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Abstract⎯In this paper, we introduce a fuzzy Economic Production Quantity (EPQ) model with defective products that 
can be repaired. In this model, we consider a fuzzy opportunity cost, trapezoidal fuzzy costs and quantities into the 
traditional production inventory model. We use Function Principle and Graded Mean Integration Representation Method to 
find optimal economic production quantity of  the fuzzy production inventory model. 
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1. INTRODUCTION 

The fuzzy set concept has been used to treat the 
classical inventory model recently. Park (1987) used fuzzy 
inventory cost in economic order quantity model. Chang 
(1999) discussed how to get the economic production 
quantity, when the quantity of  demand is uncertain. Chen 
et al. (2000b) established a fuzzy economic production 
model to treat the inventory problem with all the 
parameters and variables which are fuzzy numbers. Hsieh 
(2002), Lee et al. (1998), Lin et al. (2000) also wrote some 
papers about fuzzy production model. 

In the real world, imperfect products cannot be avoided 
in most production process. It is reasonable to discuss the 
models with imperfect production process. Recently, 
Salameh et al. (2000), Mohamed (2002), Lin et al. (2003), 
Chung et al. (2003), Lee (2005) have written papers about 
imperfect production process. From the previous 
researchers, we can find some papers discussed fuzzy costs, 
but they did not discuss imperfect production model, the 
other researchers discussed imperfect production processes 
but did not discuss fuzzy cost. Therefore a Fuzzy 
Economic Production Quantity model with imperfect 
products that can be repaired is a good topic for us to treat 
vague environment problems.  

In viewing of  production management, the cost includes 
explicit cost and implicit cost. This paper includes both 
implicit costs and explicit costs in the fuzzy economic 
production quantity model, and use Function Principle to 
calculate the fuzzy total production inventory cost (FTPIC). 

The Graded Mean Integration Representation Method is 
used to defuzzify the FTPIC.  

This paper is organized as following: In section 2, the 
methodology is introduced. In section 3, two different 
production inventory models are discussed. In section 4, a 
numerical example is given to test the proposal model, and 
in section 5, we give a conclusion of  our discussion. 
 
2. METHODOLOGY 

In this paper, we use Function Principle and Graded 
Mean Integration Representation method to find the 
optimal economic production quantity with a fuzzy 
inventory model. When the quantities are fuzzy numbers 
we need to use the Kuhn-Tucker conditions to solve the 
model. Therefore we introduce this three methodologies as 
following. 

 
2.1 Graded mean integration representation method 

Chen et al. (1998, 1999c, 2000b) introduced Graded 
Mean Integration Representation method based on the 
integral value of  graded mean h-level of  generalized fuzzy 
number for defuzzifing generalized fuzzy number. They 
also found this method is better than the methods of  
Adamo (1980), Campos et al. (1989), Yager (1981), 
Kaufmann et al. (1991), Chen (1998), Lee et al. (1998), 
Liou et al. (1992), Heilpern (1997). Now, we describe 
generalized fuzzy number as following. 

Suppose A  is a generalized fuzzy number as shown in 
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Figure 1. It is described as any fuzzy subset of  the real line 
R, whose membership function µA satisfies the following 
conditions. 
1. µA is a continuous mapping from R to the closed 
interval [0, 1],  
2. µA = 0, -∞ < x ≤ a1, 
3. µA = L(x) is strictly increasing on [a1, a2], 
4. µA = wA, a2 ≤ x ≤ a3, 
5. µA = R(x) is strictly decreasing on [a3, a4], 
6. µA = 0, a4 ≤ x < ∞, 
where 0 < wA ≤ 1, and a1, a2, a3, and a4 are real numbers.   

Also this type of  generalized fuzzy number be denoted 
as A  = (a1, a2, a3, a4; wA)LR. When wA = 1, it can be 
simplified as A  = (a1, a2, a3, a4)LR.  

By Graded Mean Integration Representation method, 
1L−  and 1R −  are the inverse functions of  L and R 

respectively, and the graded mean h-level value of  
generalized fuzzy number A = (a1, a2, a3, a4; wA)LR is 

1 1( ( ) ( )) 2h L h R h− −+  as Figure 1. Then the graded mean 
integration representation of A  is P ( A ) with grade wA 
where 

 
 

⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
∫ ∫

-1 -1

0 0

( )  ( )( )  ,
2

A Aw wL h R hP A h dh h dh        (1) 

 
with 0 < h ≤ wA and 0 < wA ≤ 1. 

Throughout this paper, we only use normal trapezoidal 
fuzzy number as the type of  all fuzzy parameters in our 
proposed fuzzy production inventory models. Let B  be a 
trapezoidal fuzzy number, and be denoted as B  = (b1, b2, 
b3, b4). Then we can get the graded mean integration 
representation of  B  by formula (1) as 
  

P( B ) =
0

1 4 2 1 4 3
1

    (  -  -    )
2

b b b b b b hh dh hdh+ + +⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ∫

１

０
 

= 1 2 3 4 2 2  
6

b b b b+ + + .                    (2) 

 

 
  

            1                            A   
          
          wA                                                       
 
                  L(x)                                           R(x)          
           h  
 
 
           0     a1  L-1(h)     a2     h(L-1(h)+R-1(h))/2      a3      R-1(h)    a4     x 

Figure 1. The graded mean h-level value of  generalized fuzzy number A = (a1, a2, a3, a4; wA)LR. 
 
.
2.2 The fuzzy arithmetical operations under function 

principle 

Function Principle is introduced by Chen (1985) to treat 
the fuzzy arithmetical operations with trapezoidal fuzzy 
numbers. We will use this principle as the operation of  
addition, multiplication, subtract, division of  trapezoidal 
fuzzy numbers, because (1) Function Principle is easier to 
calculate than Extension Principle, (2) Function Principle 
will not change the shape of  trapezoidal fuzzy number 
after the multiplication of  two trapezoidal fuzzy numbers, 
but the multiplication of  two trapezoidal fuzzy numbers 
will become drum like shape fuzzy number by using 
Extension Principle, (3) If  we have to multiple more than 
four trapezoidal fuzzy numbers then the Extension 
Principle can not solve the operation, but Function 
Principle can easy to find the result by pointwise. Here we 
describe some fuzzy arithmetical operations under 
Function Principle as following.  

Suppose A  = (a1, a2, a3, a4) and B  = (b1, b2, b3, b4) 
are two trapezoidal fuzzy numbers. Then, 

1. The addition of  A  and B  is  
A  ⊕ B  = (a1+b1, a2+b2, a3+b3, a4+b4),      

       
where a1, a2, a3, a4, b1, b2, b3, and b4 are any real numbers. 

2. The multiplication of  A  and B  is  
A  ⊗ B  = (c1, c2, c3, c4),                        

where T ={a1b1, a1b4, a4b1, a4b4}, T1={ a2b2, a2b3, a3b2, 
a3b3}, c1 = min T, c2 = min T1, c3 = max T1, c4 = max T.  
If  a1, a2, a3, a4, b1, b2, b3, and b4 are all nonzero positive 
real numbers, then 
A  ⊗ B  = (a1b1, a2b2, a3b3, a4b4)                    

3. − B  = (−b4, −b3, −b2, −b1), then the subtraction of  A  
and B  is  
A Θ B  = ( a1−b4, a2−b3, a3−b2, a4−b1),               

where a1, a2, a3, a4, b1, b2, b3, and b4 are any real numbers. 
4. 1/ B  = 1B−  = (1/b4, 1/b3, 1/b2, 1/b1), where b1, b2, b3, 

and b4 are all positive real numbers.   
If a1, a2, a3, a4, b1, b2, b3, and b4 are all nonzero positive 
real numbers, then the division of  A  and B  is 
A  ∅ B  = (a1/b4, a2/b3, a3/b2, a4/b1).  
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5. Let α ∈ R, then 

1 2 3 4

4 3 2 1

( ) 0,  ( ,  ,  , ),
( ) 0,  ( ,  ,  , ).

i A a a a a
ii A a a a a

α α α α α α
α α α α α α

⎧ ≥ ⊗ =
⎨

< ⊗ =⎩
  

We do not introduce a new addition symbol, as the sum 
under the Extension Principle is the same as Figure 2. For 

a mathematically minded reader, we observe that the 
Extension Principle is a form of  convolution (Chen et al., 
1996) while the Function Principle is akin to a pointwise 
multiplication as Figure 3.

 
 

                     A           B                        A  ⊕ B  
    1 
 
 
 
 
 
    0        a1   a2  b1  b2  a3       a4   b3     b4  a1+b1  a2+b2           a3+b3    a4+b4 
                
         Figure 2. The fuzzy addition operation of  function principle and extension principle. 
 
 
                    A           B                        A  ⊗ B  
    1 
 
 
 
 
 
    0        a1  a2  b1  b2  a3         a4  b3     b4  a1b1   a2b2             a3b3     a4b4 
 
                    Function Principle:        Extension Principle:        
       Figure 3. The comparing of  fuzzy multiplication operation under function principle and extension principle. 

 
 

2.3 The Kuhn-Tucker conditions  

Taha (1997) discussed how to solve the optimum 
solution of  nonlinear programming problem subject to 
inequality constraints by using the Kuhn-Tucker conditions. 
The development of  the Kuhn-Tucker conditions is based 
on the LaGrangean method.  
Suppose that the problem is given by 
Minimize y = f(x) 
Subject to gi(x) ≥ 0, i=1, 2, …, m. 

The nonnegative constraints x ≥ 0, if  any, are included 
in the m constraints. 

The inequality constraints may be converted into 
equations by using nonnegative surplus variables. Let’s 2

iS  
be the surplus quantity added to the ith constraint gi(x) ≥ 0. 
Let λ = (λ1, λ2, …, λm), g(x) = (g1(x), g2(x), …, gm(x))·and S2 
= ( S12, S22 , …, Sm2)’. Then the LaGrangean functions are 
given by  
L(x, s, λ) = f(x) −λ[ g(x)-S2). 
Given the constraints gi(x) ≥ 0. 
Taking the partial derivatives of  L with respect to x, s, and 
λ, we obtain  

( )  ( ) 0L f x g x
X

λ∂ = ∇ − ∇ =
∂

, 

2 0i i
i

L S
S

λ∂
= =

∂
, i = 1, 2, …, m. 

2( ) 0,  1, 2, ..., .i i
i

L g x S i m
λ
∂

= − + = =
∂

 

From the second and third sets of  equations it shows 
that  
λigi(x) = 0, i = 1, 2, …, m. 

The Kuhn-Tucker conditions need x and λ to be a 
stationary point of  the minimization problem which can be 
summarized as following: 

 
  0,  
( ) ( ) 0,
( )  0,  1,  2,  ..., ,      

( )  0,  1,  2,  ..., .      
i i

i

f x g x
g x i m

g x i m

λ
λ

λ

≤⎧
⎪∇ − ∇ =⎪
⎨ = =⎪
⎪ ≥ =⎩

                 (3) 

 
3. FUZZY PRODUCTION INVENTORY MODELS 

We thereby discuss two cases of  imperfect productions 
that can be repaired, one case with fuzzy costs but crisp 
quantities, the other case with fuzzy costs and fuzzy 
quantities. 

Throughout this paper, we use the following variables in 
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order to simplify the treatment of  the fuzzy production 
inventory model: 

 
3.1 Nomenclature 

H : fuzzy daily storage cost per unit, 
K : fuzzy setup cost, 
c : the unit production cost, 
E : fuzzy cost incurred by repairing a defective item, 
I : fuzzy opportunity cost percentage, 

p : the probability that the production process can go 
‘out-of-control’, 

ap : the investment is required to reduce the’

out-of-control’ probability with p, 
R: daily demand, 
B: daily production, 
D: total demand over the planning time period [0, T], 
Q: crisp production quantity. 
 
3.2 Case with crisp production quantity 

The manufacturer produces and sells products in the 
time OG, SG1, …, etc., and he only sells products in time 
GS, G1S1, …, etc, as shows in Figure 4. 
          

 
 

Inventory quantity 

 

   M  

O      G  S     G1  S1                                                    Time (days) 

tG      tG 

tS        tS 

T 

Figure 4. Inventory control and the production process. 

 

Furthermore, tG = Q/B is the length of  the product run 
in days, RtG = RQ/B is the sale quantity for the product 
run, M = Q−RQ/B = Q(1−R/B) is the inventory quantity 
at the end of  the product run, where R should be less than 
B, MS = M/2 = Q(1−R/B) /2 is the average inventory 
quantity on the time periods with length ts = TQ/D, 
because the number of  product runs in the plan period is 
given by D/Q. 

Now, the fuzzy total cost F  per cycle time T with 
imperfect productions is defined as an approximation   
as, 

“Production cost + fuzzy investment cost required for 
fixed process + fuzzy setup cost + fuzzy storage cost + 
fuzzy repaired cost for defectives”. 
That is, ( / ) ( ) ( (1F c D I a T K D Q I c H Q Rp= × ⊕ ⊗ ⊗ ⊕ ⊗ ⊕ ⊗ ⊕ ⊗ −  

⊗ ⊕ ⊗ ⊗/ )/2) .B T D p E  where ⊕ , ⊗ are the fuzzy 
arithmetical operations under Function Principle.  

Here, we suppose H = (h1, h2, h3, h4), K  = (k1, k2, k3, 
k4), I = (i1, i2, i3, i4) and E = (e1, e2, e3, e4) are nonnegative 
trapezoidal fuzzy numbers. Then we solve the optimal 
fuzzy total cost of  formula (4) as the following steps.  

    Firstly, we get the fuzzy total production inventory 
cost F by formula (4) as, 
F =[D(c+e1p)+apTi1+Dk1/Q+T/2(1−R/B)(ci1+h1)Q, 

D(c+e2p)+apTi2+Dk2/Q+ T/2(1−R/B)(ci2+h2)Q, 

D(c+e3p)+apTi3+Dk3/Q + T/2 (1−R/B)(ci3+h3)Q, 
D(c+e4p)+apTi4+Dk4/Q+ T/2 (1−R/B)(ci4+h4)Q]. 

 
Secondly, we defuzzify the fuzzy total production 

inventory cost using graded mean integration 
representation method. The result is,  
P( F )={D[2c+p(e1+e4)]+apT(i1+i4)+D(k1+k4)/Q+T/2(1−R

/B)((i1+i4)c+h1+h4)Q+2[D(2c+p(e2+e3 ))+apT(i2+i3)+
D(k2+k3)/Q+T/2(1−R/B)((i2+i3)c+h2+h3)Q]}/6. 

Thirdly, we can get the optimal production quantity Q* 
when P( F ) is a minimization. In order to find the 
minimization of  P( F ), the derivative of  P( F ) with Q is,  

( )dP F d Q = {−D(k1+k4)/Q2+T/2(1-R/B)((i1+i4)c+h1+ 
h4)2[−D(k2+k3)/Q2+T/2(1−R/B)((i2+i3)c 
+h2 +h3)]}/6.  

Let ( ) 0dP F d Q = , it becomes,   
−D(k1+2k2+2k3+k4)/Q2+T/2(1−R/B)[(i1+2i2+2i3+i4)c+h1 
+2h2+2h3+h4]=0. 
Since 

2 2 3
1 2 3 4P( ) [  ( 2  2  )  ] 3 0.d F d Q D k k k k Q= + + + >  

Hence, we find the optimal production quantity Q* by 
the above equation as, 
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Q*=

+ + +

+ + + + + + +

2 ( 2 2 )1 2 3 4

(1 - / )[( 2 2 ) 2 2 ]1 2 3 4 1 2 3 4 .

D k k k k

T R B i i i i c h h h h
 

(5) 
 

When costs are real numbers, they are h1 = h2 = h3 = h4 = 
H, k1 = k2 = k3 = k4 = K, i1 = i2 = i3 = i4 = I, e1 = e2 = e3 = e4 

= E. Formula (5) can be revised as Q* = [2KD/(T(1−R/B) 
(cI+H))]1/2. 

Then, the fuzzy economic production quantity model 
will be reduced to the traditional economic production 
quantity model.     

 
3.3 Case with fuzzy production quantity  

In this case, the quantities are fuzzy numbers so we have 
the fuzzy quantities notations instead. Where, R : fuzzy 
daily demand, B : fuzzy daily production, D : fuzzy total 
demand over the planning time period [0, T], Q : fuzzy 
production quantity. 

The manufacturer’s inventory control and the 
production process are as shown in Figure 4. Furthermore, 
tG, the length of  the product run in days, is approximated 
to Q ∅ B . GRt , the sale quantity for the product run, is 

approximated to R Q⊗ ∅ B . M , the fuzzy inventory 
quantity at the end of  the product run, is approximated to 
Q ΘR ⊗ Q ∅ B = Q  (1ΘR ∅ B ), where R  should be 

absolute less than B . SM (= M ∅2), the average inventory 
quantity on the time periods with length ts is approximated 
to T⊗ Q ∅D , is approximated to = Q  ⊗ (1Θ R  ∅ B ) 
∅ 2 and the number of  product runs in the plan period is 
given by D ∅ Q . 

Now, the fuzzy total cost F  per cycle time for the 
EPQ model with imperfect production process and with 
defective productions is defined as an approximation as, 

“Fuzzy production cost + fuzzy investment cost 
required for fixed process + fuzzy setup cost + fuzzy 
storage cost + fuzzy repaired cost for defectives”. 
 That is,  
 

= ⊗ ⊕ ⊗ ⊗ ⊕ ⊗ ∅ ⊕ ⊗ ⊕( )F c D I a T K D Q I c Hp  

⊗ ⊗ Θ ∅ ∅ ⊗ ⊕ ⊗ ⊗(1 ) 2Q R B T D p E          (6) 
 
where ⊕, Θ, ⊗ and ∅ are the fuzzy arithmetical operations 
under Function Principle.  
Here, we suppose H = (h1, h2, h3, h4), K = (k1, k2, k3, k4), 
I = (i1, i2, i3, i4), E = (e1, e2, e3, e4), R = (r1, r2, r3, r4), B = 
(b1, b2, b3, b4), D = (d1, d2, d3, d4), and Q = (q1, q2, q3, q4) 
are nonnegative trapezoidal fuzzy numbers. Then we solve 
the optimal fuzzy total cost of  formula (6) as the following 
steps.  

Firstly, we get the fuzzy total production inventory cost 
F  by formula (6) as, 

F = [cd1+d1e1p+apTi1+d1k1/q4+T/2(ci1+h1)(1−r4/b1)q1, 
cd2+d2e2p+apTi2+d2k2/q3+T/2(ci2+h2)(1−r3/b2)q2, 
cd3+d3e3p+apTi3+d3k3/q2+T/2(ci3+h3)(1−r2/b3)q3, 
cd4+d4e4p+apTi4+d4k4/q1+T/2(ci4+h4)(1−r1/b4) q4]. 

Secondly, we defuzzify the fuzzy total production 
inventory cost using graded mean integration 
representation method. The result is, 

 
P( F ) 
={[cd1+d1e1p+apTi1+d1k1/q4+T/2(ci1+h1)(1−r4/b1)q1+cd4+d4

e4p+apTi4+d4k4/q1+T/2(ci4+h4)(1−r1/b4)q4]+2[cd2+d2e2p+
apTi2+d2k2/q3+T/2(ci2+h2)(1−r3/b2)q2+cd3+d3e3p+apTi3+ 
d3k3/q2+T/2(ci3+h3)(1−r2/b3)q3]}/6. 

 (7) 
 
with 0 < q1 ≤  q2 ≤  q3 ≤  q4. 

It will not change the meaning of  formula (7), if  we 
replace inequality conditions 0 < q1 ≤  q2 ≤  q3 ≤  q4 into 
the following inequality constrains.  
q2 − q1 ≥ 0, q3 − q2 ≥ 0, q4 − q3 ≥ 0, and q1> 0. 

Thirdly, the Kuhn-Tucker condition is used to find the 
solution of  q1, q2,  q3, and q4 to minimize P( F ) in formula 
(7), subject to q2 − q1 ≥ 0, q3 − q2 ≥ 0, q4 − q3 ≥ 0, and q1> 0. 
The Kuhn-Tucker conditions are thus given as formula (3). 
λ ≤  0, 

( ( )) ( ) 0,if P F g Qλ∇ − ∇ =  
( ) 0,i ig Qλ =  

( ) 0,ig Q ≥  
These conditions simplify to the following, 

 
λ1, λ2, λ3, λ4 ≤  0,                            (8-1) 

 
−d4k4/q 2

1 +T/2(ci1+h1)(1−r4/b1)+λ1−λ4 = 0,       (8-2) 
 

2[−d3k3/ 2
2q +T/2(ci2+h2)(1−r3/b2)]−λ1+λ2 = 0,     (8-3) 

 
2[−d2k2/ 2

3q +T/2(ci3+h3)(1−r2/b3)]−λ2+λ3 = 0,     (8-4) 
 

−d1k1/ 2
4q +T/2(ci4+h4)(1−r1/b4)−λ3 = 0,          (8-5) 

 
λ1( q2 − q1) = 0,                               (8-6) 

 
λ2(q3 − q2) = 0,                               (8-7) 

 
λ3(q4 − q3) = 0,                             (8-8) 

 
λ4q1 = 0,                                   (8-9) 

 
q2 − q1 ≥ 0,                                (8-10) 

 
q3 − q2 ≥ 0,                                 (8-11) 
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q4 − q3 ≥ 0,                               (8-12) 
 

q1> 0.                                    (8-13) 
 

Because q1 > 0, and λ4q1 = 0, then λ4 = 0. If  λ1 = λ2 = 

λ3 =0, then q4 < q3 < q2 <q1 ,  it does not satisfy the 

constrains 0 < q1 ≤  q2 ≤  q3 ≤  q4. Therefore q2 = q1, q3 

= q2, and q 4 = q3, that is q1= q2 = q3= q4 =Q. Hence, from 
formula (8-2), (8-3), (8-4), and (8-5) we find the optimal 
production quantity Q* by the above equation as,

 
 
 

1 1 2 2 3 3 4 4

4 3 2 1
1 1 2 2 3 3 4 4

1 2 3 4

*
2( 2 2 )

( )(1 ) 2( )(1 ) 2( )(1 ) ( )(1 )
Q k d k d k d k d

r r r rT ci h ci h ci h ci h
b b b b

+

=
+ + +

⎡ ⎤
− + + − + + − + + −⎢ ⎥

⎣ ⎦

                            (9) 

 
 
In (9), when r1 = r2 = r3 = r4 = R, b1 = b2 = b3 = b4 = B, and 
d1 = d2 = d3 = d4 = D, then formula (9) becomes 

1 2 3 4

1 2 1 2 3 43 4
* ( 2 2 ) 2 2

2 ( 2 2 )
(1 / )

.

Q
i i i i c h h h h

D k k k k
T R B ⎡ ⎤

⎢ ⎥⎣ ⎦

=
+ + + + + + +

+ + +
−

  

It shows that equation (9) becomes equation (5). 
When demand, production quantity and costs are all real 
numbers, that is h1 = h2 = h3 = h4 = H, k1 = k2 = k3 = k4 = 
K, i1 = i2 = i3 = i4 = I, r1 = r2 = r3 = r4 = R, b1= b2 = b3 = b4 

= B, and d1= d2 = d3 = d4 = D, then formula (9) can be 
revised as Q*=[2KD/T(cI+H)(1-R/B)]1/2. 

Then the fuzzy economic production quantity model 
will be reduced to the traditional economic production 
quantity model. 

 
4. EXAMPLE 

ABC manufacturing company produces commercial 
television units in batch. The firm estimated: the fuzzy 
daily storage cost ( H ) per unit is about NT$1, the fuzzy 
setup cost ( K ) is about NT$100000, the unit production 
cost (c) is NT$5000, the fuzzy cost incurred by repairing a 
defective item ( E ) is greater or less than NT$1000, the 
fuzzy opportunity cost percentage ( I ) is about 0.2%, the 
probability that the production process can go 
‘out-of-control ’(p) is 0.01,  the investment (ap) required to 
reduce the ’out-of-control’ probability with p is 
NT$100000, the fuzzy daily demand ( R ) is about 25 units, 
the fuzzy daily production ( B ) is about 30 units, the fuzzy 
total demand over the planning time period [0, 365] is D  
(=365 R ). How many television units should ABC 
manufacturing company produce in each batch? 
Solving: 

Here we use a general rule to transfer the linguistic data, 
“greater or less than X” and “about X”,into trapezoidal 
fuzzy numbers as  
“greater or less than X” = (0.9X, 0.95X, 1.05X, 1.1X), and 
“about X” = (0.95X, X, X, 1.05X).  

By the above rule, the fuzzy parameters in this example 
can be transferred as follows: H  = (0.95, 1, 1, 1.05), K  
= (95000, 100000, 100000, 105000), c=5000, E  = (900, 

950, 1050, 1100), I  = (0.0019, 0.002, 0.002, 0.0021), 
p=0.01, ap=100000, R  = (23.75, 25, 25, 26.25), B  = 
(28.5, 30, 30, 31.5), D  = (8668.75, 9125, 9125, 9581.25). 

Replace the above fuzzy parameters values into formula 
(9), we find the optimal fuzzy production quantity 
Q  = (1652.13, 1652.13, 1652.13, 1652.13) ≈  (1653, 

1653, 1653, 1653). 
Then, the minimization fuzzy total production inventory 

cost is 
F  = (44238333.4, 46889780, 46898904.98, 49554025.63). 

The result shows that ABC manufacturing company is 
better to produce 1653 units per batch. 

 
5. CONCLUSION 

In real world, defective products cannot be avoided in 
some imperfective production processes. Therefore it is 
nature and reasonable to discuss the model with defective 
products. In this paper, we discuss the situation of  
defective products that can be repaired. We solve two 
production inventory model, one case is with fuzzy costs 
but crisp quantities, the other case is with fuzzy costs and 
fuzzy quantities. These models are applicable when 
inventory continuously flows or builds up over a period of  
time, after an order has been placed and units are produced 
and sold simultaneously. Under this circumstance, the 
length of  the planning time period is measured in days. 
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