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Abstract⎯In this paper, we consider the single machine earliness/tardiness scheduling problem with different release dates 
and no unforced idle time. The most effective lower bound uses multiplier adjustment procedures that require an initial 
sequence. We investigate the sensitivity of  the lower bounding procedure to the initial sequences, and experiment with 
different scheduling rules and dominance conditions. The computational results show that it is possible to obtain improved 
lower bounds by using better initial sequences. The lower bounds are also incorporated in a branch-and-bound algorithm, 
and the new lower bounds were clearly superior for the larger instances. The new procedures were also much more 
consistent than the existing method, and the improvement they provided became larger as the instance difficulty increased. 
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1. INTRODUCTION 

In this paper, we consider a single machine scheduling 
problem with earliness and tardiness costs that can be 
stated as follows. A set of  n independent jobs { 1 2, , ..., nJ J J } 
has to be scheduled without preemption on a single 
machine that can handle only one job at a time. The 
machine is assumed to be continuously available from time 
zero onwards. Job Jj, j = 1, …, n, becomes available for 
processing at its release date jr , requires a processing time 
Pj and should ideally be completed on its due date dj. Given 
a schedule, the earliness of  Jj is defined as Ej = max{0, dj − 
Cj}, while the tardiness of  Jj can be defined as 

{ }max 0,j j jT C d= − , where Cj is the completion time of 
Jj . The objective is then to find a schedule that minimises 
the sum of  weighted earliness and weighted 
tardiness ( )1

n
j j j jj

h E w T
=

+∑ subject to the constraint that 

no unforced machine idle time is allowed, where hj and wj 
are the earliness and tardiness penalties of  job Jj . 

Scheduling models with both earliness and tardiness 
costs are compatible with the philosophy of  just-in-time 
production, which emphasizes producing goods only when 
they are needed, since jobs are scheduled to complete as 
close as possible to their due dates. It is assumed that no 
unforced machine idle time is allowed, and therefore the 
machine is only idle when no jobs are available for 
processing. This assumption represents a type of  
production environment where the machine idleness cost is 
higher than the cost incurred by completing a job early, or 
the machine is heavily loaded, so it must be kept running in 
order to satisfy the demand. Korman (1994) and Landis 
(1993) give some specific examples of  production settings 
with these characteristics. The existence of  different release 

dates is compatible with the assumption of  no unforced 
idle time, as long as the forced idle time caused by the 
distinct release dates is inexistent or quite small. If  that is 
not the case, the assumption becomes unrealistic, since the 
machine capacity is then clearly not limited when 
compared with the demand and it is unlikely that the cost 
of  the machine being kept idle is higher than the early cost. 

As a generalization of  weighted tardiness scheduling 
(Lenstra et al., 1977), the problem is strongly NP-hard. 
Several lower bounding procedures and a 
branch-and-bound algorithm were presented by Valente 
and Alves (2005a). The performance of  various heuristics, 
including dispatching rules, a greedy procedure and a 
decision theory algorithm, was analysed in Valente and 
Alves (2003). 

The earliness/tardiness problem with equal release dates 
and no idle time has also been considered by several 
authors, and both exact and heuristic approaches have been 
proposed. Among the exact approaches, branch-and- 
bound algorithms were presented by Abdul-Razaq and 
Potts (1988), Li (1997) and Liaw (1999). Valente and Alves 
(2005c) showed that using better initial sequences can 
improve the lower bounding procedures developed by Li 
and Liaw. Among the heuristics, Ow and Morton (1989) 
developed several earliness/tardiness dispatching rules and 
a filtered beam search procedure. Valente and Alves (2005b) 
presented an additional dispatching rule and a greedy 
procedure. A neighbourhood search algorithm was also 
presented by Li (1997). Recently, Hassin and Shani (2005) 
have generalized the earliness/tardiness problem by 
allowing the non-execution of  tasks and introducing 
non-execution penalties. The weighted tardiness problem 
with release dates was also previously considered. A 
dominance rule and several heuristics were presented by 
Akturk and Ozdemir (2001), while Akturk and Ozdemir 
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(2000) developed lower bounding procedures and a 
branch-and-bound algorithm. 

The most effective lower bounding procedure presented 
in Valente and Alves (2005a) uses multiplier adjustment 
procedures that require an initial sequence. In this paper, 
we investigate the sensitivity of  the lower bounding 
procedure to the initial sequence, in order to determine if  
it is possible to improve the lower bound through the use 
of  better schedules. We experiment with different initial 
sequences, and analyse their effect on both the accuracy of  
the lower bound and their effectiveness in a 
branch-and-bound algorithm. Several heuristics are used to 
generate the initial sequences, and dominance rules are also 
applied to improve the schedules created by the heuristics. 

The remainder of  the paper is organized as follows. In 
section 2, we mention some previous results that provided 
the motivation for our current research. The heuristics and 
the dominance rules used to generate the initial sequences 
are presented in section 3. In section 4, we describe the 
specific lower bounding procedures. The implementation 
details of  the branch-and-bound algorithm are discussed in 
section 5. In section 6, we present the computational 
results. Finally, some concluding remarks are given in 
section 7. 
 
2. PREVIOUS RESULTS AND RESEARCH 

MOTIVATION 

In this section, we succinctly review some previous 
results regarding lower bounds for the earliness/tardiness 
problem, particularly those that have motivated our present 
research. Valente and Alves (2005a) decomposed the 
earliness/tardiness problem with release dates into 
weighted earliness and weighted tardiness subproblems. 
This decomposition was motivated by the fact that a sum 
of  lower bounds for the two subproblems is a lower bound 
for the original problem. Therefore, the lower bounds 
developed for the single machine weighted tardiness 
problem with release dates could directly be used for the 
tardiness subproblem. Also, these procedures could be 
modified and adapted in order to provide lower bounds for 
the weighted earliness subproblem. The weighted tardiness 
problem with release dates had been previously considered 
by Akturk and Ozdemir (2000), and two general lower 
bounding procedures were developed. The first of  these 
procedures relaxed the assumption that a job could not be 
scheduled before its release date, and then calculated a 
lower bound for a problem with a modified common 
release date. The second procedure instead used a lower 
bound for the single machine weighted completion time 
problem with release dates. Valente and Alves (2005a) 
modified and adapted these lower bounds for the weighted 
earliness subproblem. 

The two lower bounding procedures presented for each 
subproblem are general methods: the first procedure can 
use any lower bound for the weighted earliness and 
weighted tardiness problems with identical release dates, 
whereas the second can use any lower bound for the 
weighted completion time problem. Valente and Alves 

(2005a) used the weighted earliness and weighted tardiness 
lower bounds presented by Li (1997), and the weighted 
completion time lower bound proposed by Belouadah et al. 
(1992). Their computational tests showed that the 
earliness/tardiness lower bounds were more efficient and 
superior to their weighted completion time problem 
counterparts. 

The multiplier adjustment procedures used in the 
earliness and tardiness lower bounds proposed by Li 
require an initial sequence. In Valente and Alves (2005a), 
these initial sequences were generated using the weighted 
shortest processing time (WSPT) and the weighted longest 
processing time (WLPT) rules, just as originally proposed 
by Li. However, Valente and Alves (2005c) analysed the 
earliness/tardiness problem with identical release dates, 
and showed that in this case the lower bounds proposed by 
Li are sensitive to the choice of  initial schedule, and tighter 
lower bounds could then be obtained through the use of  a 
better initial sequence. Therefore, in this paper we 
investigate the sensitivity of  the earliness/tardiness lower 
bounds to the initial sequence in the context of  the 
problem with different release dates, in order to determine 
if  it is also possible to improve these lower bounds 
through the use of  better schedules for problems where 
the release dates are allowed to differ. We experiment with 
different initial sequences, and analyse their effect on both 
the accuracy of  the lower bounds and their effectiveness in 
a branch-and-bound algorithm. Several heuristics are used 
to generate the initial sequences, and dominance rules are 
also applied to improve the schedules created by the 
heuristics. 
 
3. HEURISTICS AND DOMINANCE RULES 

In this section, we describe the several dispatching 
heuristics and dominance rules that were used to generate 
initial sequences for the lower bounding procedures. The 
WSPT rule was presented by Smith (1956) and sorts the 
jobs in non-increasing order of  j jw p . The WLPT rule, 
also proposed by Smith, sorts the jobs in non-increasing 
order of  j jp h . Since these two dispatching rules only 

require sorting, their time complexity is O ( )logn n . 
The Apparent Tardiness Cost (ATC) dispatching 

procedure was developed by Rachamadugu and Morton 
(1981) for the single machine weighted tardiness problem. 
This heuristic selects, whenever the machine becomes 
available, the unscheduled job with the highest priority 
index ( )exp( ( ) )j j j jw p d t p kp+− − − , where p  is the 
average processing time, t is the current time and k is a 
lookahead empirical parameter. 

The Apparent Earliness Cost (AEC) heuristic was 
presented by Valente and Alves (2005c) and is an 
adaptation of  the ATC rule to the weighted earliness 
problem with no idle time allowed. It differs from the ATC 
rule in that the schedule is built backwards, i.e., at each 
iteration we select a job that will be scheduled just before 
the current partial sequence. At each iteration, we select the 
unscheduled job with the highest priority index 



Valente: Improved Lower Bounds for the Single Machine Earliness/Tardiness Scheduling Problem with Release Dates 
IJOR Vol. 2, No. 2, 9−16 (2005) 
 

11

( )exp( ( ) )j j jh p t d kp+− − , where p  is the average 
processing time, k is an empirical parameter and t is the 
time at which the next selected job will be completed. The 
time complexity of  both the ATC and AEC heuristics is 
O(n²). 

Two dominance rules were also used to improve the 
sequences generated by these heuristics. These rules 
identify a condition that holds for adjacent jobs in an 
optimal sequence. Rachamadugu (1987) proved that for 
any two adjacent jobs in an optimal sequence for the 
weighted tardiness problem, either the following condition 
holds or an alternative optimal sequence can be 
constructed by interchanging those adjacent jobs: 
 
( )(1 ( ) )

                                ( )(1 ( ) )
i i i i j

j j j j i

w p d t p p

w p d t p p

+

+

− − − ≥

− − −
 

 
In this expression, i denotes the index of  the job in the ith 
position, j is the index of  the job in the (i+1)st and t is the 
current available time. If  this condition does not hold for 
two adjacent jobs, interchanging them will either lower the 
schedule cost, or leave it unchanged when both jobs are 
early in either position. 

Valente and Alves (2005c) presented a dominance rule 
for the weighted earliness problem with no idle time 
allowed. This rule is an adaptation of  the weighted 
tardiness dominance condition and is symmetric to the rule 
developed by Rachamadugu. For any two adjacent jobs in 
an optimal sequence for the weighted earliness problem, 
either the following condition holds or an alternative 
optimal sequence can be constructed by interchanging 
those adjacent jobs: 
 
( / )(1 ( ) / )

                             ( / )(1 ( ) / )
i i i j i j

j j i j j i

h p t p p d p

h p t p p d p

+

+

− + + − ≤

− + + −
 

 
In this expression, i, j and t are as previously defined. If  
this condition does not hold for two adjacent jobs, 
interchanging them will either lower the schedule cost, or 
leave it unchanged when both jobs are tardy in either 
position. 
 
4. THE LOWER BOUNDS 

In this section, we describe the four lower bounds that 
were considered. These lower bounds use only the 
procedures that relax the assumption that jobs cannot be 
scheduled before their release dates and calculate a lower 
bound for a problem with a modified identical release date. 
The lower bound denoted by WPT uses the WLPT and 
WSPT rules to generate the initial sequences for the 
weighted earliness and weighted tardiness subproblems, 
respectively. This procedure was previously considered in 
Valente and Alves (2005a). The lower bound values 
obtained with this method were most often quite similar to 
those given by procedures that additionally used the 
weighted completion time problem bounds. Also, this 

procedure was the most effective of  those analysed by 
Valente and Alves when incorporated in a 
branch-and-bound algorithm. 

Lower bound WPTDR uses these same heuristics and 
then applies the dominance rules presented in the previous 
section to improve the sequence generated by the heuristics. 
Rachamadugu's rule is used for the weighted tardiness 
subproblem and the rule presented by Valente and Alves 
(2005c) is used for the weighted earliness subproblem. 
Each rule iteration considers in succession all adjacent job 
positions and when a pair of  adjacent jobs in a sequence 
violates a rule, those jobs are swapped if  that change 
reduces the objective function value. This procedure is 
applied repeatedly until it converges and no improvement 
is found in a complete iteration (i.e., until the sequence is 
locally optimal and it cannot be further improved through 
adjacent swaps). The complexity of  the dominance rules is 
O(n) per iteration, and the total complexity depends on the 
number of  times a rule iteration produces an improvement. 
The lower bound AC uses the AEC (ATC) heuristic for the 
earliness (tardiness) subproblem. Lower bound ACDR uses 
these same heuristics, but also applies the dominance rules, 
just as previously described for the WPTDR lower bound. 
 
5. IMPLEMENTATION OF THE BRANCH-AND- 
BOUND ALGORITHM 

In this section, we discuss the implementation details of  
the branch-and-bound algorithm. We use a forward- 
sequencing branching rule, where a node at level l of  the 
search tree corresponds to a sequence with l jobs fixed in 
the first l positions. The depth-first strategy is used to 
search the tree, and ties are broken by selecting the node 
with the smallest value of  the associated partial schedule 
cost plus the associated lower bound for the unscheduled 
jobs. Two dominance rules are used to reduce the number 
of  nodes in the search tree. These rules were developed for 
the problem with identical release dates, but can still be 
used when the release dates are allowed to be different, 
provided care is taken to avoid making unfeasible job 
swaps. Ow and Morton (1989) presented a condition that 
must be satisfied for all adjacent pairs of  jobs in an optimal 
schedule. The dominance rule developed by Liaw (1999), 
on the other hand, applies to non–adjacent pairs of  jobs 
with identical processing times. 

In the first fathoming test, the rule presented by Ow and 
Morton is applied to the two jobs most recently added to 
the node's partial schedule. In the second test, Liaw's 
non-adjacent rule is applied. During the initialization, the 
algorithm checks if  at least two jobs have identical 
processing times and this second test is skipped when all 
Pjs are different. Finally, if  the node is not eliminated by 
the two previous tests, a lower bound is calculated for that 
node. If  the lower bound plus the cost of  the associated 
partial schedule is larger than or equal to the current upper 
bound, the node is discarded. 

The initial upper bound on the optimum schedule cost is 
calculated using the best of  the procedures presented in 
Valente and Alves (2003). The decision theory local search 
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heuristic is first used to generate an initial sequence, and 
the dominance rules of  Ow and Morton and Liaw are then 
applied to improve this sequence (see Valente and Alves 
(2003) for details). The upper bound value is updated 
whenever a feasible schedule with a lower cost is found 
during the branching process. 

The configuration just described is used consistently in 
all branch-and-bound procedures. Therefore, the only 
difference between the branch-and-bound algorithms is in 
the choice of  the lower bounding procedure. 
 
6. COMPUTATIONAL RESULTS 

In this section, we present the results from the 
computational tests. A set of  problems with 15, 20, 25, 30, 
40, 50, 75, 100, 200, 250, 300, 400, 500 and 1000 jobs was 
randomly generated as follows. For each job Jj an integer 
processing time Pj, an integer earliness penalty hj and an 
integer tardiness penalty wj were generated from one of  the 
two uniform distributions [1,10] and [1,100], to create low 
and high variability, respectively. For each job Jj, an integer 
release date rj was generated from the uniform distribution 

1
0, n

jj
R P

=
⎡ ⎤
⎣ ⎦∑ , where R was set at 0.25, 0.50 and 0.75. 

The maximum value of  the range of  release dates R was 
chosen so that the forced idle time would be small or 
inexistent. Preliminary tests showed that R = 1.00 would 
lead to excessive amounts of  forced idle time, which would 
be incompatible with the assumption that no unforced idle 
time may be inserted in a schedule. Instead of  determining 
due dates directly, we generated slack times between a job's 
due date and its earliest possible completion time. For each 
job Jj, an integer due date slack d

js was generated from the 

uniform distribution 
1

0, n
jj

D P
=

⎡ ⎤
⎣ ⎦∑  , where the due date 

slack range D was set at 0.10, 0.25 and 0.50. The due date dj 
of  Jj was then set equal to d

j j j jd r p s= + + . For each 
combination of  instance size n, processing time and 
penalty variability (var), R and D, 50 instances were 
randomly generated. Therefore, 450 instances were 
generated for each (var, n) combination. All the algorithms 
were coded in Visual C++ 6.0 and executed on a Pentium 
IV – 1700 Mhz personal computer. The lower bounds were 
calculated for all test instances, while the 
branch-and-bound algorithm was used to solve to 
optimality the instances with up to 30 jobs. Throughout 
this section, and in order to avoid excessively large tables, 
we will sometimes present results only for some 
representative cases.  

In table 1, we present the average value of  the lower 
bounds (mean) and the relative improvement (%imp) over 
the WPT lower bound, calculated as (LB - WPT) / WPT × 
100, where LB and WPT represent the average value of  the 
appropriate lower bound (i.e., AC, ACDR or WPTDR) and 
the WPT lower bound, respectively. A test was also 
performed to determine if  the differences between these 
lower bounds are statistically significant. Given that the 
lower bounds were used on exactly the same instances, a 
paired-samples test is appropriate. Since the hypotheses of  
the paired-samples t-test were not all met, the 
non-parametric Wilcoxon test was selected. The 
significance values of  this test, i.e., the level of  significance 
values above which the equal distribution hypothesis is to 
be rejected, were always equal to 0.000

 
 
 

Table 1. Lower bound values 
  lower bound 
  AC  ACDR WPTDR  WPT 

var n mean %imp  mean %imp mean %imp  mean 
low 15 335 1.46  336 1.67 334 1.09  330 
 25 867 1.21  869 1.45 865 0.98  856 
 50 3456 0.98  3465 1.26 3442 0.59  3422 
 100 13657 0.96  13711 1.36 13601 0.55  13526 
 250 84394 0.96  84743 1.37 83902 0.37  83594 
 500 341768 0.97  343000 1.34 339736 0.37  338475 
 1000 1351564 0.96  1355813 1.28 1342228 0.26  1338704 
           
high 15 23147 0.99  23192 1.19 23132 0.93  22920 
 25 62510 1.32  62743 1.69 62398 1.14  61698 
 50 242669 1.32  243820 1.80 242166 1.11  239510 
 100 976446 1.18  981502 1.70 972720 0.79  965090 
 250 5994784 1.14  6031518 1.76 5964738 0.63  5927256 
 500 24017992 1.07  24149732 1.63 23884579 0.51  23763427 
 1000 96056715 1.15  96548228 1.67 95427634 0.49  94963472 

 
 



Valente: Improved Lower Bounds for the Single Machine Earliness/Tardiness Scheduling Problem with Release Dates 
IJOR Vol. 2, No. 2, 9−16 (2005) 
 

13

 
Table 2. Relative deviation from the optimum 

  lower bound 
var n AC ACDR WPT WPTDR 
low 15 57.59 57.45 58.47 57.87 

 20 55.37 55.22 55.94 55.60 
 25 55.78 55.62 56.47 55.92 
 30 53.68 53.50 54.54 53.91 
      

high 15 64.28 64.14 64.83 64.35 
 20 61.76 61.56 62.57 61.90 
 25 60.41 60.19 61.05 60.48 
 30 58.56 58.30 59.57 58.85 

 
Table 3. Relative deviation from the optimum for lower bound WPTDR 

  n = 20  n = 30 
var R D = 0.10 D = 0.25 D = 0.50  D = 0.10 D = 0.25 D = 0.50 
low 0.25 13.55 26.31 65.94  10.79 22.65 58.51 

 0.50 30.60 56.42 87.79  29.64 52.97 86.90 
 0.75 62.86 90.08 66.89  67.42 88.61 67.65 
         

high 0.25 21.56 34.74 70.29  15.01 29.05 64.42 
 0.50 35.38 65.42 91.42  31.43 58.86 93.96 
 0.75 76.17 88.31 73.84  71.68 92.92 72.30 

 
From these results, we can conclude that the lower 

bounding procedure is sensitive to the choice of  initial 
sequence. Tighter lower bound values can be obtained 
through the use of  better initial sequences, obtained with 
more sophisticated heuristics and/or dominance rules. In 
fact, the lower bounds that use the AEC/ATC dispatching 
heuristics outperform those that use the simple 
WLPT/WSPT rules. The use of  the dominance rules also 
improves the lower bound value, since the ACDR and 
WPTDR bounds provide better results than the AC and 
WPT procedures, respectively. The improvement of  lower 
bound WPTDR over WPT is larger than that of  ACDR 
over AC. Therefore, the improvement provided by the 
dominance rules is higher when the less sophisticated 
WLPT/WSPT heuristics are used. The Wilcoxon test 
values also indicate that the differences in distribution 
between the lower bounding procedures are statistically 
significant. The WPTDR lower bound is up to 1% above 
the WPT procedure, while the AC and ACDR lower 
bounds provide a 1-2% improvement. The relative 
improvement is usually higher for instances with a high 
processing time and penalty variability, and tends to 
decrease with the instance size for the WPTDR lower 
bound. 

In table 2, we present the average of  the relative 
deviations from the optimum, calculated as (O － LB) / 
O ×  100, where O and LB represent the optimum 
objective function value and the lower bound value (i.e., 
AC, ACDR, WPT or WPTDR), respectively. The R and D 
effect on the relative deviation from the optimum for the 
WPTDR lower bound is given in table 3. The lower 
bounds performance is poor, since on average they are 

50% to 60% below the optimum. The performance is 
better when the processing time and penalty variability is 
low, and it improves as the instance size increases. The 
lower bounds performance is adequate when R and D are 
both at their lowest value, and it deteriorates considerably 
as R and D increase (the only exception being the (R = 
0.75, D = 0.50) parameter combination). This result is to 
be expected, since the earliness/tardiness problem lower 
bounds used in these procedures should be more accurate 
for problems with small release date and due date ranges. 
The earliness/tardiness lower bounds were developed for 
the problem with identical release dates, so their 
performance is better when the release dates are only 
slightly scattered. Also, most jobs will likely be tardy when 
D is low, and as D increases there will be a greater balance 
between the number of  early and tardy jobs. Previous 
research on the problem with identical release dates has 
shown that the earliness/tardiness lower bounds perform 
better when most jobs are indeed tardy (or early). When 
the number of  tardy and early jobs is similar, the problem 
is much harder, and the lower bounds become more 
inaccurate. 

In Table 4, we present the lower bounds average 
runtimes, in seconds, for instances with 500 and 1000 jobs. 
The procedures that use more sophisticated heuristics, 
and/or dominance rules, require higher computation times. 
Therefore, it cannot be guaranteed that they will reduce the 
computation time of  a branch-and-bound algorithm. In 
order to determine if  the improvement due to these lower 
bounds is indeed worthwhile in the context of  an exact 
algorithm, instances with up to 30 jobs were solved to 
optimality with a branch-and-bound algorithm. 
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Table 4. Lower bound runtimes (in seconds) 

 low var  high var 
LB n = 500 n = 1000  n = 500 n = 1000 
AC 0.039 0.153  0.039 0.153 
ACDR 0.043 0.172  0.044 0.175 
WPT 0.001 0.002  0.002 0.003 
WPTDR 0.008 0.024  0.009 0.028 

 
Table 5. Branch-and-bound runtimes (in seconds) 

   lower bound 
var n AC ACDR WPT WPTDR 
low 15 0.004 0.005 0.003 0.004 
 20 0.028 0.034 0.025 0.023 
 25 0.153 0.177 0.227 0.122 
 30 1.348 1.564 10.089 1.421 
      
high 15 0.004 0.004 0.003 0.004 
 20 0.022 0.026 0.021 0.018 
 25 0.207 0.241 0.622 0.165 
 30 1.151 1.316 23.829 1.045 

 
Table 6. Branch-and-bound runtimes (in seconds) for 30 job instances 

var LB min p50 p75 p95 max cov 
low AC 0.000 0.188 0.656 3.782 84.718 447.6 
 ACDR 0.000 0.219 0.750 4.281 100.406 451.8 
 WPT 0.000 0.188 0.890 11.297 1002.220 835.6 
 WPTDR 0.000 0.141 0.563 3.297 146.437 576.7 
        
high AC 0.000 0.219 0.797 4.093 53.734 362.8 
 ACDR 0.000 0.235 0.843 4.843 61.703 369.5 
 WPT 0.000 0.219 1.062 11.985 7081.840 1492.7 
 WPTDR 0.000 0.156 0.610 3.578 41.219 378.3 

 
Table 7. Effect of  R and D parameters on the branch-and-bound runtimes for 30 job instances 

  lower bound 
  WPT WPTDR 
var R D = 0.10 D = 0.25 D = 0.50 D = 0.10 D = 0.25 D = 0.50 
low 0.25 0.035 0.168 2.761 0.037 0.165 2.989 
 0.50 0.334 0.261 23.748 0.178 0.225 6.118 
 0.75 0.346 2.078 61.073 0.214 1.125 1.737 
        
high 0.25 0.060 0.217 2.477 0.053 0.199 2.542 
 0.50 0.166 0.415 4.461 0.115 0.324 2.907 
 0.75 1.031 0.881 204.754 0.296 0.429 2.540 

 
 

In table 5, we give the branch-and-bound average 
computation times, in seconds. In table 6, we present 
several additional statistics for the computation times on 
instances with 30 jobs, namely the minimum (min) and 
maximum (max) values, the coefficient of  variation (cov) 
and the percentiles 50, 75 and 95 (p50, p75 and p95, 
respectively) of  the distribution of  the runtimes. The effect 
of  the R and D parameters on the branch-and-bound 
runtimes for instances with 30 jobs is given in table 7. The 

computation times are quite similar for all the 
branch-and-bound algorithms for the smaller problems 
with 15 or 20 jobs. The difference in the runtimes becomes 
much clearer for the larger instances (n = 25, 30). For these 
instances, all the three new lower bounds provide much 
better results and are clearly superior to the existing 
procedure. Therefore, the higher computational 
requirements of  the new procedures are more than offset 
by their increased accuracy. The branch-and-bound 
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runtimes for the three new procedures are quite close, 
although the best results are usually given by the WPTDR 
lower bound. 

The results in table 6 once again show that the new 
procedures outperform the existing lower bound. 
Furthermore, these results show that the new procedures 
are clearly more consistent, and the improvement they 
provide becomes larger as the instance difficulty increases. 
For the easier instances, which require low computation 
times, the runtimes are quite close for all procedures, as 
can be seen by the minimum and percentile 50 values. As 
the instance difficulty, and correspondingly the 

computation time, increase, the new procedures become 
increasingly more efficient than the existing lower bound, 
since the increase in runtime is much slower for the new 
procedures. For the most difficult instances, as can be seen 
by the percentile 95 and maximum runtime values, the 
computation times are substantially lower for the new 
lower bounds. The coefficient of  variation values also 
indicate that the new procedures are considerably more 
consistent, since the variability in their runtimes is 
significantly lower. The branch-and-bound runtimes also 
usually increase with both R and D. 

 
Table 8. Average number of  nodes and relative importance of  the fathoming tests 

  n = 20 n = 30 

var LB NG %EL %LB %A %NA NG %EL %LB %A %NA

low AC 997 82.65 76.22 23.08 0.70 34546 88.04 72.16 27.04 0.81 

 ACDR 971 82.60 76.41 22.90 0.69 32345 87.96 72.45 26.75 0.80 

 WPT 1637 83.37 72.83 26.41 0.76 777700 88.63 68.52 30.52 0.97 

 WPTDR 1029 82.71 75.90 23.42 0.69 48849 88.10 71.66 27.52 0.82 
            
high AC 802 82.19 74.92 25.00 0.08 28067 88.01 70.87 29.04 0.09 

 ACDR 777 82.13 75.15 24.77 0.08 25620 87.91 71.32 28.59 0.09 

 WPT 1370 82.78 72.16 27.75 0.09 2112480 88.60 67.30 32.58 0.11 

 WPTDR 825 82.20 74.75 25.17 0.08 35286 88.03 70.57 29.33 0.10 

 
Table 9. Nodes generated and importance of  lower bound test for the WPTDR lower bound and 30 job instances 

  D = 0.10  D = 0.25  D = 0.50 
var R NG %LB  NG %LB  NG %LB 
low 0.25 895 86.57  4639 75.98  95328 67.78 
 0.50 5200 80.97  6878 73.34  221714 67.36 
 0.75 7450 67.43  41185 64.29  56349 61.22 
          
high 0.25 1327 84.25  5877 75.01  85467 66.47 
 0.50 3321 79.23  10811 69.95  97747 67.20 
 0.75 10341 69.14  15185 64.70  87495 59.20 

 
In table 8, we present the average number of  nodes 

generated by the branch-and-bound algorithm (NG), as 
well as the average percentage of  these nodes that were 
eliminated by the three fathoming tests (%EL). We also 
give some data on the relative importance of  these tests, 
namely the average percentage of  nodes eliminated by the 
lower bound (%LB), the adjacent rule (%A) and the 
non-adjacent rule (%NA). In table 9, we present the R and 
D effect on the average number of  nodes generated and 
the average percentage of  nodes eliminated by the lower 
bound test for the 30 job instances when the WPTDR 
lower bound is used. 

The proportion of  nodes eliminated by the lower bound 
test is higher for the new and more accurate lower bounds, 
while the number of  nodes generated is much lower. Only 
a very small percentage of  nodes is eliminated by the 
non-adjacent rule. This result is most likely somewhat 
influenced by the order in which the two rules are applied, 
since the adjacent rule can eliminate nodes that would 

otherwise be fathomed by the non-adjacent dominance 
condition. The adjacent dominance rule, however, requires 
a much lower computational effort, and it's therefore more 
efficient to apply it before checking the non-adjacent rule. 
The proportion of  nodes fathomed by the non-adjacent 
rule decreases with the variability of  the processing times 
and increases with the instance size. This result is to be 
expected, since it's more likely to find two jobs with the 
same processing time when the number of  jobs is high and 
the processing time variability is low. 

As the instance size and the processing time and penalty 
variability increase, the percentage of  nodes fathomed by 
the adjacent rule tends to increase, and the effectiveness of  
the lower bound test correspondingly decreases. The 
number of  nodes generated is also usually lower when the 
variability is high. The number of  nodes usually increases 
with R and D, the only exception being the (R = 0.75, D = 
0.50) parameter combination. The proportion of  nodes 
fathomed by the lower bound test decreases with both R 
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and D, and the importance of  the adjacent rule becomes 
correspondingly higher, since the non-adjacent rule has 
only a marginal effect. 

The number of  nodes generated, and correspondingly 
the runtimes, tend to increase with the release date and due 
date ranges. Therefore, the problem usually becomes 
harder to solve with a branch-and-bound algorithm as R 
and D increase. As we previously remarked, there is a 
greater balance between the number of  early and tardy jobs 
as D increases, so the problem should indeed be harder. An 
increase in the range of  release dates, on the other hand, 
reduces the number of  feasible schedules. This reduction is 
not very substantial, however, since we have restricted the 
value of  R in order to avoid unforced idle time, and is 
more than compensated by the deterioration in the 
performance of  the lower bound fathoming test. In fact, as 
we previously mentioned, the relative importance of  the 
lower bound elimination test steadily decreases as both R 
and D increase. 
 
7. CONCLUSIONS 

In this paper, we considered the most effective lower 
bounding procedure for the single machine 
earliness/tardiness problem with release dates and no 
unforced idle time. This lower bounding method uses 
multiplier adjustment procedures that require an initial 
sequence. We investigated the sensitivity of  the lower 
bounding procedure to the initial sequences, and 
experimented with different scheduling rules and 
dominance conditions. 

The computational results show that the lower bounding 
procedure is sensitive to the choice of  initial schedule, and 
tighter lower bound values can indeed be obtained through 
the use of  better initial sequences. The new bounding 
procedures that use more sophisticated heuristics, and/or 
dominance rules, provided better lower bound values than 
the previously existing method. We also analysed the 
effectiveness of  the lower bounding procedure when it is 
incorporated in a branch-and-bound algorithm. For the 
larger instances, all the new lower bounds provided much 
better results and were clearly superior to the existing 
procedure. Furthermore, the computational results showed 
that the new procedures are clearly more consistent, and 
the improvement they provide becomes larger as the 
instance difficulty increases. 
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