -insensitive loss function, SVMs have been extended to 
solve forecasting problems in many fields. Lu et al. (2002) 
applied SVM techniques to forecast air quality parameters. 
The empirical results indicate that SVMs outperformed the 
RBF model in terms of  MAD. Trafalis and Ince (2000) 
proposed a SVM model to predict the stock prices. The 
numerical results indicate that the proposed model provide 
better forecasting results than back-propagation and RBF 
neural networks. Tay & Cao (2001) used SVMs in 
forecasting financial time series. Their numerical results 
show that SVMs are superior to the multi-layer 
back-propagation neural network in financial time series 
forecasting. Mohandes et al. (2004) applied SVMs to 
predict wind speed. Their experimental results indicate that 
the SVM model has more accurate forecasting results than 
MLP neural networks. Pai and Lin (2004a) employed SVMs 
to forecast the production values of  the machinery 
industry in Taiwan. They reported that SVMs outperform 
seasonal ARIMA model and general regression neural 
networks model (GRNN). Pai and Lin (2004b) proposed a 
hybrid model with the strength of  an ARIMA model and 
the SVM model in forecasting the stock prices. By using 
ten stocks to examine the performance, numerical results 
show that the proposed hybrid model outperforms the 
ARIMA model and random walk model. Hong and Pai 
(2004) applied a SVM model in forecasting electric load in 
Taiwan. They found that the proposed model outperform 
the ARIMA model and the GRNN model in terms of  
forecasting accuracy. 
 
3. METHODOLOGY 

3.1 Support vector machines model 

The basic concept of  the SVM regression is to map 
nonlinearly the original data x into a higher dimensional 
feature space. Hence, given a set of  data n

iii dxG 1)},{( ==  
(where xi is the input vector; di is the historical actual value, 

and n is the total number of  data patterns), the SVM 
regression function is  

 
bxwxfy +== )()( φ                           (1) 

 
where )(xφ is the feature of  inputs, and both w and b are 
coefficients.  

The coefficients (w and b) are estimated by minimizing 
the following regularized risk function,  
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Eq.(2) implies the SVM processes employed the concepts 
of  ε-insensitivity loss function (namely empirical risk, 
shown in Eq. (3)) to represent the risk minimization in a 
regression model.  
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Therefore, the risk minimization problem should be 
focused on minimizing Eq.(3) and 2w . Theε-insensitivity 
loss function is defined as follows, the loss equals zero if  
the forecasted value is within the ε-tube, else, the loss 
equals ε−− yd  (Eq. (4) ).  
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Meanwhile, in Eq. (2), the first term, 2
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is considered to specify the trade-off  between the empirical 
risk and the model flatness. Both C and ε are 
user-determined parameters. There is lack of  standard 
procedure to determine the values of  ε and C to be suited 
to all kinds of  forecasting fields.  

Two positive slack variables ζ and *ζ , which represent 
the distance from actual values to the corresponding 
boundary values of  ε-tube, are introduced. Then, Eq. (2) is 
transformed into the following constrained form, 
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This constrained optimization problem is solved using the 
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following primal Lagrangian form: 
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Eq. (6) is minimized with respect to primal variables wi, b, 
ζ and *ζ , and maximized with respect to nonnegative 

Lagrangian multipliers iα , *
iα , iβ  and *

iβ . Finally, 
Karush-Kuhn-Tucker conditions are applied to the 
regression, and Eq. (5) thus yields the dual Lagrangian, 
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The Lagrange multipliers in Eq. (6) satisfy the 

equality 0* * =ii αα . The Lagrange multipliers iα and *
iα , 

are calculated and an optimal desired weight vector of  the 
regression hyperplane is shown in Eq. (8), bias term is 
shown in Eq. (9), SVM regression function is as Eq. (10), 
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Here, ),( ji xxK  is called the Kernel function, which 
transferred the input space into feature space. The value of  
the Kernel equals the inner product of  two vectors, ix  
and jx  in the feature space )( ixφ  and )( jxφ , that is 

( , ) ( ) * ( ).i j i jK x x x xφ φ=  There are three types of  
common examples of kernel function, the polynomial 

kernel, d
j

T
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a2 represent the coefficients); the Gaussian RBF kernel 

function,
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multi-layer perceptron kernel function, =),( ji xxK  

)tanh( bxx j
T
i −  (where b is the constant). Till now, it is 

hard to determine the type of  kernel functions for specific 
data patterns (Amari and Wu (1999), Vojislav(2001)). 
Smola et al. (1998) reported that the Gaussian RBF kernel 
function is suitable for the data pattern with smoothness 
and independence. Therefore, the Gaussian RBF kernel 
function is specified in this study  

The selection of  three parameters, σ, ε and C, of  a SVM 
model is important to the accuracy of  forecasting. 
However, structural methods for determining parameters 
efficiently are lacking. The traditional procedure for 
selecting three parameters is expressed as follows and 
shown as Figure 1. 
Step 1. Set fixed values of  the parameters ε and C. Then, 

adjust the value of  σ till a minimum testing error is 
achieved. The finalized σ value is denoted as σ ′ . 

Step 2. Set a fixed value of  the parameter ε and the value of  
σ is set to σ ′ . Then, adjust the value of  C to 
achieve a minimum testing error. The finalized C is 
defined as C′ . 

Step 3. Values of  σ and C are set to σ ′ and C′ . Then, 
adjust ε till a minimum testing error is obtained. 
The finalized ε is defined as ε ′ . Therefore, values 
of  σ, ε and C are obtained as σ ′ , ε ′ , and C′ . 

The traditional way presented in Figure 1 is not a 
structural way in determining SVMs parameters. Therefore, 
GAs are applied in the proposed SVMG model to select 
parameters. 
 
3.2 Genetic algorithms in selecting SVM parameters 

Holland (1975) first proposed genetic algorithms. The 
algorithms are based on the survival principle of  the fittest 
member in a population, which retains genetic information 
by passing it from generation to generation. The process 
of  a GA is described as follows. 
Step 1. (Initialization): Establish a random initial population 

of  chromosomes.  
Step 2. (Evaluating fitness): Evaluate the fitness of  each 

chromosome. In this investigation, two indices are 
used as the fitness function. The negative root 
mean square error (-RMSE) is for the first 
numerical example; the negative mean absolute 
deviation (-MAD) is for the second example. The 
formulas of  these fitness functions are indicated as 
Eq. (11) and Eq. (12), respectively. 
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Figure 1. The traditional selecting processes of 

three parameters in SVM model. 
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      where di and fi represent the actual and forecast 

values, and n is the number of  forecasting periods. 
Step 3. (Selection): Select the mating pair, #1 parent and #2 

parent, for reproduction.  
Step 4. (Crossover and mutation): Create new offspring by 

performing crossover and mutation operations. 
The crossover rate is often set between 0.5 and 1. 
The mutation process is then employed to avoid 
local optimum problem, the mutation date is 
empirically set between 0.01 and 0.08 (Greenwell et 
al. (1995), and Wang(1997)). 

Step 5. (Next generation): Form a population for the next 
generation. 

Step 6. (Stop conditions): If  the number of  generations 
exceeds a given threshold, then the best 
chromosomes are presented as a solution; 
otherwise go to Step 2. 

Three free parameters, σ , C and ε  are represented 
by a chromosome that consists of  three genes in the form 
of  binary numbers (Figure 2). The size of  the population is 
set to 200 herein. Each gene contains 40 bits. If  each gene 
contains 40 bits, for example, then a chromosome contains 
120 bits. More bits in a gene correspond to a finer partition 
of  the searched space. Parent selection is a procedure in 
which two chromosomes from the parent population are 
chosen according to the fitness functions. Fitter 
chromosomes are more likely to generate offspring to the 
next generation. The roulette wheel selection principle 

(Holland, 1975) is used to select chromosomes for 
reproduction. In the crossover operation, chromosomes 
are paired randomly. The single-point-crossover principle is 
employed in this investigation. Segments of  paired 
chromosomes between two determined break-points are 
swapped. 

 

Figure 2. The binary coding of  a chromosome. 
 
For simplicity, suppose a gene has four bits. A 

chromosome contains 12 bits (Figure 3). Before crossover 
is performed, the values of  the three parameters in #1 
parent are 1.125, 3.125 and 0.09375. For #2 parent, the 
three values are 0.375, 8.75 and 0.1875. After crossover, for 
#1 offspring, the three values are 1.375, 3.75 and 0.1875. 
For #2 offspring, the three values are 0.125, 8.125 and 
0.09375. Mutations are performed randomly by converting 
a “1” bit into a “0” bit or a “0” bit in to a “1” bit. The rates 
of  crossover and mutation are probabilistically determined.  

Due to calculating forecasting errors is time consuming, 
it is necessary to set the boundaries of  the three parameters. 
Then, the total historical actual data is divided into two 
parts, namely the training data and the testing data. The 
training data is used to search several combinations of  the 
three parameters. The testing data is employed to select the 
most suitable parameters by the criteria, RMSE (for 
example one) and MAD (for example two) respectively. 
Figure 4 presents the framework of  the proposed SVMG 
model. GAs are used to yield a smaller RMSE (example 
one) and MAD (example two) by searching for better 
combinations of  three parameters in SVMs.  
 
4. NUMERICAL EXAMPLES 

Two numerical examples are employed to demonstrate 
the forecasting performance of  the SVMG model. 
Reliability data for periodic vehicle repaired, from Su et al. 
(1997), are used in the first example. The data include the 
number of  instances of  vehicle damage repaired, and the 
period reliability ratio. Totally, there are 36 data in this 
example. These data are divided into training data set and 
testing data set. The number of  data in the training data set 
and the testing data set are 24 and 12, respectively. To 
compare the forecasting performance of  the proposed 
model with the models of  Su et al. (1997), the data division 
principle is the same as that used by Su et al. (1997). 
Meanwhile, this study uses the RMSE (Eq. (13)) to 
measure the forecasting accuracy.  

In the second example, the machine failure data used by 
Ho et al. (1998) are specified to investigate the 
performance of  the proposed model in forecasting 
machine reliability. The data include the number of  
machine failure. Totally, 15 data are available. the data are  

1 1 0 0 010 1 0 1 0 … …0 …

σ C ε
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divided into two sets: the training data set and the testing 
data set. The number of  data in the training data set and 
the testing data set are 10 and 5, respectively. Similarly, the 
data division principle is the same as that used by Ho et al. 
(1998), the index of  forecasting accuracy is MAD 
(Eq.(14)). 

 

 
Figure 3. A simplified example of  parameter representation. 
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Figure 4. The architecture of  a SVMG model. 
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where di and fi represent the actual and forecast values, and 
n is the number of  forecasting periods. 

4.1 Example 1 

To demonstrate the improvement of  GAs in selecting 
parameters of  the SVM model, the traditional selecting 
procedure is applied to deal with the example. First, set the 
values of  the parameters ε and C fixed at 0 and 10 
respectively. Then, adjust the value of  σ till a minimum 
testing error (RMSE) is reached. In Figure 5, the finalizedσ 
value equaled to 87, the minimum value of  RMSE is 
achieved. Therefore, set finalized σ value as 87. Secondly, 
fix the values of  the parameters σ and ε at 87 and 0 
respectively. Then, adjust the value of  C (Figure 6). The 
finalized value of  C is 2. The minimum value of  RMSE is 
obtained. Therefore, the finalized C value is 2. Finally, set 
the values of  the parameters σ and C fixed at 87 and 2 
respectively. Then, adjust the value of  ε (Figure 7). The ε  
value equals to 0.008 when the minimum value of  RMSE is 
achieved. Therefore, the values of  three parameters (σ, C, 
and ε) are 87, 2, 0.008 correspondingly. The minimum 
value of  RMSE is 0.002345.  

Then, GAs are used to determine the values of  the three 
parameters (σ, C, and ε) in the SVM model (Figure 4). The 
intervals of  three parameters are [0, 250], [0, 1000], and [0, 
0.1] respectively. The number of  bits is set to 120, 
crossover rate is 0.5, mutation rate is 0.05. A rolling-based 
forecasting procedure is conducted and a one-step-ahead 
forecasting policy is adopted. In the training stage, several 
types of  data-rolling are applied. Different number of  
reliability data is fed into the proposed model to forecast 
reliability in the next period. These data-rolling types 
include “5-input,” “10-input,” “15-input,” “19-input,” 
“21-input” and “22-input.” The model with the minimum 
testing RMSE value is selected as the most appropriate 
model for this example. Table 1 presents the forecast 
results and the parameters of  the proposed models. It is 
shown that the SVMG model has the best performance 
when 21 input data are used. The RMSE value is 0.002297. 
Therefore, SVMG model is superior to the traditional 
method (RMSE=0.002345) in forecasting accuracy. 
Additionally, Table 2 lists the forecast results of  the best 
SVMG model and three other models (including ARIMA, 
BPNN、ICBPNN3) proposed by Su et al. (1997). The 
proposed SVMG model yields the best forecast results in 
terms of  the RMSE. 
 
4.2 Example 2 

In example two, GAs are employed to determine the 
values of  the three parameters (σ, C, and ε) in the SVM 
model.  The boundaries of  three parameters, the number 
of  bits, crossover rate, and mutation rate, are exactly the 
same as example one. In the training stage, several types of  
data-rolling are used. These data-rolling types include 
“2-input,” “4-input,” “6-input,” and “8-input.” The model 
with the minimum testing MAD value is selected as the 
most appropriate model for use with this example. Table 3 
presents the forecast results and the parameters of  the 
proposed models. It is indicated that the SVMG model has 
the best performance when 8-input data are used. Table 4 
presents the forecast results of  the best SVMG model and 

1 0 0 1 0 1 0 1 0 0 1 1

0 0 1 1 1 1 1 0 0 1 1 0

Crossover Point=1 

Parameter σ Parameter C Parameter ε 

1 0 1 1 0 1 1 0 0 1 1 0

0 0 0 1 1 1 0 1 0 0 1 1

Parameter σ Parameter C Parameter ε 

 Parent 1 

Parent 2 

before crossover 

after crossover 

Off- 
spring 1 

Off- 
spring 2 
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two other models (ARIMA and Duane models) proposed 
by Ho et al. (1998). The proposed SVMG model yields the 
best forecast results in terms of  the MAD. 
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Figure 5. MSE values with respect toσ values. 
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Figure 6. MSE values with respect to C value. 
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Figure 7. MSE values with respect to ε  value. 
 
 

Table 1. Forecasting results of  example 1 
Parameters Number of  

input data σ  C ε  
Testing 
RMSE 

5 106.48 638.44 0.00361 0.002510 
10 46.933 152.78 0.00345 0.002932 
15 58.902 294.69 0.00631 0.002526 
19 45.658 289.73 0.00811 0.002387 
20 236.58 682.33 0.00386 0.002531 
21 208.55 183.48 0.00444 0.002297 
22 167.91 466.07 0.00517 0.002358 

 
Table 2. Forecasting results of  SVMG model and other models 

(example 1) 
Models

Month 

Actual 

ARIMA

(absolute 

error) 

BPNN 

(absolute 

error) 

ICBPNN3 

(absolute 

error) 

SVMs* 

(absolute 

error) 

SVMG 

(absolute 

error) 

25 0.010023 0.003266 0.005366 0.003925 0.001962 0.000947
26 0.008911 0.001290 0.001392 0.000386 0.000855 0.000398
27 0.011470 0.001950 0.000514 0.000690 0.003421 0.001928
28 0.007078 0.001292 0.003462 0.001958 0.000971 0.002698
29 0.011408 0.003550 0.001460 0.002500 0.003359 0.001693
30 0.006335 0.002022 0.004334 0.002090 0.001714 0.003560
31 0.010884 0.003760 0.002070 0.003160 0.002835 0.001085
32 0.010689 0.001911 0.004014 0.001625 0.002640 0.001562
33 0.005024 0.004420 0.003230 0.004310 0.003025 0.004121
34 0.006509 0.001390 0.000351 0.001950 0.001539 0.002941
35 0.007277 0.000130 0.000778 0.000720 0.000772 0.002305
36 0.010774 0.003410 0.003788 0.002822 0.002726 0.001073

RMSE  0.002668 0.003024 0.002484 0.002345 0.002297

*: Three parameters of  SVM model are obtained by traditional selecting 
method. 

 
Table 3. Forecasting results of  example 2 

Parameters Number of  
input data σ  C ε  

Testing 
MAD 

2 4.3656 60.1005 0.8681 3.6 
4 1.1297 9.9897 0.2461 3.4 
6 2.7660 88.6485 2.9855 3.3 
8 0.9811 48.1709 3.7940 3.0 

 
Table 4. Forecasting results of  SVMG model and other models 

(example 2) 
Models

 
Time space

Actual
ARIMA 
(absolute 

error) 

Duane 
(absolute 

error) 

SVMG 
(absolute 

error) 
11 15 0.9 18.9 1.6 
12 18 4.9 29.6 3.2 
13 15 2.8 45.2 0.6 
14 7 4.3 70.8 4.2 
15 3 7.4 102.3 5.4 

MAD  4.1 53.4 3.0 
 

5. CONCLUSIONS 

Reliability forecasting accuracy plays an important role in 
manufacturing systems. The proposed SVMG model yields 
lower forecasting errors than other forecasting models in 
both numerical examples. The superior performance of  the 
SVMG model over other approaches is raised from the 
following reasons. First, with the nonlinear mapping 
capabilities, the SVMG model more easily captures data 
patterns of  system reliability than the other approaches. 
Secondly, the GAs properly select free parameters in the 
proposed SVMG models to predict system reliability. 
Moreover, the SVMG model minimizes structural risk, 
instead of  minimizing training errors. This process seeking 
to minimize an upper bound of  the generalization error 
improves generalization performance. Therefore, SVMG 
model can outperform traditional SVM model. For future 
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research, some other search techniques can be considered 
to select free parameters in the SVM model to improve the 
prediction performance. 
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