
International Journal of Operations Research Vol. 2, No. 2, 9−16 (2005)

Improved Lower Bounds for the Single Machine Earliness/Tardiness
Scheduling Problem with Release Dates

Jorge M. S. Valente*

Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

Received February 2005; Revised June 2005; Accepted June 2005

Abstract⎯In this paper, we consider the single machine earliness/tardiness scheduling problem with different release dates
and no unforced idle time. The most effective lower bound uses multiplier adjustment procedures that require an initial
sequence. We investigate the sensitivity of the lower bounding procedure to the initial sequences, and experiment with
different scheduling rules and dominance conditions. The computational results show that it is possible to obtain improved
lower bounds by using better initial sequences. The lower bounds are also incorporated in a branch-and-bound algorithm,
and the new lower bounds were clearly superior for the larger instances. The new procedures were also much more
consistent than the existing method, and the improvement they provided became larger as the instance difficulty increased.
Keywords⎯Scheduling earliness/tardiness, Release dates, Lower bounds, Branch-and-bound

* Corresponding author’s email: jvalente@fep.up.pt

1. INTRODUCTION

In this paper, we consider a single machine scheduling
problem with earliness and tardiness costs that can be
stated as follows. A set of n independent jobs { 1 2, , ..., nJ J J }
has to be scheduled without preemption on a single
machine that can handle only one job at a time. The
machine is assumed to be continuously available from time
zero onwards. Job Jj, j = 1, …, n, becomes available for
processing at its release date jr , requires a processing time
Pj and should ideally be completed on its due date dj. Given
a schedule, the earliness of Jj is defined as Ej = max{0, dj −
Cj}, while the tardiness of Jj can be defined as

{ }max 0,j j jT C d= − , where Cj is the completion time of
Jj . The objective is then to find a schedule that minimises
the sum of weighted earliness and weighted
tardiness ()1

n
j j j jj

h E w T
=

+∑ subject to the constraint that

no unforced machine idle time is allowed, where hj and wj
are the earliness and tardiness penalties of job Jj .

Scheduling models with both earliness and tardiness
costs are compatible with the philosophy of just-in-time
production, which emphasizes producing goods only when
they are needed, since jobs are scheduled to complete as
close as possible to their due dates. It is assumed that no
unforced machine idle time is allowed, and therefore the
machine is only idle when no jobs are available for
processing. This assumption represents a type of
production environment where the machine idleness cost is
higher than the cost incurred by completing a job early, or
the machine is heavily loaded, so it must be kept running in
order to satisfy the demand. Korman (1994) and Landis
(1993) give some specific examples of production settings
with these characteristics. The existence of different release

dates is compatible with the assumption of no unforced
idle time, as long as the forced idle time caused by the
distinct release dates is inexistent or quite small. If that is
not the case, the assumption becomes unrealistic, since the
machine capacity is then clearly not limited when
compared with the demand and it is unlikely that the cost
of the machine being kept idle is higher than the early cost.

As a generalization of weighted tardiness scheduling
(Lenstra et al., 1977), the problem is strongly NP-hard.
Several lower bounding procedures and a
branch-and-bound algorithm were presented by Valente
and Alves (2005a). The performance of various heuristics,
including dispatching rules, a greedy procedure and a
decision theory algorithm, was analysed in Valente and
Alves (2003).

The earliness/tardiness problem with equal release dates
and no idle time has also been considered by several
authors, and both exact and heuristic approaches have been
proposed. Among the exact approaches, branch-and-
bound algorithms were presented by Abdul-Razaq and
Potts (1988), Li (1997) and Liaw (1999). Valente and Alves
(2005c) showed that using better initial sequences can
improve the lower bounding procedures developed by Li
and Liaw. Among the heuristics, Ow and Morton (1989)
developed several earliness/tardiness dispatching rules and
a filtered beam search procedure. Valente and Alves (2005b)
presented an additional dispatching rule and a greedy
procedure. A neighbourhood search algorithm was also
presented by Li (1997). Recently, Hassin and Shani (2005)
have generalized the earliness/tardiness problem by
allowing the non-execution of tasks and introducing
non-execution penalties. The weighted tardiness problem
with release dates was also previously considered. A
dominance rule and several heuristics were presented by
Akturk and Ozdemir (2001), while Akturk and Ozdemir

International Journal of
Operations Research

1813-713X Copyright © 2005 ORSTW

Valente: Improved Lower Bounds for the Single Machine Earliness/Tardiness Scheduling Problem with Release Dates
IJOR Vol. 2, No. 2, 9−16 (2005)

10

(2000) developed lower bounding procedures and a
branch-and-bound algorithm.

The most effective lower bounding procedure presented
in Valente and Alves (2005a) uses multiplier adjustment
procedures that require an initial sequence. In this paper,
we investigate the sensitivity of the lower bounding
procedure to the initial sequence, in order to determine if
it is possible to improve the lower bound through the use
of better schedules. We experiment with different initial
sequences, and analyse their effect on both the accuracy of
the lower bound and their effectiveness in a
branch-and-bound algorithm. Several heuristics are used to
generate the initial sequences, and dominance rules are also
applied to improve the schedules created by the heuristics.

The remainder of the paper is organized as follows. In
section 2, we mention some previous results that provided
the motivation for our current research. The heuristics and
the dominance rules used to generate the initial sequences
are presented in section 3. In section 4, we describe the
specific lower bounding procedures. The implementation
details of the branch-and-bound algorithm are discussed in
section 5. In section 6, we present the computational
results. Finally, some concluding remarks are given in
section 7.

2. PREVIOUS RESULTS AND RESEARCH

MOTIVATION

In this section, we succinctly review some previous
results regarding lower bounds for the earliness/tardiness
problem, particularly those that have motivated our present
research. Valente and Alves (2005a) decomposed the
earliness/tardiness problem with release dates into
weighted earliness and weighted tardiness subproblems.
This decomposition was motivated by the fact that a sum
of lower bounds for the two subproblems is a lower bound
for the original problem. Therefore, the lower bounds
developed for the single machine weighted tardiness
problem with release dates could directly be used for the
tardiness subproblem. Also, these procedures could be
modified and adapted in order to provide lower bounds for
the weighted earliness subproblem. The weighted tardiness
problem with release dates had been previously considered
by Akturk and Ozdemir (2000), and two general lower
bounding procedures were developed. The first of these
procedures relaxed the assumption that a job could not be
scheduled before its release date, and then calculated a
lower bound for a problem with a modified common
release date. The second procedure instead used a lower
bound for the single machine weighted completion time
problem with release dates. Valente and Alves (2005a)
modified and adapted these lower bounds for the weighted
earliness subproblem.

The two lower bounding procedures presented for each
subproblem are general methods: the first procedure can
use any lower bound for the weighted earliness and
weighted tardiness problems with identical release dates,
whereas the second can use any lower bound for the
weighted completion time problem. Valente and Alves

(2005a) used the weighted earliness and weighted tardiness
lower bounds presented by Li (1997), and the weighted
completion time lower bound proposed by Belouadah et al.
(1992). Their computational tests showed that the
earliness/tardiness lower bounds were more efficient and
superior to their weighted completion time problem
counterparts.

The multiplier adjustment procedures used in the
earliness and tardiness lower bounds proposed by Li
require an initial sequence. In Valente and Alves (2005a),
these initial sequences were generated using the weighted
shortest processing time (WSPT) and the weighted longest
processing time (WLPT) rules, just as originally proposed
by Li. However, Valente and Alves (2005c) analysed the
earliness/tardiness problem with identical release dates,
and showed that in this case the lower bounds proposed by
Li are sensitive to the choice of initial schedule, and tighter
lower bounds could then be obtained through the use of a
better initial sequence. Therefore, in this paper we
investigate the sensitivity of the earliness/tardiness lower
bounds to the initial sequence in the context of the
problem with different release dates, in order to determine
if it is also possible to improve these lower bounds
through the use of better schedules for problems where
the release dates are allowed to differ. We experiment with
different initial sequences, and analyse their effect on both
the accuracy of the lower bounds and their effectiveness in
a branch-and-bound algorithm. Several heuristics are used
to generate the initial sequences, and dominance rules are
also applied to improve the schedules created by the
heuristics.

3. HEURISTICS AND DOMINANCE RULES

In this section, we describe the several dispatching
heuristics and dominance rules that were used to generate
initial sequences for the lower bounding procedures. The
WSPT rule was presented by Smith (1956) and sorts the
jobs in non-increasing order of j jw p . The WLPT rule,
also proposed by Smith, sorts the jobs in non-increasing
order of j jp h . Since these two dispatching rules only

require sorting, their time complexity is O ()logn n .
The Apparent Tardiness Cost (ATC) dispatching

procedure was developed by Rachamadugu and Morton
(1981) for the single machine weighted tardiness problem.
This heuristic selects, whenever the machine becomes
available, the unscheduled job with the highest priority
index ()exp(())j j j jw p d t p kp+− − − , where p is the
average processing time, t is the current time and k is a
lookahead empirical parameter.

The Apparent Earliness Cost (AEC) heuristic was
presented by Valente and Alves (2005c) and is an
adaptation of the ATC rule to the weighted earliness
problem with no idle time allowed. It differs from the ATC
rule in that the schedule is built backwards, i.e., at each
iteration we select a job that will be scheduled just before
the current partial sequence. At each iteration, we select the
unscheduled job with the highest priority index

Valente: Improved Lower Bounds for the Single Machine Earliness/Tardiness Scheduling Problem with Release Dates
IJOR Vol. 2, No. 2, 9−16 (2005)

11

()exp(())j j jh p t d kp+− − , where p is the average
processing time, k is an empirical parameter and t is the
time at which the next selected job will be completed. The
time complexity of both the ATC and AEC heuristics is
O(n²).

Two dominance rules were also used to improve the
sequences generated by these heuristics. These rules
identify a condition that holds for adjacent jobs in an
optimal sequence. Rachamadugu (1987) proved that for
any two adjacent jobs in an optimal sequence for the
weighted tardiness problem, either the following condition
holds or an alternative optimal sequence can be
constructed by interchanging those adjacent jobs:

()(1 ())

 ()(1 ())
i i i i j

j j j j i

w p d t p p

w p d t p p

+

+

− − − ≥

− − −

In this expression, i denotes the index of the job in the ith
position, j is the index of the job in the (i+1)st and t is the
current available time. If this condition does not hold for
two adjacent jobs, interchanging them will either lower the
schedule cost, or leave it unchanged when both jobs are
early in either position.

Valente and Alves (2005c) presented a dominance rule
for the weighted earliness problem with no idle time
allowed. This rule is an adaptation of the weighted
tardiness dominance condition and is symmetric to the rule
developed by Rachamadugu. For any two adjacent jobs in
an optimal sequence for the weighted earliness problem,
either the following condition holds or an alternative
optimal sequence can be constructed by interchanging
those adjacent jobs:

(/)(1 () /)

 (/)(1 () /)
i i i j i j

j j i j j i

h p t p p d p

h p t p p d p

+

+

− + + − ≤

− + + −

In this expression, i, j and t are as previously defined. If
this condition does not hold for two adjacent jobs,
interchanging them will either lower the schedule cost, or
leave it unchanged when both jobs are tardy in either
position.

4. THE LOWER BOUNDS

In this section, we describe the four lower bounds that
were considered. These lower bounds use only the
procedures that relax the assumption that jobs cannot be
scheduled before their release dates and calculate a lower
bound for a problem with a modified identical release date.
The lower bound denoted by WPT uses the WLPT and
WSPT rules to generate the initial sequences for the
weighted earliness and weighted tardiness subproblems,
respectively. This procedure was previously considered in
Valente and Alves (2005a). The lower bound values
obtained with this method were most often quite similar to
those given by procedures that additionally used the
weighted completion time problem bounds. Also, this

procedure was the most effective of those analysed by
Valente and Alves when incorporated in a
branch-and-bound algorithm.

Lower bound WPTDR uses these same heuristics and
then applies the dominance rules presented in the previous
section to improve the sequence generated by the heuristics.
Rachamadugu's rule is used for the weighted tardiness
subproblem and the rule presented by Valente and Alves
(2005c) is used for the weighted earliness subproblem.
Each rule iteration considers in succession all adjacent job
positions and when a pair of adjacent jobs in a sequence
violates a rule, those jobs are swapped if that change
reduces the objective function value. This procedure is
applied repeatedly until it converges and no improvement
is found in a complete iteration (i.e., until the sequence is
locally optimal and it cannot be further improved through
adjacent swaps). The complexity of the dominance rules is
O(n) per iteration, and the total complexity depends on the
number of times a rule iteration produces an improvement.
The lower bound AC uses the AEC (ATC) heuristic for the
earliness (tardiness) subproblem. Lower bound ACDR uses
these same heuristics, but also applies the dominance rules,
just as previously described for the WPTDR lower bound.

5. IMPLEMENTATION OF THE BRANCH-AND-
BOUND ALGORITHM

In this section, we discuss the implementation details of
the branch-and-bound algorithm. We use a forward-
sequencing branching rule, where a node at level l of the
search tree corresponds to a sequence with l jobs fixed in
the first l positions. The depth-first strategy is used to
search the tree, and ties are broken by selecting the node
with the smallest value of the associated partial schedule
cost plus the associated lower bound for the unscheduled
jobs. Two dominance rules are used to reduce the number
of nodes in the search tree. These rules were developed for
the problem with identical release dates, but can still be
used when the release dates are allowed to be different,
provided care is taken to avoid making unfeasible job
swaps. Ow and Morton (1989) presented a condition that
must be satisfied for all adjacent pairs of jobs in an optimal
schedule. The dominance rule developed by Liaw (1999),
on the other hand, applies to non–adjacent pairs of jobs
with identical processing times.

In the first fathoming test, the rule presented by Ow and
Morton is applied to the two jobs most recently added to
the node's partial schedule. In the second test, Liaw's
non-adjacent rule is applied. During the initialization, the
algorithm checks if at least two jobs have identical
processing times and this second test is skipped when all
Pjs are different. Finally, if the node is not eliminated by
the two previous tests, a lower bound is calculated for that
node. If the lower bound plus the cost of the associated
partial schedule is larger than or equal to the current upper
bound, the node is discarded.

The initial upper bound on the optimum schedule cost is
calculated using the best of the procedures presented in
Valente and Alves (2003). The decision theory local search

Valente: Improved Lower Bounds for the Single Machine Earliness/Tardiness Scheduling Problem with Release Dates
IJOR Vol. 2, No. 2, 9−16 (2005)

12

heuristic is first used to generate an initial sequence, and
the dominance rules of Ow and Morton and Liaw are then
applied to improve this sequence (see Valente and Alves
(2003) for details). The upper bound value is updated
whenever a feasible schedule with a lower cost is found
during the branching process.

The configuration just described is used consistently in
all branch-and-bound procedures. Therefore, the only
difference between the branch-and-bound algorithms is in
the choice of the lower bounding procedure.

6. COMPUTATIONAL RESULTS

In this section, we present the results from the
computational tests. A set of problems with 15, 20, 25, 30,
40, 50, 75, 100, 200, 250, 300, 400, 500 and 1000 jobs was
randomly generated as follows. For each job Jj an integer
processing time Pj, an integer earliness penalty hj and an
integer tardiness penalty wj were generated from one of the
two uniform distributions [1,10] and [1,100], to create low
and high variability, respectively. For each job Jj, an integer
release date rj was generated from the uniform distribution

1
0, n

jj
R P

=
⎡ ⎤
⎣ ⎦∑ , where R was set at 0.25, 0.50 and 0.75.

The maximum value of the range of release dates R was
chosen so that the forced idle time would be small or
inexistent. Preliminary tests showed that R = 1.00 would
lead to excessive amounts of forced idle time, which would
be incompatible with the assumption that no unforced idle
time may be inserted in a schedule. Instead of determining
due dates directly, we generated slack times between a job's
due date and its earliest possible completion time. For each
job Jj, an integer due date slack d

js was generated from the

uniform distribution
1

0, n
jj

D P
=

⎡ ⎤
⎣ ⎦∑ , where the due date

slack range D was set at 0.10, 0.25 and 0.50. The due date dj
of Jj was then set equal to d

j j j jd r p s= + + . For each
combination of instance size n, processing time and
penalty variability (var), R and D, 50 instances were
randomly generated. Therefore, 450 instances were
generated for each (var, n) combination. All the algorithms
were coded in Visual C++ 6.0 and executed on a Pentium
IV – 1700 Mhz personal computer. The lower bounds were
calculated for all test instances, while the
branch-and-bound algorithm was used to solve to
optimality the instances with up to 30 jobs. Throughout
this section, and in order to avoid excessively large tables,
we will sometimes present results only for some
representative cases.

In table 1, we present the average value of the lower
bounds (mean) and the relative improvement (%imp) over
the WPT lower bound, calculated as (LB - WPT) / WPT ×
100, where LB and WPT represent the average value of the
appropriate lower bound (i.e., AC, ACDR or WPTDR) and
the WPT lower bound, respectively. A test was also
performed to determine if the differences between these
lower bounds are statistically significant. Given that the
lower bounds were used on exactly the same instances, a
paired-samples test is appropriate. Since the hypotheses of
the paired-samples t-test were not all met, the
non-parametric Wilcoxon test was selected. The
significance values of this test, i.e., the level of significance
values above which the equal distribution hypothesis is to
be rejected, were always equal to 0.000

Table 1. Lower bound values
 lower bound
 AC ACDR WPTDR WPT

var n mean %imp mean %imp mean %imp mean
low 15 335 1.46 336 1.67 334 1.09 330
 25 867 1.21 869 1.45 865 0.98 856
 50 3456 0.98 3465 1.26 3442 0.59 3422
 100 13657 0.96 13711 1.36 13601 0.55 13526
 250 84394 0.96 84743 1.37 83902 0.37 83594
 500 341768 0.97 343000 1.34 339736 0.37 338475
 1000 1351564 0.96 1355813 1.28 1342228 0.26 1338704

high 15 23147 0.99 23192 1.19 23132 0.93 22920
 25 62510 1.32 62743 1.69 62398 1.14 61698
 50 242669 1.32 243820 1.80 242166 1.11 239510
 100 976446 1.18 981502 1.70 972720 0.79 965090
 250 5994784 1.14 6031518 1.76 5964738 0.63 5927256
 500 24017992 1.07 24149732 1.63 23884579 0.51 23763427
 1000 96056715 1.15 96548228 1.67 95427634 0.49 94963472

Valente: Improved Lower Bounds for the Single Machine Earliness/Tardiness Scheduling Problem with Release Dates
IJOR Vol. 2, No. 2, 9−16 (2005)

13

Table 2. Relative deviation from the optimum

 lower bound
var n AC ACDR WPT WPTDR
low 15 57.59 57.45 58.47 57.87

 20 55.37 55.22 55.94 55.60
 25 55.78 55.62 56.47 55.92
 30 53.68 53.50 54.54 53.91

high 15 64.28 64.14 64.83 64.35
 20 61.76 61.56 62.57 61.90
 25 60.41 60.19 61.05 60.48
 30 58.56 58.30 59.57 58.85

Table 3. Relative deviation from the optimum for lower bound WPTDR

 n = 20 n = 30
var R D = 0.10 D = 0.25 D = 0.50 D = 0.10 D = 0.25 D = 0.50
low 0.25 13.55 26.31 65.94 10.79 22.65 58.51

 0.50 30.60 56.42 87.79 29.64 52.97 86.90
 0.75 62.86 90.08 66.89 67.42 88.61 67.65

high 0.25 21.56 34.74 70.29 15.01 29.05 64.42
 0.50 35.38 65.42 91.42 31.43 58.86 93.96
 0.75 76.17 88.31 73.84 71.68 92.92 72.30

From these results, we can conclude that the lower

bounding procedure is sensitive to the choice of initial
sequence. Tighter lower bound values can be obtained
through the use of better initial sequences, obtained with
more sophisticated heuristics and/or dominance rules. In
fact, the lower bounds that use the AEC/ATC dispatching
heuristics outperform those that use the simple
WLPT/WSPT rules. The use of the dominance rules also
improves the lower bound value, since the ACDR and
WPTDR bounds provide better results than the AC and
WPT procedures, respectively. The improvement of lower
bound WPTDR over WPT is larger than that of ACDR
over AC. Therefore, the improvement provided by the
dominance rules is higher when the less sophisticated
WLPT/WSPT heuristics are used. The Wilcoxon test
values also indicate that the differences in distribution
between the lower bounding procedures are statistically
significant. The WPTDR lower bound is up to 1% above
the WPT procedure, while the AC and ACDR lower
bounds provide a 1-2% improvement. The relative
improvement is usually higher for instances with a high
processing time and penalty variability, and tends to
decrease with the instance size for the WPTDR lower
bound.

In table 2, we present the average of the relative
deviations from the optimum, calculated as (O － LB) /
O × 100, where O and LB represent the optimum
objective function value and the lower bound value (i.e.,
AC, ACDR, WPT or WPTDR), respectively. The R and D
effect on the relative deviation from the optimum for the
WPTDR lower bound is given in table 3. The lower
bounds performance is poor, since on average they are

50% to 60% below the optimum. The performance is
better when the processing time and penalty variability is
low, and it improves as the instance size increases. The
lower bounds performance is adequate when R and D are
both at their lowest value, and it deteriorates considerably
as R and D increase (the only exception being the (R =
0.75, D = 0.50) parameter combination). This result is to
be expected, since the earliness/tardiness problem lower
bounds used in these procedures should be more accurate
for problems with small release date and due date ranges.
The earliness/tardiness lower bounds were developed for
the problem with identical release dates, so their
performance is better when the release dates are only
slightly scattered. Also, most jobs will likely be tardy when
D is low, and as D increases there will be a greater balance
between the number of early and tardy jobs. Previous
research on the problem with identical release dates has
shown that the earliness/tardiness lower bounds perform
better when most jobs are indeed tardy (or early). When
the number of tardy and early jobs is similar, the problem
is much harder, and the lower bounds become more
inaccurate.

In Table 4, we present the lower bounds average
runtimes, in seconds, for instances with 500 and 1000 jobs.
The procedures that use more sophisticated heuristics,
and/or dominance rules, require higher computation times.
Therefore, it cannot be guaranteed that they will reduce the
computation time of a branch-and-bound algorithm. In
order to determine if the improvement due to these lower
bounds is indeed worthwhile in the context of an exact
algorithm, instances with up to 30 jobs were solved to
optimality with a branch-and-bound algorithm.

Valente: Improved Lower Bounds for the Single Machine Earliness/Tardiness Scheduling Problem with Release Dates
IJOR Vol. 2, No. 2, 9−16 (2005)

14

Table 4. Lower bound runtimes (in seconds)

 low var high var
LB n = 500 n = 1000 n = 500 n = 1000
AC 0.039 0.153 0.039 0.153
ACDR 0.043 0.172 0.044 0.175
WPT 0.001 0.002 0.002 0.003
WPTDR 0.008 0.024 0.009 0.028

Table 5. Branch-and-bound runtimes (in seconds)

 lower bound
var n AC ACDR WPT WPTDR
low 15 0.004 0.005 0.003 0.004
 20 0.028 0.034 0.025 0.023
 25 0.153 0.177 0.227 0.122
 30 1.348 1.564 10.089 1.421

high 15 0.004 0.004 0.003 0.004
 20 0.022 0.026 0.021 0.018
 25 0.207 0.241 0.622 0.165
 30 1.151 1.316 23.829 1.045

Table 6. Branch-and-bound runtimes (in seconds) for 30 job instances

var LB min p50 p75 p95 max cov
low AC 0.000 0.188 0.656 3.782 84.718 447.6
 ACDR 0.000 0.219 0.750 4.281 100.406 451.8
 WPT 0.000 0.188 0.890 11.297 1002.220 835.6
 WPTDR 0.000 0.141 0.563 3.297 146.437 576.7

high AC 0.000 0.219 0.797 4.093 53.734 362.8
 ACDR 0.000 0.235 0.843 4.843 61.703 369.5
 WPT 0.000 0.219 1.062 11.985 7081.840 1492.7
 WPTDR 0.000 0.156 0.610 3.578 41.219 378.3

Table 7. Effect of R and D parameters on the branch-and-bound runtimes for 30 job instances

 lower bound
 WPT WPTDR
var R D = 0.10 D = 0.25 D = 0.50 D = 0.10 D = 0.25 D = 0.50
low 0.25 0.035 0.168 2.761 0.037 0.165 2.989
 0.50 0.334 0.261 23.748 0.178 0.225 6.118
 0.75 0.346 2.078 61.073 0.214 1.125 1.737

high 0.25 0.060 0.217 2.477 0.053 0.199 2.542
 0.50 0.166 0.415 4.461 0.115 0.324 2.907
 0.75 1.031 0.881 204.754 0.296 0.429 2.540

In table 5, we give the branch-and-bound average
computation times, in seconds. In table 6, we present
several additional statistics for the computation times on
instances with 30 jobs, namely the minimum (min) and
maximum (max) values, the coefficient of variation (cov)
and the percentiles 50, 75 and 95 (p50, p75 and p95,
respectively) of the distribution of the runtimes. The effect
of the R and D parameters on the branch-and-bound
runtimes for instances with 30 jobs is given in table 7. The

computation times are quite similar for all the
branch-and-bound algorithms for the smaller problems
with 15 or 20 jobs. The difference in the runtimes becomes
much clearer for the larger instances (n = 25, 30). For these
instances, all the three new lower bounds provide much
better results and are clearly superior to the existing
procedure. Therefore, the higher computational
requirements of the new procedures are more than offset
by their increased accuracy. The branch-and-bound

Valente: Improved Lower Bounds for the Single Machine Earliness/Tardiness Scheduling Problem with Release Dates
IJOR Vol. 2, No. 2, 9−16 (2005)

15

runtimes for the three new procedures are quite close,
although the best results are usually given by the WPTDR
lower bound.

The results in table 6 once again show that the new
procedures outperform the existing lower bound.
Furthermore, these results show that the new procedures
are clearly more consistent, and the improvement they
provide becomes larger as the instance difficulty increases.
For the easier instances, which require low computation
times, the runtimes are quite close for all procedures, as
can be seen by the minimum and percentile 50 values. As
the instance difficulty, and correspondingly the

computation time, increase, the new procedures become
increasingly more efficient than the existing lower bound,
since the increase in runtime is much slower for the new
procedures. For the most difficult instances, as can be seen
by the percentile 95 and maximum runtime values, the
computation times are substantially lower for the new
lower bounds. The coefficient of variation values also
indicate that the new procedures are considerably more
consistent, since the variability in their runtimes is
significantly lower. The branch-and-bound runtimes also
usually increase with both R and D.

Table 8. Average number of nodes and relative importance of the fathoming tests

 n = 20 n = 30

var LB NG %EL %LB %A %NA NG %EL %LB %A %NA

low AC 997 82.65 76.22 23.08 0.70 34546 88.04 72.16 27.04 0.81

 ACDR 971 82.60 76.41 22.90 0.69 32345 87.96 72.45 26.75 0.80

 WPT 1637 83.37 72.83 26.41 0.76 777700 88.63 68.52 30.52 0.97

 WPTDR 1029 82.71 75.90 23.42 0.69 48849 88.10 71.66 27.52 0.82

high AC 802 82.19 74.92 25.00 0.08 28067 88.01 70.87 29.04 0.09

 ACDR 777 82.13 75.15 24.77 0.08 25620 87.91 71.32 28.59 0.09

 WPT 1370 82.78 72.16 27.75 0.09 2112480 88.60 67.30 32.58 0.11

 WPTDR 825 82.20 74.75 25.17 0.08 35286 88.03 70.57 29.33 0.10

Table 9. Nodes generated and importance of lower bound test for the WPTDR lower bound and 30 job instances

 D = 0.10 D = 0.25 D = 0.50
var R NG %LB NG %LB NG %LB
low 0.25 895 86.57 4639 75.98 95328 67.78
 0.50 5200 80.97 6878 73.34 221714 67.36
 0.75 7450 67.43 41185 64.29 56349 61.22

high 0.25 1327 84.25 5877 75.01 85467 66.47
 0.50 3321 79.23 10811 69.95 97747 67.20
 0.75 10341 69.14 15185 64.70 87495 59.20

In table 8, we present the average number of nodes

generated by the branch-and-bound algorithm (NG), as
well as the average percentage of these nodes that were
eliminated by the three fathoming tests (%EL). We also
give some data on the relative importance of these tests,
namely the average percentage of nodes eliminated by the
lower bound (%LB), the adjacent rule (%A) and the
non-adjacent rule (%NA). In table 9, we present the R and
D effect on the average number of nodes generated and
the average percentage of nodes eliminated by the lower
bound test for the 30 job instances when the WPTDR
lower bound is used.

The proportion of nodes eliminated by the lower bound
test is higher for the new and more accurate lower bounds,
while the number of nodes generated is much lower. Only
a very small percentage of nodes is eliminated by the
non-adjacent rule. This result is most likely somewhat
influenced by the order in which the two rules are applied,
since the adjacent rule can eliminate nodes that would

otherwise be fathomed by the non-adjacent dominance
condition. The adjacent dominance rule, however, requires
a much lower computational effort, and it's therefore more
efficient to apply it before checking the non-adjacent rule.
The proportion of nodes fathomed by the non-adjacent
rule decreases with the variability of the processing times
and increases with the instance size. This result is to be
expected, since it's more likely to find two jobs with the
same processing time when the number of jobs is high and
the processing time variability is low.

As the instance size and the processing time and penalty
variability increase, the percentage of nodes fathomed by
the adjacent rule tends to increase, and the effectiveness of
the lower bound test correspondingly decreases. The
number of nodes generated is also usually lower when the
variability is high. The number of nodes usually increases
with R and D, the only exception being the (R = 0.75, D =
0.50) parameter combination. The proportion of nodes
fathomed by the lower bound test decreases with both R

Valente: Improved Lower Bounds for the Single Machine Earliness/Tardiness Scheduling Problem with Release Dates
IJOR Vol. 2, No. 2, 9−16 (2005)

16

and D, and the importance of the adjacent rule becomes
correspondingly higher, since the non-adjacent rule has
only a marginal effect.

The number of nodes generated, and correspondingly
the runtimes, tend to increase with the release date and due
date ranges. Therefore, the problem usually becomes
harder to solve with a branch-and-bound algorithm as R
and D increase. As we previously remarked, there is a
greater balance between the number of early and tardy jobs
as D increases, so the problem should indeed be harder. An
increase in the range of release dates, on the other hand,
reduces the number of feasible schedules. This reduction is
not very substantial, however, since we have restricted the
value of R in order to avoid unforced idle time, and is
more than compensated by the deterioration in the
performance of the lower bound fathoming test. In fact, as
we previously mentioned, the relative importance of the
lower bound elimination test steadily decreases as both R
and D increase.

7. CONCLUSIONS

In this paper, we considered the most effective lower
bounding procedure for the single machine
earliness/tardiness problem with release dates and no
unforced idle time. This lower bounding method uses
multiplier adjustment procedures that require an initial
sequence. We investigated the sensitivity of the lower
bounding procedure to the initial sequences, and
experimented with different scheduling rules and
dominance conditions.

The computational results show that the lower bounding
procedure is sensitive to the choice of initial schedule, and
tighter lower bound values can indeed be obtained through
the use of better initial sequences. The new bounding
procedures that use more sophisticated heuristics, and/or
dominance rules, provided better lower bound values than
the previously existing method. We also analysed the
effectiveness of the lower bounding procedure when it is
incorporated in a branch-and-bound algorithm. For the
larger instances, all the new lower bounds provided much
better results and were clearly superior to the existing
procedure. Furthermore, the computational results showed
that the new procedures are clearly more consistent, and
the improvement they provide becomes larger as the
instance difficulty increases.

ACKNOWLEDGEMENTS

The author would like to thank the anonymous referees
for several comments that were used to improve this paper.

REFERENCES

1. Abdul-Razaq, T. and Potts, C.N. (1988). Dynamic
programming state-space relaxation for single machine
scheduling. Journal of the Operational Research Society, 39:
141-152.

2. Akturk, M.S. and Ozdemir, D. (2000). An exact
approach to minimizing total weighted tardiness with
release dates. IIE Transactions, 32: 1091-1101.

3. Akturk, M.S. and Ozdemir, D. (2001). A new
dominance rule to minimize total weighted tardiness
with unequal release dates. European Journal of
Operational Research, 135: 394-412.

4. Belouadah, H., Posner, M.E., and Potts, C.N. (1992).
Scheduling with release dates on a single machine to
minimize total weighted completion time. Discrete
Applied Mathematics, 36: 213-231.

5. Hassin, R. and Shani, M. (2005). Machine scheduling
with earliness, tardiness and non-execution penalties.
Computers and Operations Research, 32: 683-705.

6. Korman, K. (1994). A pressing matter. Video, February:
46-50.

7. Landis, K. (1993). Group technology and cellular
manufacturing in the Westvaco Los Angeles VH department.
Project Report in IOM 581, School of Business,
University of Southern California, USA.

8. Lenstra, J.K., Rinnooy Kan, A.H.G., and Brucker, P.
(1977). Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1: 343-362.

9. Li, G. (1997). Single machine earliness and tardiness
scheduling. European Journal of Operational Research, 96:
546-558.

10. Liaw, C.F. (1999). A branch-and-bound algorithm for
the single machine earliness and tardiness scheduling
problem. Computers and Operations Research, 26: 679-693.

11. Ow, P.S. and Morton, T.E. (1989). The single machine
early/tardy problem. Management Science, 35: 177-191.

12. Potts, C.N. and van Wassenhove, L. N. (1985). A
branch-and-bound algorithm for the total weighted
tardiness problem. Operations Research, 33: 363-377.

13. Rachamadugu, R.M.V. (1987). A note on the weighted
tardiness problem. Operations Research, 35: 450-452.

14. Rachamadugu, R.M.V. and Morton, T.E. (1981). Myopic
Heuristics for the Single Machine Weighted Tardiness Problem.
Working Paper 28-81-82, Graduate School of Industrial
Administration, Carnegie-Mellon University.

15. Smith, W.E. (1956). Various optimizers for single-stage
production. Naval Research Logistics Quarterly, 3: 59-66.

16. Valente, J.M.S. and Alves, R.A.F.S. (2003). Heuristics for
the Early/Tardy Scheduling Problem with Release Dates.
Working Paper 130, Faculdade de Economia da
Universidade do Porto, Portugal.

17. Valente, J.M.S. and Alves, R.A.F.S. (2005a). An exact
approach to early/tardy scheduling with release dates.
Computers and Operations Research, 32: 2905-2917.

18. Valente, J.M.S. and Alves, R.A.F. S. (2005b). Improved
heuristics for the early/tardy scheduling problem with
no idle time. Computers and Operations Research, 32:
557-569.

19. Valente, J.M.S. and Alves, R.A.F.S. (2005c). Improved
lower bounds for the early/tardy scheduling problem
with no idle time. Journal of the Operational Research Society,
56: 604-612.

