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Abstract⎯We consider a two-echelon supply chain with two retailers and one supplier. The retailers are supplied by the 
supplier who makes all the decisions and bears all the inventory risk. Throughout this paper, we consider two different 
inventory systems: a reserved inventory system and a pooled inventory system. With the reserved inventory system, the 
supplier keeps separate inventories for each retailer. In contrast, the pooled inventory is shared by the two retailers and the 
supplier makes the inventory decision based on the joint demand. Under different scenarios such as whether wholesale price 
is a decision variable, we study and analyze the supplier’s decisions in the reserved and the pooled inventory systems. In 
addition, we compare the profit of  the supplier and retailers in the two different systems under normally distributed 
demands. 
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1. INTRODUCTION 

Supply chain management is concerned with matching 
supply and demand, particularly through inventory 
management. Too much supply leads to inefficient 
investment and needless handling cost, while too little 
supply generates lost sales. The former is the inventory risk 
while the latter is supply risk. In reality, most supply chains 
cannot match supply and demand perfectly. Hence, all of  
the firms in a supply chain will bear some supply chain 
risks. However firms can decrease inventory risk. 

Consider an electronics manufacturing service provider 
(EMS), who holds inventory of  cpu chips for two or more 
original equipment manufacturers (OEM). The current 
inventory policy dictated by the OEM is to keep each 
company’s inventory physically separated (reserved 
inventory). Is this the most profitable inventory policy for 
the EMS? Is it the most profitable inventory policy for the 
OEMs? In general, in this article, we are interested in 
knowing whether a supplier should pool inventory or 
reserve separate inventories for customers. If  pooling is 
good for the supplier, is this policy also beneficial for its 
customers? Additionally, suppose the customers have 
service level requirements? We explore these questions for 
a two-echelon supply chain. 

We consider a supply chain for a single product with a 
single supplier and two retailers. Only one single period or 
selling season is considered. We associate a customer 
region with each retailer and model retail customer 
demands as uncertain. During the selling season, each 
retailer receives orders from its customers, places an order 
to the supplier and receives product immediately for which 
they pay a unit wholesale price. The supplier manufactures 
product and holds it in inventory at his own expense until 
an order comes from the retailers, i.e, the supplier bears all 
the inventory risks. The supplier has only one chance to 

produce before the season starts. When a stock-out occurs 
at the supplier, sales are lost. The objective of  the supplier 
is to maximize his single-period profit. Profits of  retailers 
are maximized when they receive their full order. However, 
they do not have control over the inventory decision. 

A key aspect of  our research is the analysis of  the 
impact of  pooling inventory in the supply chain system. 
The literature on inventory pooling can be classified into 
following three categories: component commonality; 
inventory transshipment in supply chains; inventory 
pooling in multi-echelon supply chains. 

If  end products share common components, safety 
stock can be reduced and service levels maintained by 
pooling the inventory of  the common parts. The 
work-to-date on component commonality concentrates 
mainly on the impact on safety inventory levels and does 
not consider the benefit of  pooling to the suppliers and the 
retailers in the supply chain. Baker et al. (1986) study a two- 
product system with service level constraints and where the 
objective is to minimize the total safety stock. They show 
that total safety stock drops after pooling while total stock 
of  specialized parts increases. Gerchak et al. (1988) extend 
these results to a profit maximization setting. Finally, 
Gerchak and Henig (1986) analyze a model in a 
multi-period setting and determine the optimal policy for 
the infinite horizon models. 

Inventory transshipment involves transferring inventory 
from one member to another of  the same echelon of  a 
supply chain in event of  a stock-out. The most relevant 
papers in this stream are those of  Rudi et al. (2001) and 
Dong and Rudi (2002) in which both the retailers’ and 
supplier’s profits are considered. Transshipment creates a 
virtual centralization of  the inventory by utilizing the 
benefit of  inventory pooling within the same inventory 
echelon. Seifert and Thonemann (1999) and Seifer et al. 
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(2001) model single-directional transshipments from 
physical to internet retailers. Anupindi et al. (2001) 
consider a very general decentralized transshipment model 
where multiple retailers not only stock inventory internally 
but also jointly stock it at multiple, jointly owned 
warehouse locations, which is similar to Anupindi and 
Bassok (1999a). This work is different from our work in 
that it concentrates on one echelon only. 

There are several papers that, like us, investigate the 
benefits of  pooling inventory in supply chain with more 
than one echelon. Anupindi and Bassok (1999a) consider a 
two-level supply chain with a single supplier and two 
retailers. Unlike our model, the inventory decision is made 
by the retailers and the retailers bear all the inventory risk. 
They model a system in which a fraction of  the customers 
are willing to wait for a delivery from another retailer 
(market search). They show that under this setting, the 
manufacturer may not always benefit from inventory 
pooling because total sales may drop. They also discuss the 
possibility of  optimizing wholesale prices or introducing 
holding cost subsidies as methods for coordinating the 
supply chain. In their model, demand is exogenous and not 
sensitive to price. 

As in our work, Netessine and Rudi (2003) consider two 
supply chain strategies, traditional operation and drop 
shipping. With traditional operation, the retailer holds the 
inventory purchased from the supplier, while with drop 
shipping, the supplier holds the inventory. Although they 
also consider a two-echelon system, the second echelon 
consists of  a collection of  identical retailers. The retailers 
are only intermediaries between the end customer and the 
supplier and function as a single joint retailer. Netessine 
and Rudi compare the traditional channel and drop 
shipping strategy under normally distributed demands and 
find that the supply chain’s profit may be higher or lower 
with drop shipping. 

Cachon (2004) considers the “push contract", in which 
the retailer bears all the inventory risk and the “pull 
contract", in which the supplier bears all the inventory risk 
because only the supplier holds inventory. The retailer 
replenishes as needed during the season. His study focuses 
on identifying Pareto-optimal price-only contracts and 
studies supply chain efficiency under such contracts. 
However, since there is only one retailer, the benefits of  
inventory pooling are not reflected and in addition he only 
considers the case of  the exogenous demands. 

Of  the existing literature, the work that is closest to ours 
is that of  Bartholdi and Kemahlioglu (2003). They consider 
two retailers whose inventory is provided by a common 
supplier who bears all the inventory risk. They find that the 
total system profit will increase after pooling the inventory. 
In addition, using the Shapely value to allocation the 
additional profit, they analyze various schemes by which 
the supplier may pool inventory. By allocating Shapely 
value, they could coordinate the whole supply chain. 
However, they only consider the scenarios in which the 
wholesale price is fixed and the demands are not 
price-sensitive. We will show the optimal inventory and 
pricing policies when the wholesale price is a decision 

variable under the reserved and the pooled inventory 
systems. We also will analyze the comparative results for 
these scenarios. 

 
2. MODEL UNDER CONSIDERATION  

We consider reserved and pooled inventory systems for 
the two-echelon supply chain system shown in Figure 1. 
For the reserved inventory system, at the beginning of  the 
period, the supplier stocks 1x  and 2x  respectively for 
retailers 1 and 2 at manufacturing cost c per unit. After 
retailer I (i = 1, 2) observes local demand, she places an 
order with the supplier. Retailer i receives inventory 
immediately and pays a wholesale price ( 0)i iw w c> >  for 
each unit received. Let cm be the markup on the wholesale 
price that the retailers charge, i.e. the retail price pi = wi + cm 
at retailer i. If  the stock xi of  the supplier cannot satisfy 
the order from retailer i, the unsatisfied portion results in 
lost sales. Units remaining at the end of  the season are 
disposed at unit cost h(|h|≤c). Note that h may be negative, 
in which case it represents a per-unit salvage value. The 
supplier takes on the task of  doing inventory 
replenishment and bears the inventory risk. 

Retailer 2

Supplier

(c,h)

Retailer 1
()~ 11 FD

()~ 22 FD

1w

2w

mcwp �� 11

mcwp ��

2

22

  
Figure 1. Two-echelon supply chain with one supplier and two 

retailers. 

For the pooled inventory system, the supplier only has 
one central distribution center and the two retailers share 
the stock at this center. At the beginning of  the period, the 
supplier stocks xp at manufacturing cost c per unit. After 
the retailers observe their demands, they place orders with 
the supplier and pay a wholesale price wp for each unit 
received. If  the stock xp of  the supplier cannot satisfy the 
combined order, the unmet portion of  the order is lost 
sales. In the pooled inventory case, when inventory cannot 
satisfy the total demand, the supplier needs to allocate the 
product to the retailers There are a number of  papers 
discussing inventory allocation for difference scenarios 
(Cachon and Lariviere 1999). Our model focuses on the 
impact of  the different policies on the profit of  the 
supplier and the total profit of  the retailers. Hence, we 
regard the two retailers as one joint retailer and thus need 
not consider the allocation policy in detail. 

We denote retailer 1 and retailer 2’s demands as D1 and 
D2 respectively. D1 and D2 are random variables with 
independent distributions. Let F1(⋅), F2(⋅) and f1(⋅), f2(⋅) 
denote the CDF and PDF of  D1 and D2, respectively. Let 
Dp be the joint demand for the retailers with PDF fp(⋅) and 
CDF Fp(⋅). Note that the joint demand Dp = D1 + D2 and 
Fp(⋅) is the convolution of   F1(⋅) and F2(⋅). In this paper, 
we will analyze scenarios in which the supplier charges the 



Ling, Fang, Nuttle, and Chao: Pooled Versus Reserved Inventory in a Two-Echelon Supply Chain 
IJOR Vol. 2, No. 1, 59−76 (2005) 
 

61

retailers a fixed wholesale price and scenarios in which the 
wholesale prices are the supplier’s decision variables. With 
the fixed wholesale price the demand parameters are 
exogenous to the system. However with the wholesale 
prices as variables, the demands at each retailer are treated 
as functions of  the wholesale prices charged the retailers 
by the supplier. 

Penalty costs associated with shortages are often hard to 
estimate with accuracy. It is therefore common practice for 
the supplier to try to maximize his profit while satisfying 
minimum service level requirements for retailers. Thus the 
service level requirement represents implicit shortage costs, 
e.g., loss of  good will. Throughout this article, the service 
level requirements are measured by the probability of  no 
stock-out. We denote ρi as minimum acceptable probability 
of  no stock-out for retailer i in the reserved inventory case 
and ρp as the minimum acceptable probability meeting the 
retailers joint demand in the pooled inventory case. 
 
3. FIXED WHOLESALE PRICE 

Under scenario of  fixed wholesale price, we will assume 
that the supplier charges retailers 1 and 2 a common fixed 
wholesale price w. In addition, the demands D1 and D2 at 
the retailers are independent random variables. We assume 
that the retailers 1 and 2 have minimum service level 
requirements. 

We first present and analyze the decisions of  the 
supplier for both the reserved and the pooled inventory 
policies. 

3.1 Reserved inventory system 

In this scenario, the retailers are powerful enough to 
require the supplier to use a reserved-inventory policy, i.e., 
the supplier maintains separate inventory x1 and x2 for 
retailers 1 and 2, respectively. In addition the retailers have 
minimum service level requirements ρ1 and ρ2. Given the 
inventory levels x1 and x2, the probability of  no stock-out 
at retailer i(i=1,2) is  

 
( ) ( ),  1, 2i i i iP D x F x i≤ = =  

 
The objective of  the supplier is to maximize his profit 
while satisfying the service level requirements of  the 
retailers. Thus the supplier’s maximization problem is given 
by:  
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Due to the independence of  the random variables D1 and 
D2. We can separate the problem (1) into following two 

independent problems:  
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where { }1( ) E min( , ) ( ) .ri i i i i ix w x D h x D cx+∏ = − − −  

 
Without service level requirements, the supplier’s 

problem is a newsboy model. The optimal inventory levels 

correspond to a service level of  w c
w h
−
+

, which we called 

the critical ratio. Since { min( , ) ( , )i i i iE w x D h x D +−  

}icx−  is a convex function of  xi and Fi(xi) is 

nondecreasing in xi, the optimal inventory level *
ix  is  

 
1 max( , ) .i i

w cF
w h

ρ− −⎛ ⎞
⎜ ⎟+⎝ ⎠

 

 
The profits of  the retailers only depend on the inventory 

level of  supplier at the beginning of  the period. Given the 
inventory level xi, retailer i’s (i=1,2) expected profit 

* ( )ri ixπ  can be written as:  
 

{ }( ) E min( , )   1, 2.ri i m i ix c x D iπ = =  
 
We use *

riπ  to denote the optimal profit of  the retailer i 
when the supplier holds *

ix  products for retailer i. 
When the wholesale price is fixed, higher service level 

requirements by retailers may mean that the supplier must 
hold more inventory. While higher inventory levels mean 
higher expected sales, the supplier bears higher inventory 
holding risk when he maintains higher inventory levels. 

3.2 Pooled inventory system  

Now consider the supply chain when the supplier pools 
the inventory but must satisfy a joint service level 
requirement of  the retailers. In this case, the objective of  
the supplier is to maximize his profit subject to satisfying 
all demand with probability ρp, i.e., the supplier sets his 
inventory level by solving following problem:  

 

0
max ( )

. . ( )
p

p px

p p p

x

s t F x ρ
≥
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where the supplier’s expected profit is  
 

{ }( ) E  min( , ) ( )p p p p p p px w x D h x D cx+∏ = − − −  

 

Recall that the optimal inventory level is 1( )p
w cF
w h

− −
+

 

for the pooled inventory case in the absence of  service 
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level constraint. The convexity of  {E  min( , )p pw x D  

}( )p p ph x D cx+− − −  and the fact that the CDF Fp(⋅) is 

nondecreasing imply that the optimal inventory level *
px  

is  
 

1 max , .p p
w cF
w h

ρ− −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

 
Given the supplier’s inventory level xp, the total expected 
profit of  the retailers is:  
 

{ }E ( )min( , ) .p p pp w x Dπ = −   

 
We use *

pπ  to denote the optimal total expected profit of  

the retailers when the supplier’s inventory level is *
pπ . 

3.3 Comparative results 

In general, inventory pooling by the supplier may or may 
not lead to increased expected retail sales as shown by the 
following two examples. Example 3.1 illustrates an increase 
in total expected sales while Example  3.2 illustrates a 
decrease. 

 
Example 3.1 Consider a system with pooled inventory in which 
demands D1 and D2 at the retailers are independent and uniformly 
distributed between [0,100], and the CDF of  the demand at each 
retailer is  

0 u 100
( ) 100

1 u 100

u
F u

⎧ ≤ ≤⎪= ⎨
⎪ ≥⎩
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2 2
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If  the critical ratio w c
w h
−
+

 = 0.6 and all the service level 

requirements are 0.45, i.e., ρ1 = ρ2 = ρ = 0.45, then in the 
reserved inventory case, the optimal inventory levels are  
 

* * 1
1 2x x F −= = (max(0.45, 0.6)) = 60,  

 
the expected sales of  each retailer is 42, and the expected total sales is 
84. In the pooled inventory case, * 1

p px F −= (0.6) = 111, and the 
total expected sales is 88. Therefore, the total expected profit of  the 
retailers is increased after pooling the inventory.  
 
Example 3.2 Continue to assume that the demands D1 and D2 at 
the retailers are independent and uniformly distributed between 

[0,100], that the critical ratio w c
w h
−
+

 = 0.8 and all the service 

level requirements are 0.7, i.e., ρ1 = ρ2 = ρ = 0.7. Then in the 

reserved inventory case, the optimal inventory levels are  
 

* * 1
1 2x x F −= = (0.8) = 80,  

the expected sales at each retailer is 48, and the expected total sales is 
96. In the pooled inventory case, * 1(0.8)p px F −= =137, and the 
expected total sales is 95. Therefore, the total expected profit of  the 
retailers drops after pooling the inventory.  
 

Under generally distributed demands, with higher 
inventory levels, the expected service level provided to the 
retailers and their expected sales also increase. If  the 
required service level exceeds the critical ratio, the supplier 
loses money by providing a higher service level. We now 
examine the impact of  the reserved inventory and the 
pooled inventory policies on the profits of  the supplier and 
retailers. We will show the results both for the case when 
the retailers have the same service level requirements and 
for the case when they have different service level 
requirements. 

Due to its mathematical tractability, the normal 
distribution appears to be the distribution of  choice in 
modeling multi-location inventory problems. In addition, a 
lot of  random distributions can be approximated by the 
normal distribution. Although the range of  a normally 
distributed variable is from − and +, if  the mean value is 
large enough relative to its variance, the relative demand 
values will almost surely be nonnegative. Alfaro and 
Corbett (2003) perform a simulation study of  the pooling 
effect, comparing the impact of  the normal distribution 
with several nonnormal distributions. They conclude that 
the effect of  pooling does not vary much between the 
different distributions. 

Suppose D1 and D2 are independently distributed 
normal random variables with means µ1 and µ1 and 
standard deviations σ1 and σ2, respectively. Let Φ(⋅) denote 
the CDF and φ(⋅) the PDF of  the standard normal 
distribution. In addition, we denote by R(⋅) the right-hand 
unit normal linear loss function, which is defined as 
follows (see Zipkin, 2000):  

 

( ) ( ) ( )
x

R x u x u dtφ
∞

= −∫  

 
From Zipkin, we know that R(x) is a nonnegative and 

nonincreasing function of  x, and  
 
R(x) + x ≥ 0 for any x.                      (2) 

 
For the case of  normally distributed demands, we can 

provide a detailed comparison of  the reserved and pooled 
inventory cases. We assume that D1, D2 are independent 
normally distributed random variables with mean µi, 
standard deviation σi, respectively. In addition, we suppose 
that all the service level requirements are same, i.e., ρ1 = ρ2 
= ρp = ρ. We have following theorems. 
 
Theorem 3.1: If D1 and D2 are independent normally distributed 
random variables, the supplier’s optimal profit is increased when the 
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inventory is pooled, i.e. * * .p r∏ ≥ ∏  
 
Proof: Under the reserved inventory scenario, the optimal 
inventory levels are given by:  

* 1
1 2 1 max , ,w cx

w h
µ σ ρ− −⎛ ⎞⎛ ⎞= + Φ ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

and  
* 1
2 2 2 max , .w cx

w h
µ σ ρ− −⎛ ⎞⎛ ⎞= + Φ ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

For the pooled inventory scenario, 1 2( ,pD N µ µ+∼  

2 2
1 2σ σ+ ). Hence the optimal total inventory level for 

the pooled inventory scenario is:  
* 2 2 1

1 2 1 2 max , .p
w cx
w h

µ µ σ σ ρ− −⎛ ⎞⎛ ⎞= + + + Φ ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
 

 
The supplier’s optimal profits in the reserved inventory 

and the pooled inventory cases are:  
 

 
{ }* * * * *

1 1 2 2 1 2( )E (min( , ) min( , ) ( )( )r w h x D x D h c x x∏ = + + − + + , 

1 1
1 2 1 2 1 2 1 2( ) ( ) max , ( ) ( ) max ,w c w cw h R h c

w h w h
µ µ σ σ ρ µ µ σ σ ρ− −⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + − + Φ − + + − + Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

, 

  

{ } }* * *( )E min( , ) ( )p p p pw h x D h c x∏ = + − +  

2 2 1 2 2 1
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 Calculating the difference * *
r p∏ −∏ , we have  

( )( ) ( )( )* * 2 2 1 2 2 1
1 2 1 2 1 2 1 2( ) max , ( ) max ,r p

w c w cw h R h c
w h w h
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( )( ) ( )( )2 2 1 2 2 1
1 2 1 2 1 2 1 2( ) max , ( ) max ,w c w ch c R h c

w h w h
σ σ σ σ ρ σ σ σ σ ρ− −⎛ ⎞− −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞≤ + + − + Φ + + + − + Φ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

( )( )2 2 1 1
1 2 1 2( ) max , max ,

0.

w c w cc h R
w h w h
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≤

 

 
The first inequality follows from the facts that w > c, R(⋅) > 
0 and ( )2 2

1 2 1 2σ σ σ σ+ ≤ +  for any positive σ1 and σ2. 
The second inequality is seen by applying equation (2). 
Hence, the supplier’s profit is increased after pooling the 
inventory, i.e., * *

r p∏ ≤ ∏ .  
 
Theorem 3.2:  If D1 and D2 are independent normally 
distributed random variables, the retailers’ total expected profit is 
increased when the inventory is pooled, i.e., * * .p rπ π≥  
 
Proof: The expected retail profits of  the retailers in the 
reserved inventory case are given by:  

{ }* *min( , ) ,  =1,2i m i iE c x D iπ = , 

and the total expected retail profit of  the retailers in the 
pooled inventory case is given by:  

{ }* *min( , ) .p m p pE c x Dπ =  

For the normally distributed demands, we have  

* 1 max , ,ri m i i
w cc R
w h

π µ σ ρ−⎛ ⎞⎛ ⎞−⎛ ⎞⎛ ⎞= − Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
 for i = 1, 2,  

and  

* 2 2 1
1 2 1 2 max , .p m

w cc R
w h

π µ µ σ σ ρ−⎛ ⎞⎛ ⎞−⎛ ⎞⎛ ⎞= + − + Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
 

Therefore,  

( )

* * * * *
1 2

2 2 1
1 2 1 2 max , .

p r p r r

m
w cc R
w h

π π π π π

σ σ σ σ ρ−

− = − −

⎛ ⎞−⎛ ⎞⎛ ⎞= + − + Φ ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠

 

Since R(⋅) is nonnegative and using Cauchy’s inequality 
σ σ σ σ2 2

1 2 1 2+ − + , we have  
* * 0p rπ π− ≥  

Hence the total expected profit is increased after pooling 
the inventory.  
 
Theorem 3.3: If D1 and D2 are independent normally distributed 

random variables, and the critical ratio max( w c
w h
−
+

, ρ) ≥ 0.5, then 

the supplier’s optimal inventory level in the pooled inventory case is 
less than the optimal total inventory in the reserved inventory case, i.e. 

* * *
1 2px x x≤ + . Otherwise, * * *

1 2px x x> + .  
 
Proof: We know that the optimal total inventory level in 
the reserved inventory case is given by,  
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* * 1
1 2 1 2 1 2( ) max , .w cx x

w h
µ µ σ σ ρ− −⎛ ⎞⎛ ⎞+ = + + + Φ ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 

However the optimal inventory level in the pooled 
inventory case is given by :  

* 2 2 1
1 2 1 2 max , .p

w cx
w h

µ µ σ σ ρ− −⎛ ⎞⎛ ⎞= + + + Φ ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
 

The facts that 1( )−Φ ⋅  is monotone nondecreasing 

function and 1(0.5)−Φ = 0 imply that Φ−1 (max( w c
w h
−
+

, ρ)) 

≥ 0 provided max( w c
w h
−
+

, ρ)) ≥ 0.5. Hence * * *
1 2px x x≤ +  

follows from the Cauchy inequality 2 2
1 2σ σ+  ≤ (σ1+σ2). 

Otherwise, when max( w c
w h
−
+

, ρ)) < 0.5, we have 

* * *
1 2px x x> + .   

 
Under identically and normally distributed demands, if  

the service level requirements in the reserved inventory 
case are same as the joint service level requirement under 
the pooled inventory case, the supplier will get benefit 
from the pooled inventory policy. In addition, the total 
expected sales is also increased by sharing the inventory 
between the two retailers. Because of  the benefits of  
inventory pooling, both the retailers and the supplier will 
choose the pooled inventory policy. However, we find that 
the supplier’s total inventory level may increase or decrease 
after pooling the inventory. As in the case without service 
level requirement, we find that the difference between the 
total optimal inventory level and the mean value of  the 
demands is decreased after pooling the inventory. 
3.4 A modified case 

We have analyzed a supply chain in which the retailers 
have the identical service level requirements for the 
reserved inventory and the pooled inventory scenarios. 
Here, we model a supply chain in which the retailers have 
different service level requirements in a modified pooled 
inventory case. 

Let xpi be the stock which the supplier keeps for retailer i 
before the selling season, but now assume that it is sharable, 
i.e., if  the stock kept for the retailer 1 runs out and there is 
stock available in the inventory for retailer 2 after the 
demand of  retailer 2 is satisfied, then this remaining 
stocking can be used to satisfy the unsatisfied demand at 
retailer 1. Let D1, D2 denote the demands at retailers 1 and 
2, respectively. Under the pooled inventory policy, the 
probability of  no stock-out at retailer 1 is:  

 
1 1 1 1 2 2 1 2 1 2( ) ( , , ),p p p p pP D x P D x D x D D x x≤ + > < + ≤ +  

 
and at retailer 2 is:  
 

2 2 2 2 1 1 1 2 1 2( ) ( , , ).p p p p pP D x P D x D x D D x x≤ + > < + ≤ +  
 

Let ρ1 and ρ2 be the service level requirements for 

retailers 1 and 2, respectively. For the supplier, the problem 
of  maximizing total profit can be formalized as:  

 

{
}

1 1

1 1

1 1, 0

1 1 1 1 1, 0

2 2 2 2 2

max  ( , )

max E min( , ) ( )

            min( , ) ( )

p p

p p

p p px x

p p px x

p p p p

x x

w x D h x D cx

w x D h x D cx

≥

+

≥

+

∏

= − − −

+ − − −

 

1 1 1 1 2 2 1 2 1 2 1

2 2 2 2 1 1 1 2 1 2 2

. . ( ) ( , , )

    ( ) ( , , ) .
p p p p p

p p p p p

s t P D x P D x D x D D x x
P D x P D x D x D D x x

ρ

ρ

≤ + > < + ≤ + ≥

≤ + > < + ≤ + ≥
 

 
Assume retailers require same service level ρ1 and ρ2 in the 
pooled and reserved inventory scenarios, we have the 
following results.  
 
Theorem 3.4: The supplier’s optimal inventory levels in the 
reserved inventory case is a feasible solution for supplier’s 
maximization problem (3) in the pooled inventory case.  
Proof: Let  ( * *

1 2,x x ) be the optimal inventory levels in the 
reserved inventory case. It’s sufficient to show that  
( * *

1 2,x x ) satisfies the constraints in problem(3). For the 
first constraint in equation (3)  

* * * * *
1 1 1 1 2 2 1 2 1 2

*
1 1

1

( ) ( , , )

( )

P D x P D x D x D D x x

P D x
ρ

≤ + > < + ≤ +

≥ ≤
=

 

Hence, ( * *
1 2,x x ) satisfies the first constraint. Similarly, we 

can prove that it also satisfies the second constraint, and 
thus ( * *

1 2,x x ) is a feasible solution for problem (3).  
 

The objective function of  the supplier’s problem in the 
reserved inventory case is same as that in the pooled 
inventory case. However, Theorem 3.4 shows that the 
optimal solution of  problem in the reserved inventory is a 
feasible solution for the problem in the pooled inventory 
case. Hence the optimal objective value, namely, the 
optimal profit of  the supplier, in the pooled inventory case 
is at least at large as that in the reserved inventory case. We 
state this property in the following theorem.  

 
Theorem 3.5: The optimal profit of  the supplier in the pooled 
inventory case is at least as large as that in the reserved inventory case, 
i.e., * *

p r∏ ≥ ∏ .  
 
Theorem 3.6: The optimal inventory level for the supplier after 
pooling is smaller than before pooling.  
 
Proof: Let * *

1 2( , )x x  be the optimal inventory levels in the 
reserved inventory case. Then define * *

1 2( , )p px x  as the 
optimal inventory levels in the pooled inventory case. We 
have  

* 1 max( , ) ,  1, 2.i i i
w cx F r i
w h

− −⎛ ⎞= =⎜ ⎟+⎝ ⎠
 

Theorem 3.4 shows that * *
1 2( , )x x  is a feasible solution for 

the supplier’s maximization problem in the pooled 
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inventory case. 1 2( , )p p px x∏  is a jointly concave function 
of  xp1 and xp2; and when (xp1, xp2) = 

1 1
1 2( ), ( )w c w cF F

w h w h
− −− −⎛ ⎞

⎜ ⎟+ +⎝ ⎠
 it reaches its maximum value. 

However * * * *
1 2 1 2( , ) ( , )p p p rx x x x∏ ≥ ∏ , hence * *

1 1px x≤  

and * *
2 2px x≤ . 

 
These results show that supplier gets more profit in the 

pooled inventory case than in the reserved inventory case. 
In the pooled inventory case, due to sharing the inventory, 
the supplier produces less stock than in the reserved 
inventory case. However, we cannot say whether the 
expected profit of  the retailer will increase or drop after 
pooling inventory. This depends on system parameters 
such as the demand parameters. 
 
4. ADDITIVE DEMAND MODEL: WITHOUT 
SERVICE LEVEL REQUIREMENTS 

In the previous section, we considered the reserved 
inventory and the pooled inventory policies with service 
level requirements. However, wholesale prices were fixed at 

= =1 2w w w . Now, we consider the scenario under which 
the wholesale prices are decision variables. As before, we 
denote retailer 1 and retailer 2’s random demands as D1 
and D2 respectively. However, here we assume that the 
demands are price-sensitive and they are functions of  the 
wholesale prices. 

The way the price-sensitive random demand is modeled 
is very important. We consider an additive demand 
function of  the following form Mills (1959),  

 
( ) ( ) , 1, 2i i i iD w y w iε= + =  

 
where ( )iy w  is a deterministic and decreasing function 
of  the product’s wholesale price iw  and [ ]iepsilon  is an 
independent random variable defined on the range [A, B] 
with CDF, ⋅( )iG , PDF, ⋅( )ig  and mean value µi. In 
addition, we assume that  
y(w) = a − bw  a > 0, b > 0. 

For the pooled inventory case, we use ( )p pD w  to be 
the total joint demand for the retailers when the wholesale 
price is pw . Then  

 

ε ε

ε

= +

= + + +

= +

1 2

1 2

( ) ( ) ( )

( ) ( )

2 ( )

p p p p

p p

p p

D w D w D w
y w y w
y w

  
where  
ε ε ε= +1 2p  
 
The random variable ε p  is defined on the range [2A, 2B] 
with mean value µ µ µ= +1 2p . We use ⋅( )pG  and ⋅( )pg  

to denote the CDF and PDF of ε p . Note that pG  is the 
convolution of  ⋅1( )G  and ⋅2 ( )G  

Specifying a feasible wholesale price range is common in 
the operations and economics literature (see Federguen and 
Heching 1996). We assume that the set of  feasible 
wholesale prices is confined to a finite interval max[ , ]c w , 
where  
• c: lowest possible unit wholesale price to be charged 

(which implies that the wholesale price should at least 
equal to the manufacturing cost, otherwise, the supplier 
cannot make a profit).  

• maxw : highest possible unit wholesale price to be 
charged.  

In order to assure the feasible wholesale price guarantees 
nonnegative demands, we require that 

+ = − + ≥max max( ) 0y w A a bw A , which in turn implies 
that y(c) + A = a − bc + A ≥ 0. 

In this section, we analyze the decisions of  the supplier 
for both the reserved inventory case and the pooled 
inventory case. We also compare the results of  the reserved 
inventory scenario and the pooled inventory scenario when 
ε =( 1, 2)i i  are normally distributed. We do this with and 
without service level requirements. 

4.1 Reserved inventory system 

To maximize the expected supplier’s profit, the supplier 
must choose the wholesale price and inventory level for 
each retailer. Let ∏ 1 2 1 2( , , , )r x x w w  denote the supplier’s 
expected profit when the supplier keeps inventory level 

ix  and charges iw  per unit for retailer i (i=1, 2). We 
have  

 
1 2 1 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

( , , , )

{ min( , ( )) ( ( ))

     + min( , ( )) ( ( )) }.

r x x w w

E w x D w h x D w cx

w x D w h x D w cx

+

+

∏

= − − −

− − −

 

 
Recall that we have assumed that ε1  and ε 2  are 
independent random variables. Thus D1 and D1 are also 
independent and ∏ 1 2 1 2( , , , )r x x w w  is separable, i.e.,  
 

1 2 1 2 1 1 1 2 2 2∏ ( , , , ) = ∏ ( , ) +∏ ( , ),r r rx x w w x w x w  
 
where  
 

+∏ = − − −1 1 1 1 1 1 1 1 1 1 1( , ) { min( , ( )) ( ( )) },r x w E w x D w h x D w cx

2 2 2 2 2 2 2 2 2 2 2( , ) { min( , ( )) ( ( )) }.r x w E w x D w h x D w cx+∏ = − − −  
 
Hence, the supplier can maximize his profit by solving 
following two problems  
 

1 1 max

2 2 max

1 1 10, [ , ]

2 2 20, [ , ]

max ( , ),

max ( , ).

rx w c w

rx w c w

x w

x w
≥ ∈

≥ ∈

∏

∏
                        (4) 
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Due to the identical structures of  ∏ 1r  and ∏ 2r , in the 
rest of  the section, we focus on problem (4). 

Consider following optimization problem,  
 

1 1 max
1 1 10, [ , ]

max ( , ).rx w c w
x w

≥ ∈
∏                          (5) 

 
The range of  the wholesale price 1w  guarantees 
nonnegative demands, which implies that the optimal 
inventory level *

1x  is always nonnegative. Hence, problem 
(4) is equivalent to problem (5). We define the expected 
excess stock, Λ1( )x , and the expected shortage, Θ1( )x , 
when inventory level is chosen as x and demand (with PDF 

⋅1( )g ) turns out to be ε1 . Specifically,  

Λ = −∫1 1( ) ( ) ( ) ,
x

A

x x u g u du  

and  

Θ = −∫1 1( ) ( ) ( ) .
B

x

x x u g u du  

From the definition of  Θ1( )x , we know that it is a 
nonnegative function of  x. Checking the first derivative of  
Θ1( )x  with respect to x, we have Θ = − ≤1 1' ( ) ( ) 1 0x G x . 
Hence Θ1( )x  is decreasing in x. In addition, we find that 
Θ1( )x  and Λ1( )x  satisfy following equation:  

1 1 1( ) ( ) .x x x µΘ = Λ − +  
For the retailer 1, the supplier’s profit, ∏ 1 1 1( , )r x w , can be 
written as:  
 

1 1

1 1

1 1 1

( )

1 1 1 1 1

1 1 1 1( )

1 1 1

( , )

{ ( ( ) ) ( ( ) )} ( )

   { ( )} ( )

( ) ( , )

r
x y w

A
B

x y w

x w

w y w u h x y w u g u du

w x g u du cx

I w L x w

−

−

∏

= + − − −

+ −

= −

∫
∫

   (6) 

 
where  
 

µ= − +1 1 1 1( ) ( )( ( ) ),I w w c y w  
and  

= + Λ − + − Θ −1 1 1 1 1 1 1 1 1( , ) ( ) ( ( )) ( ) ( ( )).L x w c h x y w w c x y w  
 

1( )I w  represents the supplier’s riskless profit function, i.e., 
the profit of  the supplier for a given price w1 when the 
demand variable ε1 is replaced by its constant mean µ1. 
Notice that without uncertainty on the demand side, the 
supplier can manufacture exactly the amount of  inventory 
demanded. 1 1( , )L x w is the loss function, which assesses 
an overage cost c+h for each unit of  the expected unused 
inventory 1 1 1( ( ))x y wΛ −  and an underage cost 1( )w c−  
for each unit of  1 1 1( ( ))x y wΘ −  expected shortages. The 
following lemma gives some properties of  1 1 1( , )r x w∏  
which will be used to solve the problem.  
 

Lemma 4.1: 
1. For a given 1w , 1 1 1( , )r x w∏  is concave in 1x .  
2. For a given 1w , the optimal inventory level is determined by  
 

* 1 1
1 1 1 1

1

( ) ( ) ( ). w cx w y w G
w h

− −
= +

+
                   (7) 

 
Proof: Consider the first and second partial derivatives of  

1 1 1( , )r x w∏  taken with respect to 1x :  
 

1 1 1
1 1 1 1

1

( , )
( ) ( )[1 ( ( ))],r x w

c h w h G x y w
x

∂∏
= − − + + − −

∂
 

2
1 1 1

1 1 1 12
1

( , )
( ) ( ( )) 0,r x w
w h g x y w

x
∂ ∏

= − + − <
∂

 

Hence, given 1w , 1 1 1( , )r x w∏  is concave in 1x . Part (2) 

follows from 1 1 1

1

( , )
0.r x w

x
∂∏

=
∂

 

Lemma 4.1 shows that 1 1 1( , )r x w∏  is concave in 1x  
for a given 1w . Thus, it is possible to reduce the original 
problem to an optimization problem over the single 
variable 1w  by first solving for the optimal value of  1x  
as a function of  1w  and then substituting the result back 
into 1 1 1( , )r x w∏ . Concavity of  1 1 1( , )r x w∏  in 1x  for 
given 1w  allows us to use Zabel’s method (1970) of  first 
optimizing 1x  for a given 1w , and then searching over 
the resulting optimal trajectory to maximize 

*
1 1 1 1( ( ), )r x w w∏ . 

Before we give the optimal solution of  the optimization 
problem, we introduce the concept of  the failure rate. For 
a random variable with CDF F(⋅) and PDF f(⋅), we use h(u) 
to denote the generalized failure rate,  

 
( )

( )
1 ( )

uf u
h u

F u
=

−
, 

 
and r(u) to denote the classical failure rate,  
 

( )
( ) .

1 ( )
uf ur u

F u
=

−
 

 
The classical failure rate gives roughly the percentage 

decrease in the probability of  a stock-out from increasing 
the quantity stocked by one unit, while the generalized 
failure rate gives roughly the percentage decrease in the 
probability of  a stock out from increasing the stocking 
quantity by 1%. An increasing failure rate (IFR) has 
appealing implications. As a supplier holds more stock for 
a retailer, the retailer’s order quantity becomes less elastic, 
i.e., the probability of  a stock-out becomes smaller. The 
IFR assumption is not restrictive because it applies for 
most common distributions. Distributions with IFR such 
as the normal or uniform distributions are clearly also 
IGFR, but there are IGFR distributions that are not IFR. 
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Returning to our optimization problem, we can now 
give conditions and a procedure for calculating a unique 
optimal solution. 

 
Theorem 4.1: Let r(Z1) be the failure rate of  the random variable 

1ε . If   1'( ) 0r z > , then * *
1 1( , )x w  is uniquely determined by  

 
0

1 1 1 1

1
1 1 1

1

2 ( ) ( ( )) 0,

( ( )) .

b w w x y w
w cG x y w
w h

⎧ − −Θ − =
⎪

−⎨ − =⎪ +⎩

 

where  
0 1 .

2
a bc

w
b
µ+ +

=  

Furthermore, the optimal wholesale price *
1w  satisfies:  

0 *
1 1 1 1 12 ( ) ( ( ) ( )) 0,b w w x w y w− −Θ − =  

and the optimal inventory level can be calculated by equation (7), i.e.,  
*

* * 1 1
1 1 1 *

1

( ) ( )
w cx y w G
w h

− −
= +

+
 

 
Proof: We know that the optimal solution * *

1 1( , )x w  
satisfies following first-order conditions,  

1 1 1
1 1 1 1

1

( , ) ( ) ( )(1 ( ( )))

                     0,

r x w c h w h G x y w
x

∂∏
= − − + + − −

∂
=

 

1 1 1

1
0

1 1 1 1

1 1 1 1

1 1 1 1

( , )

2 ( ) ( ( ))
  ( ) ( )(1 ( ( )))

( ) ( )(1 ( ( )))
0.

r x w
w

b w w x y w
b c h b w h G x y w

b c h b w h G x y w

∂∏
∂

= − −Θ −
+ − − + + − −

= − − + + − −
=

 

 
By Lemma 4.1, the optimal inventory level *

1 1( )x w  for 
given w1 is given as by:  

* 1 1
1 1 1 1

1

( ) ( ) ( ).w cx w y w G
w h

− −
= +

+
 

Substituting *
1 1( )x w  into equation (6), we get 

*
1 1 1 1( ( ), )r x w w∏   as a function of  1w , namely,  

*
1 1 1 1 1 1 1

* *
1 1 1 1 1 1 1 1 1

( ( ), ) ( )( ( ) )

( ) ( ( ) ( )) ( ) ( ( ) ( )).
r x w w w c y w

c h x w y w w c x w y w

µ∏ = − +

− + Λ − − − Θ −
 

Taking the first derivative with respect to 1w , we have  
*

1 1 1 1

1
0 *

1 1 1 1 1

*
1 1 1 1 1

0 *
1 1 1 1 1

( ( ), )

2 ( ) ( ( ) ( ))

  ( ) ( )(1 ( ( ) ( )))

2 ( ) ( ( ) ( )).

rd x w w
dw

b w w x w y y

b c h b w h G x w y w

b w w x w y y

∏

= − −Θ −

+ − − + + − −

= − −Θ −

 

Defining 0 *
1 1 1 1 1 1( ) 2 ( ) ( ( ) ( ))V w b w w x w y w= − −Θ − , 

and calculating the first derivative of  V with respect to 1w , 
we get  

*
* 1 1

1 1 1 1 1
1

*
1 1 1 1

*
1 1 1 1

( )
'( ) 2 [1 ( ( ) ( ))]( )

1 ( ( ) ( ))
2 .

( ) ( ( ) ( ))

dx w
V w b G x w y w b

w
G x w y wb

w h r x w y w

= − + − − +

− −
= −

+ −

 

The second derivative is:  
1

* * *
1 1 1 1 1 1 1 1 1

2 *
1 1 1 1 1

* *
1 1 1 1 1 1 1 1
2 *

1 1 1 1 1 1 1 1
*
1 1

1

''( )

1 ( ( ) ( )) '( ( ) ( )) ( )( )
( ) ( ( ) ( ))

1 ( ( ) ( )) 1 ( ( ) ( ))  
( ) ( ( ) ( )) ( ) ( ( ) ( ))

( )   ( ),

V w
G x w y w r x w y w dx w b

w h r x w y w w
G x w y w g x w y w

w h r x w y w w h r x w y w
dx w b

dw

− − −
= +

+ −

− − − −
− −

+ − + −

+

 

where  
*
1 1

*
1 1 1 1 1

( ) 1 0.
( ) ( ( ) ( ))

dx w b
dw w h r x w y w

+ = ≥
+ −

 

 
Since r'(⋅) 0 and r(⋅) ≥ 0, we have  

1''( ) 0V w ≤  
and thus 1( )V w  is unimodal. In addition, we assume that 
the wholesale price should be greater than c. When 1w c= , 
by equation (7), the optimal inventory level is  

*
1 ( ) ,x c a bc A= − +  

and  
0

1

1 1

( ) 2 ( ) ( )

0.

V c b c w A
a bc A
a bc A

µ µ
= − −Θ

= − + − +
= − + >

 

The inequality follows from the nonnegativity assumption. 
Furthermore  
V(∞) = −∞. 

Hence 1( )V w  has only one root. Therefore, given that 

1ε  has an increasing failure rate, the problem has a unique 
solution given by its first order conditions. 

The increasing failure rate of  the random variable 1ε  
guarantees the uniqueness of  the optimal inventory and 
pricing policies. This failure rate condition is very common, 
and a lot of  distribution functions such as the normal and 
exponential distributions have increasing failure rates. 

Since the retailers do not hold inventory, their profits are 
proportional to the expected sales. Recall that the retail 
price i i mp w c= +  at retailer i. Let ( )ri ixπ  be the profit 
of  the retailer i when the supplier keeps inventory level ix  
for her. We have  

( ) E{ min( , )}    1, 2.ri i m i ix c x D iπ = =  

4.2 Pooled inventory system 

For the pooled inventory case, the supplier sets up one 
common inventory px  and charges each retailer a 
common unit wholesale price pw . He sets the inventory 
level and wholesale price to maximize his expected profit. 
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Let ( , )p p px w∏  represent the supplier’s expected 
profit when the wholesale price is pw  and the common 
inventory level is chosen as xp. We have  
 

( , ) min( , ( )) ( ( )) .p p p p p p p p p p px w w x D w h x D w cx+∏ = − − −

 
Recall that ( ) 2 ( )p p p pD w y w ε= +  and pε  is a random 
variable with mean pµ  and CDF ( )pG ⋅  and PDF 

( )pg ⋅ . 
We define the expected excess stock ( )p xΛ  and the 

expected shortage ( )p xΘ  when inventory level is chosen 
as x and random demand turns out to be pε  as  

2

( ) ( ) ( ) ,
x

p p
A

x x u g u duΛ = −∫  

and  
2

( ) ( ) ( ) .
B

p p
x

x u x g u duΘ = −∫  

We can rewrite the expected profit as :  
 

2 ( )

2
2

2 ( )

( , )

{ (2 ( ) ) ( 2 ( ) )} ( )

  ( ) ( )

( ) ( , ),

p p

p p

p p p

x y w

p p p p pA
B

p p p px y w

p p p p p

x w

w y w u h x y w u g u du

w x g u du cx

I w L x w

−

−

∏

= + − − −

+ −

= −

∫
∫

where  
( ) ( )(2 ( ) ),p p p p pI w w c y w v= − +  

and  
( , ) ( ) ( 2 ( )) ( ) ( 2 ( )).p p p p p p p p pL x w c h x y w w c x y w= + Λ − − − Θ −  

 
Consequently, the expected profit again can be interpreted 
as the riskless profit, ( )p pI w , less the expected loss due to 
the uncertainty, ( , ).p p pL x w  

Due to the nonnegativity of  demands, the supplier 
maximizes his profit by solving following problem,  

 

max, [ , ]
max ( , )

p p
p p px w c w

x w
∈

∏  

 
Similar to Lemma, we have following lemma concerning 

the properties of  ( , )p p px w∏ .  
 
Lemma 4.2:  
1. For a given pw , ( , )p p px w∏  is concave in px .  
2. For a given pw , the optimal inventory level is determined by  

* 1( ) 2 ( ) ( )p
p p p p

p

w c
x w y w G

w h
− −

= +
+

 

 
The proof  is similar to the proof  of  the Lemma 4.1. So 
the details are omitted. 

Similarly, we can get the following theorem on the 
uniqueness of  the optimal solution of  the problem.  
 
Theorem 4.2: Let ( )pr z  be the failure rate of  the random 

variable εp. If  '( ) 0pr z > , then * *( , )p px w  is the unique solution 
that satisfies  

04 ( ) ( 2 ( )) 0

( 2 ( ))            

p p p p

p
p p p

p

b w w x y w
w c

G x y w
w h

⎧ − +Θ − =
⎪ −⎨ − − =⎪ +⎩

 

where  
0 2 2

.
4

pa bc
w

b
µ+ +

=  

Furthermore, the optimal wholesale price *
pw  satisfies:  

0 *4 ( ) ( ( ) 2 ( )) 0,p p p p pb w w x w y w− −Θ − =  
and the optimal solution of  inventory level can be calculated by 
Lemma (4.2):  

*
* * 1

*2 ( ) ( )p
p p p

p

w c
x y w G

w h
− −

= +
+

 

 
The proof  follows that of  Theorem . We thus omit the 
details. 

Since the retailers do not hold inventory, their profits are 
proportional to the expected sales. Recall that the retail 
price p p mp w c= + . Let πp(xp) be the profit of  the retailers 
when the supplier keeps inventory level xp. We have  

 
( ) min( )p p m p px c x Dπ = Ε{ , }.  

 
We have derived procedures to calculate the optimal 

inventory and pricing policies for the reserved and the 
pooled inventory scenarios. In the following section, we  
will get the results for the two scenarios when the random 
components of  the demands ε1 and ε2 are normally 
distributed. 

4.3 Comparative results 

Recall that we defined the range of  the random variable 
( 1, 2)i iε =  as [A, B]. A feasibility condition (in order to 

ensure nonnegative demands) for the wholesale price w is 
y(w) + A = a − bw + A > 0. Although the range of  normal 
distribution is [−∞, +∞], if  a is large enough, then the value 
of  A can approach −∞. Hence, we can use normal 
distribution to approximate the demand distribution. As 
before, we use Φ to denote the cumulative distribution 
function, φ to denote the probability density function and 
R to denote the right-hand unit normal linear loss function. 

First we introduce a simple result that we will use in 
this and following sections. 
 

Lemma 4.3:  If  1ε  and 2ε  are independent, identically, and 
normally distributed random variables, let 1 2Θ (⋅) = Θ (⋅) = Θ(⋅)  
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and 1(G G G2⋅) = (⋅) = (⋅) , then  
(2 ) 2 ( )   for any .p u u uΘ ≤ Θ  

 
Proof: Assume that 1ε  and 2ε  have same mean µ　 
and standard deviation σ  and define  
 

( ) (2 ) 2 ( ).pu u u∆Θ = Θ − Θ  

A sufficient condition for (2 ) 2 ( )p u uΘ ≤ Θ  is u∆Θ( ) ≤0. 
Calculating the first derivative of  u∆Θ( )  with respect to 
u, we get  
 

( ) 2(1 (2 )) 2(1 ( ))pu G u G u′∆Θ = − − + −  
u uµ µ
σ σ
− −

= Φ( 2( )) −Φ( ).  

Φ(⋅) is a nondecreasing function. Hence we have  
 

if 
if 

u
u

u
µ
µ

≥ 0 ≥⎧′∆Θ ( ) = ⎨< 0 <⎩
 

We will show that (u) 0. There are two cases. 　  
 
case 1 : u ≥ µ 

u′∆Θ ( ) ≥ 0 indicates that u∆Θ( )  is nondecreasing in u. 
Hence A sufficient condition of  u∆Θ( ) ≤ 0 is to show 
that ∆Θ(+∞)  ≤0. However ( ) 0, ( ) 0pΘ +∞ = Θ +∞ = , 
hence u∆Θ( ) ≤ 0 for any u ≥ µ. 

 
case 2 : u < µ　 

u′∆Θ ( ) < 0 indicates that u∆Θ( )  is decreasing in u. A 
sufficient condition for u∆Θ( ) ≤ 0  is ∆Θ(−∞)  = 0. 
We will use following result from Hadley and Whitin 
(1963),  
 

( ) ( ) ( )(1 ( )).u uu uµ µσφ µ
σ σ
− −

Θ = − − −Φ  

Then  

( ) 2 ( 2( )) 2 ( )

             2( )( ( 2( )) ( )).

u uu

u u

µ µσφ σφ
σ σ

µ µυ µ
σ σ

− −
∆Θ = −

− −
+ − Φ −Φ

 

When u approaches −∞, the first two terms go to 0 and 

( 2( )) ( )u uµ µ
σ σ
− −

Φ −Φ  converges to 0 with 

exponential speed. Hence the third term also converges to 
0. Therefore (2 ) 2 ( )p u uΘ ≤ Θ  is obtained for any u < µ. 

For the case in which 1ε  and 2ε  are independent 
identically and normally distributed random variables, we 
can provide a detailed comparison of  the reserved and 
pooled inventory cases. 

 

Theorem 4.3: If  1ε  and 2ε   are independent identically and 
normally distributed variables, then the supplier will charge the 
retailers an identical wholesale price in the reserved inventory case, 
which is smaller than the optimal wholesale price in the pooled 
inventory case, i.e., * *

1 2 pw w w∗= ≤ .   

 
Proof: By Theorem  and Theorem, the optimal wholesale 
prices * *

1,pw w  and *
2w  satisfy following equations,  

0( ) 4 ( ) 2 i
i i i i i

i

w c
V w b w w G i

w h
−1 −

= − − Θ ( ( )) = 0, =1,2,
+

 

0( ) 4 ( ) p
p p p p p

p

w c
V w b w w G

w h
−1 −

= − −Θ ( ( )) = 0,
+

 

and ,i pV V  are unimodal functions. Here 1(G G2⋅) = (⋅)  

guarantees * *
1 2w w= . Furthermore, the normal distribution 

has an increasing failure rate, which satisfies the conditions 
of  the Theorem  and . Hence iV  and pV  have unique 
solutions. Assume that εi (i = 1, 2) has the mean value  　
and standard deviation . A sufficient condition for 　

*
pw wι

∗≥  is ( ) ( )p iV w V w>  for any w, which is equivalent 
to the following:  
 

( ) ( ) 0,i pV w V w− ≤

p p i i
w c w cG G
w h w h

−1 −1− −
Θ ( ( )) − 2Θ ( ( )) ≤ 0,

+ +
 

p i
w c w c
w h w h

µ σ µ σ−1 −1− −
Θ (2 + 2 Φ ( )) − 2Θ ( + Φ ( )) ≤ 0.

+ +
 

Define  

i p iV α α αµ σ µ σ∆ (Ζ ) = Θ (2 + 2 Ζ ) − 2Θ ( + Ζ )  

where w c
w hα

−1 −
Ζ = Φ ( )

+
. 

Next we show that iV α∆ (Ζ )  is a monotone 
nondecreasing function of  aZ . Taking the first derivative 
of  iV α∆ (Ζ )  with respect to aZ , we obtain  

 

(2 2 )

i

p i

V

G G
α

α α

α

σ µ σ σ µ σ

σ

′∆ (Ζ )

= − 2 (1− (2 + 2 Ζ )) + 2 (1− ( + Ζ ))

= − (1−Φ(Ζ )) ≥ 0.

 

Hence, a sufficient condition for iV α∆ (Ζ ) ≤ 0  for any 

aZ  is that iV∆ (+∞) ≤ 0 . Here  

 

iV
α

α Ζ ⎯⎯→+∞
∆ (Ζ ) = 0.  

 
Hence iV α∆ (Ζ ) < 0 . Therefore, the wholesale price in 

the pooled inventory case is greater than that in the 
reserved inventory case. 
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Theorem 4.4: If  1ε  and 2ε  are independent identically and 
normally distributed variables, then the optimal profit of  the supplier 
in the pooled inventory case is at least as large as that in the reserved 
inventory case, i.e., p r

∗ ∗∏ ≥ ∏ .  

 
Proof: If  1[epsilon]  and 2[epsilon]  are identically 
independently and normally distributed variables, r1∏  is 
same as 2r∏  and hence they have same optimal solution 
and objective value. If  we can show that 

1 1 1 1 1(2 , ) 2 ( , )p rx w x w∏ ≥ ∏  for any 1 1( , )x w , then 

1 1 1 1 1(2 , ) 2 ( , )p p r rx w x w∗ ∗ ∗ ∗ ∗ ∗∏ ≥ ∏ ≥ ∏ = ∏ . Note that  

(
r px w x w

c h c y w w c x y w
1 1 1 1

1 1 1 1 1 1

∏ ( , ) −∏ (2 , )

= −2( + )Λ( − ( )) − 2 − )Θ ( − ( ))
 

1 1 1 1 1   ( ) (2 2 ( )) ( ) (2 2 ( ))p pc h x y w w c x y w+ + Λ − + − Θ −  

 { }1( ) ph w x y w x y w1 1 1 1 1= + Θ (2 − 2 ( )) − 2Θ ( − ( )) .  

Applying Lemma 4.3, we have  
 

1 1 1 1(2 2 ( )) 2 ( ( )) 0.p ix y w x y wΘ − − Θ − ≤  
 
Since h+w1> 0, this implies that 1 1 1 1( , ) (2 , )r px w x w∏ −∏  
≥ 0for any 1 1( , )x w . 

 
Theorem 4.5: If  1ε  and 2ε  are independent identically and 
normally distributed variables and the supplier charges the retailers 
the identical wholesale price w in the reserved inventory case and the 
pooled inventory case, i.e., 1 2 pw w w w= = = , then the retailers’ 
total expected profit in the pooled inventory case is at least as large as 
that in the reserved inventory case, i.e., r rx xπ π1 1 2 2( ) + ( )  

p pxπ≤ ( ).  

 
Proof: As before, given the inventory levels 1 2,x x  and 

px , we have  
min  for ri i m i ix c x D iπ ( ) = Ε{ ( , )} =1,2,  

                                                   
min( )p p m p px c x Dπ ( ) = Ε{ , }.  

Under the reserved inventory case, given the same 
wholesale price w, the optimal inventory levels are same, i.e., 

1 2x x= . Furthermore,  

r r m
w cx x c y w G
w h

π π µ −1
1 1 2 2 1 1

−
( ) + ( ) = (2 ( ) + 2 − 2Θ ( ( ))),

+
 

p p m p p
w cx c y w G
w h

π µ −1 −
( )) = (2 ( ) + 2 −Θ ( ( ))).

+
 

By the proof  of  Theorem , we know that  
 

2 p p
w c w cG G
w h w h

−1 −1
1 1

− −
Θ ( ( )) ≥ Θ ( ( )),

+ +
 

 

therefore, 2( ) ( ) ( )r r p px x xπ π π1 1 2+ ≤ .  

 
If  the demands are normally distributed, these results 

indicate that the supplier will always prefer to pool 
inventory. Under the pooled inventory policy, the supplier’s 
inventory level will decrease because the variance of  the 
total demands is decreased after pooling the inventory. If  
the wholesale prices are same under these two policies, the 
retailers will also prefer the pooled inventory policy. 
 
5. ADDITIVE DEMAND MODEL: WITH 
SERVICE LEVEL REQUIREMENTS 

Now we consider scenarios in which the retailers impose 
minimum service level requirements on the supplier. 
Because of  the structure of  the assumed demand function, 
the supplier may use the wholesale price to control the 
demands so as to meet service level requirements. We keep 
the same notation as in previous section. Let ρ1 and ρ2 be 
the retailers’ service level requirements in the reserved 
inventory system and ρp be the joint service level 
requirement in the pooled inventory system. 
5.1 Reserved inventory system 

For the reserved inventory scenario, the supplier needs 
to solve following problem,  
 

max max

max rx x w c w w c w
x x w w

1 2 1 2
1 2 1 2, , ∈[ , ], ∈[ , ]

∏ ( , , , )  

1 1. .   ( ( )s t P D w x ρ1 1≤ ) ≥  

2 2( ( )P D w x ρ2 2≤ ) ≥  
where  

1 2r r rx x w w x w x w1 2 1 2 1 1 2 2∏ ( , , , ) = ∏ ( , ) +∏ ( , ),  
and  
 

1

2

min

min

r

r

x w

w x D w h x D w cx
x w

w x D w h x D w cx

1 1

+
1 1 1 1 1 1 1 1

2 2

+
2 2 2 2 2 2 2 2

∏ ( , )

= Ε{ ( , ( )) − ( − ( )) − },
∏ ( , )

= Ε{ ( , ( )) − ( − ( )) − }.

    (8) 

 
Similar to problem without service level requirements, 

this problem is separable, so that the supplier needs to 
solve two problems with same structure, one each for 
retailers 1 and 2. Again, we analyze the problem for retailer 
1. For retailer 1, the objective of  the supplier is to solve 
following problem,  
 

max
1

1 1 1

max

. .   ( ( ) )

rx w c w
x w

s t P D w x ρ
1 1

1 1, ∈[ , ]

1

∏ ( , )

< ≥ .
                       (9) 

 
The method used in previous section does not work well 

for the problem with service level requirements. We 
introduce another variable, which we call the “stocking 
factor” defined as:  
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1 1 1( ).z x y w= −  
 
Substituting for x1 in equation (9), the problem of  
choosing a price 1w  and a inventory level x1 is equivalent 
to choosing a price w1 and a stocking factor z1. The 
expected profit becomes:  
 

( ){ }

( ){ } ( )
1

1 1 1 1 1 1

1 1 1 1 1 1 1 1

   ( ) ( ) ( )

( )( ( ) ) ( ) ( ) ( ) ( ),

r
z

B

z

z w

w y w u h z u g u du

w y w z g u du c y w z

w c y w c h L z w c zµ

1

1 1 1

1 1 1 1Α

∏ ( , )

= ( ) + − ( − ) ( )

+ + − +

= − + − + − − Θ

∫
∫

 

 
and the service level constraint becomes:  
 

1 1( ) .G z ρ≥  
 
Hence, the supplier’s optimization problem is equivalent to 
the following problem,  
 

max
1

1 1 1

1 1

max

. .  ( )
      ( )

rz w c w
z w

s t z x y w
G z ρ

1 1
1 1, ∈[ , ]

1

∏ ( , )

= −
≥ .

                          (10) 

 
Considering the optimization problem without the first 
constraint, we have  
 

max

1 1

max

. . ( )

rz w c w
z w

s t G z ρ
1 1

1 1 1, ∈[ , ]

1

∏ ( , )

≥ .
                          (11) 

 
Given the optimal solution * *

1 1( , )z w  for the problem (11), 
define the optimal inventory level as  
 

* * *
1 1 1( ).x z y w= +  

 
In addition, * * *

1 1 1( , , )z w x  is the optimal solution for the 
problem (10). Hence these two problems are equivalent, i.e., 
the supplier only needs to solve problem (11). 

We will analyze the problem (11) without service level 
constraints first. Based on the optimal solution of  the 
problem without constraints, then we derive the optimal 
solution with service level constraints. 

The following lemma gives some properties of  the 
problem without constraints.  

 
Lemma 5.1: 
1. For a given 1z , r z w1 1 1∏ ( , )  is concave in 1w .  
2. For a given 1w , r z w1 1 1∏ ( , )  is concave in 1z .  
3. For a given 1z , the optimal price is determined by  

* 0
1 1( )

z
w z w

b
1 1Θ ( )

= − ,
2

 

where 0 a bc
w

b
µ1+ +

=
2

.  

4. For a given 1w , the optimal stocking factor is determined by  

* 1 1
1 1 1

1

( ) ( ).
w cz w G
w h

− −
=

+
 

 
Proof: Consider the first and second partial derivatives of  

r z w1 1 1∏ ( , )  taken with respected to 1z  and 1w :  

)r

z

z w c h w h g u du
z

1

Β
1 1 1

1 1
1

∂∏ ( , )
= (− − ) + ( + ) ( ,

∂ ∫  

1
r z w w h g z

z

2
1 1 1

1 12
1

∂ ∏ ( , )
= ( + ) ( ) < 0,

∂
 

0
12 ( )

r z w
w

dy wy w w c z
dw

b w w z

µ

1 1 1

1

1
1 1 1 1 1

1

1 1

∂∏ ( , )
∂

( )
= ( ) + + ( − ) −Θ ( )

= − −Θ ( ),

 

2

2
r z w b

w
1 1 1

1

∂ ∏ ( , )
− 2 < 0,

∂
 

where 0 a bcw
b
µ1+ +

=
2

. Parts (1) and (2) follows from the 

negativity of  the second derivatives. Parts (3) and (4) 

follow from r z w
w

1 1 1

1

∂∏ ( , )
= 0

∂
 and r z w

z
1 1 1

1

∂∏ ( , )
= 0

∂
.   

Substituting *
1 1 1( )w w z=  into r z w1 1 1∏ ( , ) , we have  

                          
r z w z w c y w c h x

w x c z

µ∗ ∗ ∗
1 1 1 1 1 1 1 1 1

∗
1 1 1 1

∏ ( , ( )) = ( − )( ( ) + ) − ( + )Λ ( )

− ( ( ) − )Θ ( ),
 

 
and we can translate the optimization problem to a 
maximization problem over a single variable z1. The 
optimal inventory and pricing policies for the reserved 
inventory case are to hold * * * *

1 1 1 1( ( ))x y w z z= +  units to 
sell at the unit price *

1w , where *
1w  is determined by 

Lemma . The following theorem addresses how to 
determine the optimal stocking factor *

1z . 
 
Theorem 5.1: Let 1( )r z  be the failure rate of  the random 

variable 1ε . If   2
1 12 ( ) '( ) 0r z r z+ > , then *

1z  is the unique 
optimal solution within the region [A,B] that satisfies  

( ) ( a bc zc h h G z
b b
µ1 1 1

1 1
+ + Θ ( )

− + + + − )(1− ( )) = 0.
2 2

 

 
Proof: Applying the chain rule  

 1

1 1

( ) (

r

r r

d z w z
dz

z w z z w z dw z
z z

a bc zc h h G z
b b

ω
µ

∗
1 1 1 1

1

∗ ∗ ∗
1 1 1 1 1 1 1 1 1

1

1 1 1
1 1

∏ ( , ( ))

∂∏ ( , ( )) ∂∏ ( , ( )) ( ))
= +

∂ ∂ ∂
+ + Θ ( )

= − + + + − )(1− ( )).
2 2
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Let  

1( ) ( ) ( a bc zV z c h h G z
b b
µ1 1 1

1 1
+ + Θ ( )

= − + + + − )(1− ( )).
2 2

 

The optimal *
1z  should satisfy 1( ) 0V z = . Now, 

consider the first and second derivatives of  1( )V z  with 
respect to 1z . We have  

 
1

1

1

1 1

( )

(

( ) 2 (
2

r

dV z
dz
d d z w z

dz dz

g z a bc G zb h z
b b r z

µ

∗
1 1 1 1

1

1 1 1
1 1

1

∏ ( , ( ))
= )

⎛ ⎞+ + 1− ( )
= − + ) −Θ ( ) − ,⎜ ⎟2 ( )⎝ ⎠

 

and  

{ }

2
1 1 1

1 12
1 1 1

1 1 1 1
1 1 2

1

( ) ( )/ '( )
( )

( ) [1 ( )] '( )                 2[1 ( )] .
2 ( )

z

d V z dV z dz g z
dz g z

g z G z r zG z
b r z

=

−
− − +

 

 
If  1z  is a local minimum or maximum, then it always 

satisfies 1

1

( ) 0dV z
dz

=  and its second derivative is  

 

{ }
2

21 1 1 1 1
1 12 2

1 1

( ) ( )[1 ( )] 2 ( ) '( ) .
2 ( )

d V z g z G z r z r z
dz br z

−
= − +  

 
If  the distribution function satisfies 2

1 12 ( ) '( ) 0r z r z+ > , 

then 
2

1
2
1

( ) 0d V z
dz

<  at 1'( ) 0V z = , which implies that 

1( )V z  is a quasi-concave function. Hence, there are at 
most two roots for 1( ) 0.V z =  Furthermore, V(B) = 
−(c+h) < 0. G(A) > 0 plus G(B) < 0 guarantees the 
uniqueness of  *

1z  and *
1A z B< < . A sufficient 

condition for G(A) > 0 is :  
 

1
12 ( ) 2 ( ) (( 2 ( ))

2
a bcbV A b c h bh A

b
µ µ+ +

= − + + + − −   

0.a bc A= − + >  
 

Hence, there is unique optimal solution *
1z .   

The condition 2
12 ( ) '( 1) 0r z r z+ − >  guarantees that 

r z w z∗
1 1 1 1∏ ( , ( ))  is a quasi-concave in 1z . A sufficient 

condition is that r'(z)>0 which implies that distribution has 
increasing failure rate. 

Now, we have optimal solution *
1z  for the 

unconstrained problem. Returning to the original problem 
(12) with service level constraints, since 1(G ⋅)  is a 
nondecreasing function and r z w z∗

1 1 1 1∏ ( , ( ))  is a 
quasi-concave function on range max[ , ]c w , the optimal 

stocking factor for the problem with service level 
constraints is * 1

1 1max( , (z G r−
1)).  

Since the retailers do not hold inventory, their profits are 
proportional to the expected sales. Recall that the retail 
price i i mp w c= +  at retailer i. Let ri ixπ ( )  be the profit 
of  the retailer i when the supplier keeps inventory level ix  
for her. We have  

 
min     1, 2.ri i m i ix c x D iπ ( ) = Ε{ ( , )} =  

5.2 Pooled inventory system 

For the pooled inventory case, the supplier will set up 
one common inventory xp and charge each retailer a 
common unit wholesale price wp. We face the problem,  

 
max

max

. .    (
p px w c w p p p

p p p

x w

s t P D x ρ
, ∈[ , ] ∏ ( , )

≤ ) ≥
 

 
where  

( ){ }2

2 ( )

{ ( )

                      }

                      ( )

p p

p p

x y w

p p p p p

p p p

B

p p p px y w

x w w y w u

h x y w u G u du

w x G u du cx

−2 ( )

2Α

−

∏ ( , ) = 2 ( ) +

− ( − 2 ( ) − ) ( )

+ −

∫

∫

 

( ) ( , ),p p p p pI w L x w= −  
( ) ( )(2 ( )p p p p pI w w c y w µ= − + ),  

 
and  
 

( , ) ( )

                     
p p p p p p p

p p p

L x w c h x y w w c
x y w

= + Λ ( − 2 ( )) − ( − )

Θ ( − 2 ( )).
 

 
For this case, define the stocking factor as 

2 ( )p p pz x y w= −  and let  

 

                and  

p

p

x

p p p p

p p p p
x

x x u g u du

x u x g u du

2Α

2Β

Λ ( ) = ( − ) ( ) ,

Θ ( ) = ( − ) ( ) .

∫

∫
 

The supplier’s expected profit can then be written as :  

( ){ }
( ){ } ( )2

  2 ( ) ( ) 2 ( )

p

p

p p p

x

p p p p

B

p p p p p pz

x w

w y w u h x u g u du

w y w z g u du c y w z

2Α

∏ ( , )

= 2 ( ) + − ( − ) ( )

+ + − +

∫
∫

 

( )(2 ( )p p p p p p p pw c y w c h x w c xµ= − + ) − ( + )Λ ( ) − ( − )Θ ( ).

The supplier’s objective is to maximize his expected profit, 
i.e.,  
 

max
max

. .    (
p pz w c w p p p

p p p

z w

s t P D x ρ
, ∈[ , ] ∏ ( , )

≤ ) ≥
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Following arguments similar to those used in the previous 
section, it is straightforward to verify that ( )p p pz w∏ ,  is 
concave in zp when wp is given and is concave in wp when xp 
is given. As a consequence, the first-order conditions 
uniquely determine *

pw  at any xp. Specifically,  
 
Lemma 5.2: 
1. For a given zp,, ( )p p pz w∏ ,  is concave in wp. 
2. For a given wp, ( )p p pz w∏ ,  is concave in zp. 
3. For a given zp, the optimal price is determined by  

* 0 ( )
( ) ,

4
p p

p p

z
w z w

b
Θ

= −  

where 0 2 2
.

4
pa bc

w
b

µ+ +
=   

4. For a given pw , the optimal stocking factor is determined by  

* 1( ) ( ).p
p p p

p

w c
z w G

w h
− −

=
+

 

 
We also have the following sufficient condition for 

uniqueness of  the supplier’s optimal solution *
pz .  

 
Theorem 5.2: Let ( )pr u  be the failure rate of  the random 

variable pε . If  22 ( ) '( ) 0p pr u r u+ > , then *
pz  is unique 

optimal solution within the region [2A,2B] that satisfies  
 

2 2 ( )
( ) ( )(1 ( )) 0

4 4
p p p

p p

a bc z
c h h G z

b b
µ+ + Θ

− + + + − − =  

 
Since the proof  of  the theorem is similar as the proof  of  
Theorem , we will not give the details here. 

If  the random variable pε  has increasing failure rate, 
we now have a procedure to get the optimal stocking factor 

*
pz  for the problem without service level requirements. 

Turning back to the problem with service level requirement, 
Gp is nondecreasing function and ( ( ))p p p pz w z∗∏ ,  is a 
quasi-concave function on range max[ , ]c w . Hence the 
optimal stocking factor for the pooled inventory problem 
with service level requirements is * 1max( , ( )).p p pz G ρ−  

Since the retailers do not hold inventory, their profits are 
proportional to the expected sales. Recall that the retail 
price p p mp w c= +  at retailer. Let ( )p pxπ  be the profit 
of  the retailers when the supplier keeps inventory level 

px  for them. We have  
 
( ) { min( , )}.p p m p px c x Dπ = Ε  

5.3 Comparative results 

For normally distributed demands, again we can provide a 
detailed comparison of  the reserved and pooled inventory 
cases. We again use Φ to denote the cumulative distribution 

function and φ to denote the probability density function 
of  the standard normal distribution. 

In order to be able to compare the results, we assume 
that the service level requirement of  each retailer under the 
reserved inventory case and the joint service level 
requirement in the pooled inventory case are identical, i.e. 

1 2 .πρ ρ ρ ρ= = =  
 
Lemma 5.3:  Assume that the service level requirement of  each 
retailer under the reserved inventory case and the joint service level 
requirement in the pooled inventory case are same, i.e. 

πρ ρ ρ ρ1 2= = = . For both the reserved (i=1,2) and the pooled 
(i=p) inventory systems, the optimal stocking factor *( )i iz w  is 
nondecreasing in iw .  
 
Proof: We know that given the wholesale price wi, the 
optimal stocking factor *( )i iz w  can be written as:  

* 1( ) (max( , ))i
i i i

i

w cz w G
h w

ρ− −
=

+
 

where 1( )iG− ⋅  is nondecreasing and it is easy to show that 

i

i

w c
h w

−
+

 is nondecreasing in wi. Thus 1(max( , ))i
i

i

w cG
h w

ρ− −
+

 

is nondecreasing in wi, i.e., *
iz  is nondecreasing in wi. 

 
Theorem 5.3: Assume that 1ε  and 2ε  are independent 
identically and normally distributed random variables and that the 
service level requirement of  each retailer under the reserved inventory 
case and the joint service level requirement in the pooled inventory case 
are same, i.e. 1 2 πρ ρ ρ ρ= = = . In addition, the supplier 
charges the retailers the same wholesale price w in both the reserved 
inventory case and the pooled inventory case,i.e., w1 = w2 = wp = w. 

If  max( , ) 0.5w c
w h

ρ−
≤

+
, then the sum of  the optimal stocking 

factors for retailers 1 and 2 in reserved inventory case is at least as 
large as the optimal stocking factor in the pooled inventory case, i.e., 

* * *
1 2( ) ( ) ( ).pz w z w z w≤ +  Otherwise, * * *

1 2( ) ( ) ( ).pz w z w z w> +  
 
Proof: Given the wholesale price w, the optimal stocking 
factor *

iz  can be written as :  

* 1(max( ,   for  i i
w cz G i p
w h

ρ− −
= )) =1, 2, .

+
 

Assume 1ε  and 2ε  are independent identically and 
normally distributed random variables with mean and 
standard deviation , then,  

*( ) max   for   i
w cz w i
w h

µ σ ρ−1 −
= + Φ ( ( , )) =1, 2

+
 

* 1( ) 2 2 (max( , )).p
w cz w
w h

µ σ ρ− −
= + Φ

+
 

The difference between * *
1 2( ) ( )z w z w+  and * ( )pz w  is  

* * * 1
1 2( ) ( ) ( ) (2 2 ) (max( , )).p

w cz z z
w h

ω ω ω σ ρ− −
+ − = − Φ

+
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When max( w c
w h
−
+

, ρ) ≤ 0.5, then Φ−1(max( w c
w h
−
+

, ρ)) ≤ 0. 

Hence, * *
1 2( ) ( ) pz w z w z w∗+ ≥ ( ) . When max( w c

w h
−
+

, ρ) > 

0.5, then Φ−1(max( w c
w h
−
+

, ρ)) > 0, so that *
1 ( )z w  

* *
2( ) ( )pz w z w+ < . 

 
Theorem 5.4: Assume that 1ε  and 2ε  are independent 
identically and normally distributed random variables and that the 
service level requirement of  each retailer under the reserved inventory 
case and the joint service level requirement in the pooled inventory case 
are same, i.e. πρ ρ ρ ρ1 2= = = .  Then the optimal profit of  the 
supplier in the pooled inventory case is at least as large as that in the 
reserved inventory case, i.e., .p r

∗ ∗∏ ≥ ∏   
 
Proof: Assume 1ε  and 2ε  are independent identically 
and normally distributed random variables with mean value 
and standard deviation. Then r1∏  is same as 2r∏  and 
hence they have same optimal solution and objective value. 
If  we can show that 1 1 1 1 1 1( ( ), ) 2 ( ( ), )p p rz w w z w w∗ ∗∏ ≥ ∏  

for any *
1 1 1( ( ), )z w w , then 

 
1 1( ( ), )p p pz w w∗ ∗ ∗ ∗∏ ≥ ∏ . ≥ 1 1 1 12 ( ( ), )r rz w w∗ ∗ ∗ ∗∏ = ∏  

 
Note that  

*
1( ) max    for  i

w cz w i
w h

µ σ ρ−1 1

1

−
= + Φ ( ( , )) = 1, 2

+
 

*
1( ) 2 maxp

w cz w
w h

µ σ ρ−1 1

1

−
= + 2 Φ ( ( , )).

+
 

Hence  
 

* *
1 1 1 1 1

* *
1 1 1 1 1 1 1

( ( ), ) ( ( ), )

2( ) ( ( )) 2( ) ( ( ))

  ( )

r p p

p p p p

z w w z w w

c h z w w c z w

c h z w w c z w∗ ∗
1 1 1

∏ −∏

= − + Λ − − Θ

+ + Λ ( ( )) + ( − )Θ ( ( ))

 

{ }1( ) p ph w z w z w∗ ∗
1 1 1 1= + Θ ( ( )) − 2Θ ( ( )) .  

 
From proof  of  Theorem , we know that  

2 max

maxp

w c
w h

w c
w h

µ σ ρ

µ σ ρ

−1 1
1

1

−1 1

1

−
Θ ( + Φ ( ( , )))

+
−

≥ Θ (2 + 2 Φ ( ( , ))).
+

 

In addition, 1 0w h+ > . Thus *
1 1 1( ( ), )r z w w∏  

*
1 1( ( ), ) 0p pz w w−∏ ≤  for any w1. 

 
Theorem 5.5: Assume that 1ε  and 2ε  are independent 
identically and normally distributed variables, that the supplier 
charges the retailers the identical wholesale price w, i.e., 

1 2 pw w w w= = = , and that the service level requirement of  each 
retailer under the reserved inventory case and the joint service level 
requirement in the pooled inventory case are same, i.e. 

πρ ρ ρ ρ1 2= = = . Then the retailers’ total expected profit in the 
pooled inventory case is at least as large as that in the reserved 
inventory case, i.e., 1 1 2 2( ) ( ) ( )r r p px x xπ π π+ ≤ .  
 
Proof: Given the inventory levels x1, x2 and xp in the 
reserved and the pooled inventory cases, the expected 
profits of  retailers are  

min     for  ri i m i ix c x D iπ ( ) = Ε{ ( , )} =1, 2  
( ) { min( , )}.p p m p px c x Dπ = Ε  

Given the identical wholesale price 1 2 pw w w w= = = , the 
optimal stocking factors are  

* *
1 1 2 2( ) ( ) max w cz w z w

w h
µ σ ρ−1 −

= = + Φ ( ( , )),
+

 

and  
* ( ) 2 maxp

w cz w
w h

µ σ ρ−1 −
= + 2 Φ ( ( , )).

+
 

Furthermore, optimal inventory levels are 
*( ) ( ), (1, 2)i ix z w y w i= + =  and * 2 ( )p px z y w= + . Hence  

 
1 1 2 2 1 1( ) ( ) ( ( )(2 2 ( ( ))))r r mx x c y w z wπ π µ ∗+ = − Θ  
( ) ( ( )(2 ( ( )))).p p m p px c y w z wπ µ ∗= −Θ  

 
From proof  of  Theorem , we know that  

2 max

maxp

w c
w h

w c
w h

µ σ ρ

µ σ ρ

−1
1

−1

−
Θ ( + Φ ( ( , )))

+
−

≥ Θ (2 + 2 Φ ( ( , ))).
+

 

Therefore, 1 1 2 2( ) ( ) ( )r r p px x xπ π π+ ≤ . 
 
If  the demands are normally distributed, the supplier 

will always prefer the pooled inventory policy. Under the 
pooled inventory policy, the supplier’s profit will increase. 
If  the wholesale prices are same under those two policies, 
the retailers will also prefer to the pooled inventory policy. 
 
6. CONCLUSIONS 

We have studied a two-echelon supply chain with one 
supplier and two retailers over one period, or selling season. 
The supplier bears the supply chain’s inventory risk 
because only the supplier holds inventory while the retailer 
replenishes as needed during the season. 

First we considered scenarios in which the wholesale 
price is fixed and we studied and compared the supplier’s 
inventory decision under two policies: reserved inventory 
and pooled inventory. Under the first policy, the inventory 
is stocked in separate locations for each retailer while under 
the latter policy, inventory is centrally stocked by the 
supplier, and hence the supply chain may benefit from risk 
pooling. However, in general, whether the profit of  the 
retailers and supplier increases or decreases upon inventory 
pooling depends on the problem parameters such as the 
demand parameters. 

In order to obtain insights into the impact of  the 
reserved inventory and the pooled inventory policies, we 
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compared the profits of  the supplier and retailers under 
those two policies assuming normal demand distributions. 
First we showed that the supplier’s profit in the pooled 
inventory case is always greater than in the reserved 
inventory case. In addition, the total expected sales is also 
increased after pooling the inventory. In addition to the 
basic model, we also studied the case when the retailers 
have service level requirements, and we obtained similar 
conclusions. 

Besides the model with fixed wholesale prices, we also 
developed inventory and pricing models for the supplier 
when the wholesale price is a decision and demand is 
price-sensitive. Note that these scenarios are much more 
complicated. We analyzed an additive demand model. For 
normally distributed demands, we compared the results for 
the reserved inventory and the pooled inventory policies 
with and without service level requirements. The results 
shows that the supplier always prefers to pool inventory 
while in general, this need not be so for the retailers. We 
also analyzed the retailers’ profits under some specific 
conditions. 
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