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Abstract⎯The concept of  penalizing jobs both for being tardy and for being early has proven one of  most important and 
fertile research topics in Operations Research. In this survey, we consider just-in-time mixed-model, multi-level supply 
chains. Obtaining an optimal sequence in a multi-level chain is a challenging nonlinear integer programming problem. 
Problems for two or more levels are strongly NP-hard. The problem of  minimizing deviations between actual and desired 
production for single-level can be solved efficiently. Also the multi-level problems with pegging assumption are solvable by 
reducing them to the single-level. Cyclic schedules are optimal for single-level problem. We present various ways of  dealing 
with these problems such as the elegant concept of  balanced words and different optimization techniques. We provide a 
short review of  different mathematical models, discuss their complexity and compare them. The research results obtained in 
past several years are presented along with open problems and possible extensions. 
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1. INTRODUCTION 

The central goal of  mixed-model or flexible assembly 
processes is to increase profit by reducing costs. The 
just-in-time (JIT) production systems, which require 
producing only the necessary product in the necessary 
quantities at the necessary time, have been used for 
controlling such flexible assembly systems. The intention 
of  these methods is to satisfy the customer demands for a 
variety of  models without holding large inventories or 
incurring large shortages of  the products. We assume a 
flow line manufacturing, called flexible transfer lines, where 
negligible switch-over costs from one model to another 
allow for diversified small-lot production avoiding 
production of  each model in large-lots. The most 
important optimization problem that has to be solved for 
the mixed-models, just-in-time systems is to determine the 
sequence in which different models are produced. This 
solution impacts the entire supply chain. 

There has been growing interest in JIT systems research 
since Monden (1983), Miltenburg (1989), considers the 
problem of  determining the sequence for producing 
different products on the line that keeps a constant rate of  
usage of  every part used by the line. In other words, the 
quantity of  each part used by the mixed-model assembly 
line per unit of  time should be kept as constant as possible. 
This allows very little variability in the usage of  each part 
from one time horizon to the other. Monden (1983), states 
this as the most important goal of  a JIT production system 
implemented by the Toyota company. Toyota’s so-called 
Goal Chasing Method, a local search heuristic, has been 
most popular for solving the problem. The sequences 
referred to as level, balanced or fair sequences always keep 
the actual production level and the desired production level 
as close to each other as possible all the times. The other 

production issues studied are cycle times, lead times, 
work-in-process and loading (Kubiak, 1993; Miltenburg, 
1989; Miltenburg and Goldstein, 1991; Monden, 1983; 
Okamura and Yamashina, 1979; Kilbridge and Wester, 
1963). 

Multi-level production systems, where components 
required for different models may or may not be distinct, 
make the problem more challenging than the single-level 
production systems where different models require the 
same number and mix of  components. Because of  the pull 
nature of  the JIT systems, the production sequences at all 
other lower levels are also inherently fixed as soon as the 
final level production sequence is fixed. That is why the 
determination of  the sequence of  different products at 
final assembly level is crucial. Miltenburg (1989), provides a 
nonlinear integer programming formulation for the 
minimization of  total deviation for mixed-model JIT 
production systems under the assumption that the 
products require approximately the same number and mix 
of  parts. As optimal sequence at the final assembly level 
would simultaneously achieve an even rate of  parts usage 
at the feeder production levels, this formulation can be 
considered as a single-level problem. An exact exponential 
time algorithm and two heuristics are also presented in 
Miltenburg (1989), Miltenburg and Goldstein (1991), and 
Miltenburg and Sinnamon (1989), extend the formulation 
to multi-level assembly systems. Most of  these 
optimization problems would require enumerative or 
exponential algorithms. Miltenburg et al. (1990), Yeomans 
(1997), and Kubiak et al. (1997), present dynamic 
programming approaches to the multi-level problems. We 
refer the reader to Groeflin et al. (1989), Inman and Bulfin 
(1991), Ding and Cheng (1993), Sumichrastet et al. (1992), 
Sumichrast and Russell (1990), Miltenburg and Goldstein 
(1991), and Miltenburg and Sinnamon (1989) for several 
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heuristics for the problem. 
Kubiak and Sethi (1991, 1994), reduce the minimization 

of  total deviation JIT problem to an assignment problem 
and thereby present an efficient optimization algorithm for 
this problem. The algorithm works for more general sum 
objective functions consisting of  nonnegative convex 
functions of  deviations between cumulative average 
demand and cumulative production of  various models over 
time. 

Steiner and Yeomans (1993), following the optimization 
algorithm for the total deviation given in Kubiak and Sethi 
(1991, 1994) give a graph theoretic optimization algorithm 
for minimizing maximum deviation JIT single-level 
sequencing problem. They also give an algorithm for 
minimizing multi-level maximum deviation JIT assembly 
systems under the pegging assumption (Steiner and 
Yeomans, 1996). If  outputs at production levels which feed 
the final assembly level are dedicated to the final product 
into which they will be assembled, then the problem with 
pegging is equivalent to a weighted single-level of  problem 
which can then be minimized by modified algorithm for 
un-weighted single-level problem. 

For both maximum and total deviations, there are always 
cyclic schedules which are optimal, see Steiner and 
Yeomans (1996), and Kubiak (2003), which significantly 
reduces the computational requirements. 

Brauner and Crama (2004), prove that the minimization 
of  maximum deviation or bottleneck for a single-level is 
Co-NP, but in general, the complexity of  the single level 
problems remains open for the binary encoding. The 
multi-level problem for two or more production levels is 
strongly NP-hard, Kubiak (1993).  

Brauner and Crama (2004), present an algebraic 
approach to the results of  Steiner and Yeomans (1993), 
and formulate the small deviation conjecture. Kubiak 
(2003), presents a geometric proof  of  the conjecture and 
later Brauner, Jost and Kubiak (2004), exploit the concept 
of  balanced words to give another proof  of  the conjecture. 
Kubiak (2004, 2005), presents properties of  JIT sequences 
obtained through mathematically elegant concept of  
balanced words. We refer the interested readers to Vuillon 
(2003), for a survey and the references about balanced 
words. 

Bautistaet et al. (1997), Kubiak (1993), and Palli (2002), 
present efficient algorithms for maximum deviation 
problem based on the reduction to the bottleneck 
assignment problem.  

Bautista et al. (1996) establish an interesting link 
between the JIT sequencing and the apportionment 
problem. An apportionment problem deals with the 
allocation of  seats of  a legislature among the states or 
provinces of  a nation. Balinski and Shahidi (1998), 
consider the JIT sequencing problem as the quota method 
of  apportionment.  

Corominas and Moreno (2003), investigate relationships 
between the solution spaces of  different objective 
functions. 

The plan of  the paper is as follows. In Section 2, we 
review optimization models of  JIT sequences. In Sections 

3 and 4 we survey the efficient algorithms for 
total-deviation and maximum-deviation objective functions, 
respectively. Section 5 summarizes the balance properties 
of  min-max sequences. The cyclic schedules are discussed 
in Section 6. Section 7 relates the optimality conditions 
between different objective functions. Section 8 is devoted 
to the study of  computational complexity of  the problems, 
heuristic solutions and a dynamic programming approach. 
The final Section 9 includes conclusions with possible 
directions and open questions for further research. 
 
2. THE MATHEMATICAL PROGRAMMING 

FORMULATION 

2.1 Multi-level formulation 

A mixed-model multi-level supply chain consists of  a 
hierarchy of  several distinct production levels (for example, 
products ← subassemblies ← components ← 
raw-materials). In these supply chains, the multiple copies 
of  different models are produced at the final assembly level. 
The assembly system also contains several other lower 
production levels where subassemblies, component parts 
and raw materials are either fabricated or purchased for use 
in the products. 

Let there be L different production levels l, where l = 1, 
2, ..., L with the highest level, the product level 1. We 
denote the number of  different part types of  level l by nl 

and the demand for part i, where i = 1, 2, ..., nl, of  level l 
by .ild  Denoting by ilpt  the number of  total units of  
output i at level l required to produce one unit of  product 
p, we have 1

11
,n

il ilp pp
d t d

=
= ∑ the dependent demand for 

part i of  level l determined by the final product demands 
1pd , p = 1, 2, ..., n1. Note that 1i pt  = 1 if i = p and 0 

otherwise. Let 
1

ln
l ili

D d
=

= ∑  be the total output demand 

of  level l. The demand ratio for part i of  level l is il
il

l

dr
D

=  

and 
1

1ln
ili

r
=

=∑  at each level l = 1, 2, ...,L. 

Under the assumption of  non-preemptive schedule, a 
schedule is completely defined by the sequence of  product 
copies of  the product level. A copy is said to be in stage k, 
k = 1, 2, ...,D1, if  k units of  product have been produced 
at level 1. The total horizon will be of  D1 time units and 
there will be k complete units of  the various products p at 
level 1 during the first k stages. Due to the pull nature of  
the JIT system along with the fact that the lower level 
outputs are drawn as needed by the final product level, the 
particular combination of  the products produced at the 
product level during the first k stages determines the 
necessary cumulative part production at every other level. 
Let xilk  be the necessary cumulative production of  

output i at level l during stages 1 through k and 

=
= ∑ 1

ln
lk ilki

y x  be the total output of  level l during stages 

1 through k. Clearly, the cumulative production of  level 1 
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through the first k stages is 
=

= ∑ 1

1 11
.n

k i ki
y x  The 

required cumulative production for part i at level l, where l 
≥ 2, through k stages will be 1

11

n
ilk ilp p kp

x t x
=

= ∑ . Finally, 

we could impose a weight ilw  because of  relative 
importance of  balancing the schedule for part i at level l. 

The feasible solution region is denoted by 

{ }1 11( )M p k n DX X xχ ×= = where the variables satisfy the 

following constraints: 
 

1

1 1,
1

,  1, ..., ,  1, ..., ,  1, ...,
n

ilk ilp p k l
p

x t x i n l L k D
=

= = = =∑    (1) 

 

1
1

, 2, ..., ,  1, ...,
ln

lk ilk
i

y x l L k D
=

= = =∑                (2) 

 
1

1 1 1
1

,  1,  ..., ,
n

k p k
p

y x k D
=

= =∑                       (3) 

 
1

1
1

1 ,  1,  ..., ,
n

p
p kk x k D

=

= =∑                        (4) 

 
( )1 1 11 1 ,  1, ..., ,  1, ..., ,p k p kx x p n k D−≥ = =              (5) 

 

11 1 10 1,  0,  1,  ...,  ,  p D p px d x p n= = =                 (6) 

 
1,  1, ..., ,  1, ..., ,  1, ..., .  ilk lx N i n l L k D∈ = = =         (7) 

 
In this paper, N denotes the set of  all nonnegative 

integers. Constraint (1) ensures that the necessary 
cumulative production of  output i of  level l by the end of  
stage k is determined explicitly by the quantity of  products 
produced at production level 1. Constraints (2) and (3) 
calculate the total cumulative production of  level l and 1, 
respectively, through stages 1 to k. Constraint (5) is to 
ensure that the total production of  every product over k 
stages is a non-decreasing function of  k. Constraint (6) 
guarantees that the production requirements for each 
product are met exactly. Constraints (4), (5) and (7) ensure 
that exactly one product is scheduled for final assembly 
during each stage. 

Then the mixed-model, multi-level schedule problem is 
to select X = ×1 11( )p k n Dx  that minimizes one of  the 
following min-max/min-sum objective function (s)  

 

, ,
( ) max| |AMD ilk lk ili l k

G X x y r= −                     (8) 

 
2

, ,
( ) max ( )QMD ilk lk ili l k

G X x y r= −                    (9) 

1 1 1

( ) | |
ln L D

ASD ilk lk il
i l k

G X x y r
= = =

= −∑ ∑ ∑               (10) 

 

2

1 1 1

( ) ( )
ln L D

QSD ilk lk il
i l k

G X x y r
= = =

= −∑ ∑ ∑              (11) 

 
With this notation, the multi-level JIT sequencing 

problem is equivalent to 
 

χ∈min{ ( )| },MG X X  
 

where ∈{ , , , }AMD QMD ASD QSDG G G G G . 
 
By Kubiak et al. (1997), | |il ilk lk ilx r−w y  

1

11
| |,n

ilp p kp
xγ

=
= ∑ where ilp il ilpwγ δ=  and ilp ilp ilt rδ = −  

=∑ 1
.ln

hlph
t  We define a matrix 

1
[ ]ilp n nγ ×Γ =  with 

=
= ∑ 1

,L
ll

n n where γ ilp  representing the −

=
+∑ 1

1
( )l

mm
n i  

th row and pth column element. Let Xk  

111 1( , . . . , )T
k n kx x= be a vector representing the cumulative 

production at level 1 through the first k stages. Then 
 

= ΓX 1( ) max|| || ,AMD kk
G X  

where 1|| || max { | |}.k il ilk lk ilil
x y rΓ = −wX  

 
Here, 1|| || ,kXΓ represents the maximum deviation at 

stage k over all i and j. Notice from the matrix 
representation that at any particular stage, the deviation of  
any part of  any level is determined by the level 1 sequence.  

Likewise, sum deviation objective ( )QSDG X  
1 2

21
(|| || )D

kk=
= Ω∑ X  with deviation matrix 

δΩ = [ ]il ilpw  and the Euclidean norm 

=
= ∑ 1

2
2||a|| m

ii
a of  a vector a = (a1, a2, ..., am). The 

sequencing problems, maximum-deviation JIT and 
total-deviation JIT, are denoted by MDJIT and SDJIT 
problems, respectively. The problem is one of  the most 
fundamental problems in flexible just-in-time mixed-model 
production systems, referred to as JIT sequences. In these 
formulations, the min-sum and min-max objectives are 
similar to Miltenburg and Sinnamon (1989), Steiner and 
Yeomans (1996), and Kubiak et al. (1997), respectively. 
Note that the min-max objectives seek to minimize the 
deviations for each output at each stage, whereas the 
min-sum objectives are concerned for finding the lowest 
possible total deviation which may result in relatively large 
deviation for a certain product. 

The effects of  weights in single-level as well as other 
multi-level problems are considered in Yeomans (1997), 
Kubiak et al. (1997), Steiner and Yeomans (1996), 
Miltenburg et al. (1990), Miltenburg and Goldstein (1991), 
Monden (1983). 

 
2.2 Single-Level formulation 

For i = 1, ..., n, given n products (models) i, n positive 
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integers (demands) di and n convex symmetric functions 
if of  a single variable, called deviation, all assuming 

minimum 0 at 0. The following optimization problems 
have been considered to model single-level system. 

Find a sequence s = s1s2...sD with total demand 

=
= ∑ 1

n
ii

D d  of  products 1,…, i, ..., n, where product i 

occurs exactly di times that minimizes the following 
objective function (s) 

 
= −

,
( ) max ( )MD i ik ii k

F s f x kr                      (12) 

 

= =

= −∑∑
1 1

( ) ( )
n D

SD i ik i
i k

F s f x kr                     (13) 

 
where ikx represents the number of  product i occurrences 

(copies) in the prefix s1s2...sk , k = 1, ...,D, and i
i

dr D= , i 
= 1, ..., n. The following two measures of  deviations have 
been studied in the literature. 
 

−⎧
− = ⎨ −⎩

2

| |  -  ,
( )

( )   -  .
ik

i ik i
ik

i

i

x kr the absolute deviation objective
f x r k

x kr the squared deviation objective
 

 
The whole feasible solution region 

{ | ( ) }ik n Dx X X x ×= = in single-level problem is 
constrained as  

 

=
=∑ 1

n
iki

x k         k = 1, ...,D, 

+≤, , 1i k i kx x         i = 1, ..., n, k = 1, ..., D–1, 
= =, 0, 0i D i ix d x     i = 1, ..., n, 
∈,i kx N           i = 1, ..., n, k = 1, ..., D. 

 
This problem is referred to as the Product Rate 

Variation Problem (PRV) in the literature Kubiak (1993). A 
solution of  this problem always keeps the actual 
production level xik and the desired production level rik as 
close to each other as possible all the times. A solution s = 
s1s2...sD of  the single-level MDJIT problem for n models is 
called B-feasible (or B-bounded) if  maxi,k fi (xik − rik ) ≤ B 
holds for the n × D matrix variables X = ( ).ikx  We 
denote the sets of  all single-level B-feasible solutions by xB. 

Note that the above formulation gives the following 
number-theoretic interpretation of  JIT sequencing 
problem: given n rational numbers ri, i = 1, 2, ..., n, with 
common denominator D, the problem is to find nD 
integers xik which optimally approximate the sequence (kri) 
under the cardinality and monotonicity restrictions defined 
above (see also Brauner and Crama (2004) for the 
references). 

A multi-level, min-max problem under the pegging 
assumption has been reduced to a weighted single-level 
problem (Goldstein and Miltenburg, 1988), (see also 
Steiner and Yeomans, 1996). Similarly, the min-sum, 
multi-level problem with pegging can be reduced to a 

weighted single level problem considered by Yeomans 
(1997). Goldstein and Miltenburg (1988), were the first to 
provide mathematical formulation of  pegging in JIT 
systems (see also Steiner and Yeomans, 1996). 

Under the pegging assumption, parts of  output i at level 
l are dedicated to the particular product at level 1 into 
which they will be assembled. This assumption 
decomposes the lower level parts that will be assembled 
into different level 1 products into disjoint sets. With this 
assumption, the multi-level AMDJIT sequencing problem 
subject to the constraint set Mχ with p = 1, ..., n1, i = 1, ..., 
nl, l = 1, ..., L and k = 1, ..., D1 can be formulated as  

 
1 1 1 1 1, , ,

min max { | |, | |}.p p k p il ilp p k pp i l k
w x kr w t x kr− −  

 
Since ti1p = 1 if  i = p and 0 otherwise, the above problem 

is equivalent to  
 

1 1 1,
min max { | |}p p k pp k

x krυ − , where 1 ,
max { },p il ilpi l

tυ = w  

l = 1, …, L 
 
By dropping the superfluous subscript 1, we obtain the 

following weighted single-level AMDJIT problem  
 

,
min max { | |: },i ik ii k

x kr Xυ χ− ∈  

i = 1, …, n, k = 1, …, D.               (14) 
 

3. EFFICIENTLY SOLVABLE SDJIT 
SEQUENCING  

In this section, we study the single-level, min-sum 
problems with the objective defined in (13). Unless 
otherwise specified, single level, min-sum problems will be 
denoted by SDJIT. These results are valid for convex, 
symmetric, nonnegative functions which take value 0 at 0. 

Let Y  = {(i, j, k) : i = 1, ..., n ; j = 1, ..., di ; k = 1, ...,D}. 
Define cost i

jkC ≥ 0 for (i, j, k) ∈ Y  with respect to the 

ideal position 2 1
2

i
j i

j
rZ −⎡ ⎤= ⎢ ⎥⎢ ⎥

 for the j-th copy of  model i 

as follows 
 

ψ

ψ

−

=

−

=

⎧ <⎪
⎪= =⎨
⎪

>⎪⎩

∑

∑

1

1

if ,

0 if ,

if ,

Z i i
jl jl k

i i
jk j

k i i
jl jl Z

i
j

i
j

k Z

C k Z

k Z

 

 
where i

jZ  uniquely solves fi ( j − kri) = fi ( j − 1 − kri) and fi 
(x) = |x|, 

 

ψ
⎧ − − − − <⎪= ⎨ − − − − ≥⎪⎩

( ) ( 1 ) if ,
( 1 ) ( ) if .

i
i i i i ji

jl i
i i i i j

f j lr f j lr l Z
f j lr f j lr l Z

 

 
A subset Y of  Y  is called feasible if  it satisfies the 
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following constraints 
 

C1. For each k = 1, ..., D, there is exactly one (i, j), i = 1, ..., 
n ; j = 1, ..., di s.t. (i, j, k) ∈ Y , i.e., exactly one copy 
product at each time.  

C2. For each (i, j), i = 1, ..., n; j = 1, ..., di, there is exactly 
one k, k = 1, ...,D s.t. (i, j, k) ∈ Y , i.e., each copy is 
produced exactly once. 

C3. If  (i, j, k), (i, j′, k′) ∈ Y and k < k′, then j < j′, i.e., 
lower indices copies are produced earlier. 

 
Consider any set S of  D triples (i, j, k) satisfying C1, C2, 

C3 and define the sequence s = s1s2...sD with sk = i, if  (i, j, k) 
∈ S for some j = 1,...di corresponding to the set S. Then 
the sequence s is feasible for any given instance (d1, d2,..., dn) 
and following results hold, Kubiak and Sethi (1994). 

 
Theorem 1. Let c(S) =∑ ( , , )

i
jki j k

C for any S ⊆ Y . Then,  

a. For any feasible S, it holds ( ) ( )SDF s c S=  

1 1
inf ( )n D

j i ii k
f j kr

= =
+ −∑ ∑ . 

b. If S satisfies C1 andC2, then S* satisfying C1, C2 and C3 
with c(S) ≥ c(S*) can be determined in O(D) steps. 
Moreover, each product copies preserve the order in the 
sequence s*as it does in the sequence s.  
 
As the term 

= =
−∑ ∑1 1

inf ( )n D
j i ii k

f j kr  is 

independent of  the set S, that is constant, an optimal 
solution to SDJIT would be an immediate consequence if  
an optimal set S is found. But an optimal set cannot be 
obtained by simply solving the Assignment Problem 15 
with constraints C1 and C2 and the costs i

jkC with (i, j, k) 

∈ S, as the constraint C3 is not of  the assignment type. 
Notice that the latter constraint is essential as it ties up the 
copy j of  a product with the j-th ideal position for the 
product. The main idea of  the proof  is to show that there 
exists at least one optimal sequence for the assignment 
problem such that copy (i, j + 1) of  product i should 
appear after the copy (i, j). The proof  is done by 
mathematical induction. With these costs the 
corresponding assignment problem has been formulated as 
follows, Kubiak and Sethi (1994): 

 

=

= ∑ ∑
( , )

( , ) 1

min [ ( ) ]
n d D

i i
jk jk

i j k

i
F s C x                     (15)  

 
subject to the constraints 
 

1

= 1
D

i
jk

k

x
=
∑ , for i = 1, ..., n ; j = 1, ..., di,  

 
( , )

( , )

=1
n d

i
jk

i j

i
x∑ , for k = 1, ..., D,  

 

where 
1, if ( , ) is assigned at position ,
0, otherwise.                                  

i
jk

i j k
x ⎧

= ⎨
⎩

 

 
Observe that an obvious optimal solution could be 

obtained if  sequencing all copies in their ideal positions 
were possible without competition for these positions. As 
this is not the case in general, we need to resolve 
competition to minimize the given objective. This is done 
efficiently by solving the assignment problem, (Kubiak, 
1993, Kubiak and Sethi, 1994). Recall that the assignment 
problem with 2m nodes can be solved in O(m3) time (see 
Kubiak, 1993; Kubiak and Sethi, 1994, for the references). 

The approach proposed by (Kubiak and Sethi 1991, 
1994) for the total deviation product rate variation problem 
is applicable to any lp norm with FsD = lp, and in particular 
to l∞-norm. In the latter case the approach minimizes 
maximum deviation objective. 

Consequently, solution to multi-level min-sum problem 
with pegging assumption could be obtained as in Kubiak 
and Sethi (1991). 

Steiner and Yeomans (1994), look at the min-sum 
problem as a weighted matching problem in a complete 
bipartite graph G = (V,E), where weights of  the edges 
equal penalty costs i

jkC . Then the problem is to find a 
perfect matching with the minimum sum of  the weights. 
An incomplete bipartite graph is defined by introducing 
the earliest and latest completion times possible for a copy 
(i, j) of  product i (see Section 4 for the definition). 
Moreover, a 1-bounded solution that is optimal (if  such 
solution exists) could be obtained in O(nD2 log D) time, 
since for B ≤ 1 implies | E | ≤ (n + 2)D. A Pareto optimal 
solution can be found in O(nD2 log D) time. But the 
existence of  1-bounded solutions optimal for min-sum 
problems is not always the case (see Section 7). The 
following question remains open. What is minimum B such 
that optimal solution for min-sum problem is B-bounded? 
It is known that an upper bound on the optimal 
min-sum-absolute and min-sum-squared objectives is nD 
though the bound is not tight (Steiner and Yeomans, 1994).  

For the sake of  completeness, we mention that several 
heuristics for single-level problem have already been 
investigated in Ding and Cheng (1993a, 1993b), Goldstein 
and Miltenburg (1988), Inman and Bulfin (1991), 
Miltenburg and Goldstein (1991), Miltenburg et al. (1990), 
Miltenburg and Sinnamon (1989), Sumichrast et al. (1992), 
Sumichrast and Russell (1990). 

 
4. EFFICIENTLY SOLVABLE MDJIT 

SEQUENCING  

In this and in Section 5 we study the min-max problems 
that are single-level with the objective defined in (12). 
Unless otherwise specified, single level absolute deviation 
min-max problems will be denoted by AMDJIT.  

Steiner and Yeomans (1993), study AMDJIT problem 
reducing it to a single machine scheduling decision 
problem with release times and due dates. They represent 
the problem as a perfect matching problem in a V1-convex 
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bipartite graph G = (V1 ∪ V2, E) where the set V1 
={1, ...,D} represents positions and the set V2 = {(i, j) | i 
= 1, ..., n ; j = 1, ..., di } represents the copies of  the 
products. Here, for i = 1, ..., n and j = 1, ..., di, the notation 
(i, j) denotes the j-th copy of  product model i. There exists 
an edge {k, (i, j)}∈ E if  and only if k lies in the permissible 
interval [E(i, j), L(i, j)] ⊆ V1 of  release time and due date 
for the j-th copy of  the product i. They prove the 
following result (see also Brauner and Crama, (2004)). 

 
Lemma 1. Let d1, ..., dn be any instance of  AMDJIT problem. A 
sequence s = s1s2...sD is B-feasible if  and only if  for all i = 1, ..., n 
and j = 1,...di, this sequence assigns the copy (i, j) to the interval [E(i, 
j), L(i, j)], where 
 

( , )
i

j BE i j
r

⎡ ⎤−
= ⎢ ⎥
⎢ ⎥

 and 
1( , ) 1
i

j BL i j
r

⎢ ⎥− +
= +⎢ ⎥
⎣ ⎦

 

 
denote the release date and the due date of  the copy (i, j) for given 
upper bound B. 
 

An interesting question would be to show similar closed 
form formula for other measure of  deviation, for instance 
squared deviation.  

Amongst various versions of  the earliest due date 
algorithms for scheduling unit time jobs with release times 
and due dates on a single machine (see Steiner and 
Yeomans (1993) for the references), they apply a modified 
version of  Glover’s (1967), O(|E|) earliest due date (EDD) 
algorithm for finding a maximum matching in a V1-convex 
bipartite graph G = (V1 ∪ V2, E) such that each ascending 
k ∈ V1 is matched to the unmatched copy (i, j) with 
smallest due date value of  L(i, j ) as defined in Lemma 1. 
They conclude the following. 

 
Theorem 2. The AMDJIT sequence s is 1-feasible if  and only if  
the V1-convex bipartite graph G with bound B = 1 has a perfect 
matching. Moreover, an optimal solution can be determined by an 
exact pseudo-polynomial algorithm with complexity O (D log D). 
 

Steiner and Yeomans (1996), consider weighted 
AMDJIT problem and show that a binary search finds an 
optimal solution for the weighted AMDJIT in O(D log (Dφ 
Gmax)) time, where φ is a positive integer constant 
depending upon problem data. The maximum weight 
Gmax= maxiGi gives an upper bound and LBW = miniGi (1− 
ri) gives a lower bound for the optimal objective value of  
the considered problem. 

 
Theorem 3. An optimal solution to the pegging multi-level 
AMDJIT can be determined by an exact pseudo-polynomial 
algorithm in O(D log (Dφ Gmax)) time.  

 
Let B* be the optimal value of  the AMDJIT problem. 

Then for any instance di, i = 1, ..., n of  the AMDJIT 

problem, it holds that *1 11 2
i

i
BD

∆⎢ ⎥− ≥ ≥ ∆ ⎢ ⎥⎣ ⎦
 for i = 

1, ..., n where 
gcd( , )i

i

D
d D

∆ = , Brauner and Crama (2004). 

A stronger upper bound has been obtained by Tijdeman 

(1980), 11
2( 1)

B
n

≤ −
−

. Thus we have 

 
Theorem 4. For any instance di, i = 1, ..., n (n > 1) of  the 
AMDJIT problem, the optimal value B* satisfies the inequality 

* 1 11 max ,
2( 1)

B
D n

⎧ ⎫
≤ − ⎨ ⎬−⎩ ⎭

. 

 
As D < 2(n−1) when di = 1 for all i with n > 2, and D ≥ 

2(n−1) in most practical cases, both possibilities have to be 
taken into account. Obviously, B* = 0 for n = 1. 

An instance of  the AMDJIT sequencing problem is 
defined as standard if  gcd(d1, ..., dn) = 1. We call the 
corresponding sequence standard. The small deviation 
conjecture states that for n ≥ 3, a standard instance (d1, ..., 
dn) of  the AMDJIT problem has B* < 1/2 if  and only if  

12i
id −=  for i = 1,...n, Brauner and Crama (2004).  
Brauner and Crama (2004), prove the conjecture for n ≤ 

6 and conjectured it ”true” for all positive n. Kubiak (2003), 
presents a geometric proof  that the conjecture holds true 
for any n > 2. His proof  exploits a natural symmetry of  
regular polygons inscribed in a circle of  circumference D. 
Subsequently, Brauner, Jost and Kubiak (2004), exploit the 
concept of  balanced words to give another proof  of  the 
conjecture (see Section 5). Thus, we can state the following 
theorem. 

 
Theorem 5. For n ≥ 3, a standard instance (d1, d2, ..., dn) of  the 
AMDJIT problem has optimal value B* < 1/2 if  and only if 

−= 12i
id  for i = 1, ..., n, and 

1
* 2 1

2 1

n

nB
− −

=
−

. 

 
This result can be restated as follows. For given rational 

numbers r1 ≤ r2, ...,≤rn with n ≥ 3, it holds [ ] =∑ n
ii

kr k  

for any integer k if  and only if  
−

=
−

12
2 1

i

i nr for i = 1, ..., n. 

The statement observes that , 1/ 2i k ix kr− <  implies 

[ ],i k ix kr=  where [x] denotes the rounding of x to the 
closest integer.  

The structure of  instances with ≤ 1/2B  becomes 
more complex as xik may then be equal either to 
[ ] = −1/2i ikr kr  or to [ ] = +1/2i ikr kr  for half-integer 
kri (Brauner and Crama, 2004). 

 
5. BALANCED WORDS AND AMDJIT 

SEQUENCES 

Brauner and Crama (2004), Brauner, Jost and Kubiak 
(2004), Jost (2003), Kubiak (2003, 2005), study the 
AMDJIT sequences as balanced words. One of  the main 
problems of  balanced words in practice is to construct an 
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infinite periodic sequence over a finite set of  letters where 
each letter is distributed as ”evenly” throughout the 
sequence as possible and each letter occurs with a given 
rate. Unfortunately, the existence of  balanced sequences 
for most rates is unlikely. 

We write an infinite word as w = a1 a2...such that ai ∈ A 
= { a1, a2, ..., an } for all i ∈ {1, ..., n}. A factor of  length | f 
| ≥ 0 of  w is word such that 1 | | 1...i i i ff a a a+ + −= . 

We say that the index i is the position of  the letter ai in 
the word w. The rate ri of  the letter ai in finite word w is 
defined as the fraction i ir w w=  where iw  denotes 
the number of  occurrences of  the index i in the word w. 
An infinite sequence w = w1w2...for which || u |i − |v |i | 
≤δ for all i with | u | = |v | is called δ-balanced. We 
denote the infinite repetition of  a finite word w by w* = 
ww . . .. An infinite word s is called periodic if  s = w* for 
some finite word w. A finite word w is called symmetric if  
w = wR where wR is a mirror reflection of  w. An infinite 
balanced word s is called symmetric and periodic if  s = w* 
for some finite symmetric word w. 

 
One way of  building an infinite word on finite letter 

alphabet A using the numbers 2 1 ( 1)
2 2i i i

j j D D
r d d
− −

= +  is 

described in Kubiak (2005). It builds an infinite word as 

follows. Label the points ( 1) ,
2i i

j D D j N
d d

⎧ ⎫−
+ ∈⎨ ⎬

⎩ ⎭
 by the 

letter i, consider 
( )1

,  
2

n

i
i i

j D D j N
d d
−⎧ ⎫

+ ∈⎨ ⎬
⎩ ⎭

∪  and the 

corresponding sequence of  labels. Break the tie by 
choosing i over i ′  when i < i ′  giving higher priority to 
a lower index whenever a conflict needs to be resolved. 

Thus a word with angle vector 
1 2

,  ,  ...,  
n

D D D
d d d

α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

and the starting point 
1 2

,  , ..., 
2 2 2 n

D D D
d d d

β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, referred 

to as an hyperbolic billard word in Vuillon (2003), is 
obtained. Let w be an infinite word associated with 
n-dimensional hypercubic billards of  angle α and starting 
point β. Then w is d = n−1-balanced on each letter. 
Moreover, the bound for the balance is always reached 
Vuillon (2003).  

Jost (2003), proves that for any finite sequence of  total 
demand = ∑ n

ii
D d with maximum deviation B for n 

product rates di, any infinite periodic word w of  period s is 
1-balanced, 2-balanced or 3-balanced on each product i, if  
B < 1/2, B <3/4and B < 1, respectively. Any sequence 
with di = 1 for all i = 1, ..., n, is a 1-balanced word though 
its maximum deviation 1 11 2B n= − >  for n ≥ 3, 

Kubiak (2005). However, the maximum deviation B is 
greater than 3/4 for the 2-balanced word a1a1a2a2 . . .anan 
with di = 2 for each i = 1, ..., n. Likewise, the maximum 
deviation B is greater than 1 for the 3-balanced word 

a1a1a1a2a2a2 . . .ananan with di = 3 for each i = 1, ..., n with n 
≥ 3. Thus we have 

 
Theorem 6. Let s be a finite sequence of  length = ∑ n

ii
D d  

with maximum deviation B for n rates r, and let 1/2 3/4 1,  S S and S  
be the sets of  sequences with B <1/2, B < 3/4 or B < 1, 
respectively. Then 1/2 3/4 1,   S S and S  are properly contained in the 
sets of  1-balance, 2-balance and 3-balance words, respectively. 

 
The result of  Vuillon (2003) shows that the priority 

based conflict resolution applied whenever there is a 
competition for an ideal position yields d being almost the 
same size of  the alphabet, that is n. Theorem 6 shows that 
the conflict resolution provided by any algorithm 
minimizing maximum deviation leads to d being constant. 
Thus, it is clear that the conflict resolution provided by any 
algorithm minimizing maximum deviation yields a better 
balance than the priority based conflict resolution applied 
whenever there is a competition for an ideal position with 
model n ≥ 3. 

Theorem 6 combined with Theorem 4 guarantees the 
existence of  an optimal solution in the set of  all 3-balanced 
words. However, it is an open question whether there 
always exists a 2-balanced word that optimizes AMDJIT. 
For n ≥3, the standard instance satisfies the property of  
1-balanced words Kubiak (2003), Brauner, Jost and Kubiak 
(2004). Kubiak (2003), proves that there exists a periodic, 
symmetric and 1-balanced word on n ≥ 3 letters with 
densities r1 ≤ r2 ≤...≤ rn , if  and only if  the densities satisfy 

−

=
−

12
2 1

i

i nr  (see Theorem 5). It is easy to construct 

symmetric, periodic, 1-balanced word with densities 
−

−

12
2 1

i

n  given such a sequence with n ≥ 3 letters, one fixes a 

new letter and inserts it between every consecutive letters 
of  s as well as at the beginning and end of  s to obtain a 
sequence for n + 1, letters with required properties. The 
number of  instances with 1-balanced property is infinite in 
case of  n = 2 as Brauner and Crama (2004), Kubiak (2003), 
prove that the optimal value of  the AMDJIT problem is 
less than 1/2 if  and only if  one of  the demands is even 
and the other is odd. 

 
6. THE CYCLIC MDJIT AND SDJIT SEQUENCES 

In this section, we discuss the existence of  cyclic 
sequence that are optimal. As all existing algorithms have 
time complexities depending on the magnitude of  the 
demands d1, ..., dn and hence on D, the existence of  cyclic 
schedule reduces computational time. Therefore, the 
question whether the concatenation sm of  m ≥ 1 copies of  
an optimal sequence s for d1, d2, ..., dn is optimal for md1, 
md2, ...,mdn is important for JIT sequencing. 

Miltenburg (1989), Miltenburg and Sinnamon (1989), 
observe the existence of  cyclic schedules for sum of  
squared deviations in single-level. The min-sum problem 
have such a cyclic optimal solution if  fi = f for all i, where f 
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is convex and symmetric function with f (0) = 0, Bautista, 
Companys and Corominas (1997). Kubiak and Kovalyov 
(1998), prove that if  fi (x) = f (x) for all i with x ∈ (0,1) for 
symmetric and convex function f, then the cyclic schedule 
for min-sum problem is optimal. Moreover, they give a 
counterexample to show that the answer is negative if  at 
least one fi is asymmetric.  

All the affirmative answers have been based on the 
following two observations. The first observation is that if  
w = uv where u and v are sequences for the instances βd1, ..., 
βdn and γd1, ..., γdn , respectively, where β, γ are positive 
integers, then FSD (w) = FSD(u) + FSD(v), Miltenburg (1989). 
The second observation is that even if  one relaxes the 
constraints x(w)iD = di, i = 1, 2, ..., n, then there still exists 
an optimal sequence w* such that x(w*)iD = di, i = 1, 2, ..., n, 
Bautista, Companys and Corominas (1997). The latter 
conclusion does not hold if  fi are different though convex 
and symmetric fi having the values zeros at 0, Kubiak and 
Kovalyov (1998).  

Kubiak (2003), proves that the set of  all optimal 
sequences for min-sum single-level problem includes cyclic 
sequences for symmetric, convex and nonnegative 
functions. In his proof  a different exchange method is 
used.  

 
Theorem 7. Given d1, ...,dn let s be an optimal sequence for the 
single-level min-sum problem SDJIT with convex, symmetric and 
nonnegative fi, i = 1, ..., n, all assuming minimum 0 at 0. Then sm, 
m ≥ 1, is optimal sequence to SDJIT for md1, md2 , ..., mdn. 
 

A similar result for single-level min-max problem 
MDJIT could be proved for l∞-norm. Steiner and Yeomans 
(1996), show that the set of  optimal sequences for both 
weighted as well as un-weighted single-level min-max 
problems for absolute deviations include cyclic sequences. 
We conjecture that cyclic JIT sequences in multi-level 
problem are optimal. 

 
7. RELATIONS BETWEEN DIFFERENT 

OBJECTIVES 

Corominas and Moreno (2003), prove the following. 
 

Theorem 8. Let s be any sequence for single-level JIT sequencing 
problem. Then FASD(s) −FQSD(s) = H0 − H(s) where the constant 
H0 ≥ 0 depends only on the problem instance, and H(s) = 0 if  s is 
an 1-bounded solution and positive otherwise.  
 

Furthermore, the min-sum problems for absolute and 
squared deviations have the same set of  optimal solutions 
on 1χ , where 1χ  is the set of  all 1-bounded solutions, 
Corominas and Moreno (2003). Moreover, any 1-bounded 
solution optimal for min-sum absolute deviation problem 
(if  exists) is also optimal for min-sum squared deviation 
problem, and hence, all optimal solutions for the latter 
problem are 1-bounded Corominas and Moreno (2003). If  
none of  the min-sum optimal solution for squared 
deviation is 1-bounded, then the problem for absolute 

deviation also does not have 1- bounded solution. 
An optimal solution to the min-sum problem with 

absolute deviation which is not 1-bounded may not be 
optimal for the min-sum problem with squared deviation 
Corominas and Moreno (2003). There may exist a 
1-bounded optimal solution to the latter problem even 
though none of  the optimal solution to the former 
problem is 1-bounded. Moreover, either of  these problems 
may have 1-bounded optimal solutions Corominas and 
Moreno (2003). 

Unlike the absolute deviation and squared deviation 
objectives for min-sum problems, the sets of  1-bounded 
optimal solutions with other convex, symmetric and 
nonnegative functions are not the same, Corominas and 
Moreno (2003). 

The empirical results of  Kovalyov, Kubiak and Yeomans 
(2001) refute number of  conjectures about the 
relationships between optimal solutions for different 
objective functions. 

 
8. COMPLEXITY AND DYNAMIC 

PROGRAMMING 

The question of  the exact complexity of  single-level JIT 
sequencing problem remains open Kubiak (1993). As the 

input size of  any instance (d1, …, dn) is ( )1
logn

ii
O d

=∑  

(  log  )O n D= , an algorithm which is polynomial in n and 
D is only pseudo-polynomial but not polynomial in the 
input size. The problem MDJIT is in Co-NP but it is still 
open if  the problem is Co-NP-Complete or polynomially 
solvable Brauner and Crama (2004).  

Kubiak (1993), proves that a version of  multi-level 
min-sum problem, referred to as Output Rate Variation 
Problem, is NP-hard. The multi-level min-max problem 
with absolute deviation objective is strongly NP-hard, 
Kubiak, Steiner and Yeomans (1997). 

However, Kubiak, Steiner and Yeomans (1997), present 
following dynamic programming approach for multi-level, 
min-max and min-sum problems. 

Let =
1111( , . . . , )nd d d = 

11( , . . . , )nd d be the demand 
vector at level 1 and let ei be a unit vector of  dimension n1 
with unity in the ith row. Redefine states in a schedule by X 
= 

11( , ..., )nx x ,where xi denotes the cumulative production 
of  the product i with xi ≤ di and the cardinality of  a state X 
as |X| = 

1

n
ii

x
=∑ .The minimum value of  the maximum 

deviation for all products and parts over all partial 
schedules which lead to state X is defined by ψ (X). The 
maximum norm ||ΓX||1 represents the maximum 
deviation of  actual production from desired one over all 
products and parts in state X at stage k = |X| (see Section 
2.1 for the definition of  Γ). Following dynamic programming 
DPAMD recursion holds for ψ (X) (Yeomans, 1997): 

 
ψ (Ø) =ψ (X : xi = 0, i = 1, 2, ..., n1) = 0, 

 
ψ (X) = 1min{max{ ( ), }ii

X e Xψ − Γ : xi ≥ 1, i = 1, 2, ..., 
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n1}. 
 
The space and time complexities of  DPAMD 

are 1

1
( ( 1))n

ii
O d

=
+∏  and 1

1 1
(min ( 1))n

ii
O d

=
+∏ , 

respectively. 
Kubiak, Steiner and Yeomans (1997), give extensive 

experiments to problems of  practical size. They consider 
Toyota’s scheduling application described in Monden 
(1983), which requires the production of  D1 = 500 
products for one 8-hour production shift. Two filtering 
heuristics were introduced to reduce potentially vast state 
space to be examined in dynamic programming. They 
tested four level randomly generated problems with total 
product demands D1= 500 and unit weights. For a problem 
with n1 = 16, L = 4 and D1 = 400, time required to 
implement the algorithm is 342.38 minutes, for instance. 
The ratio of  heuristic solution 79.857 to the optimal 
solution 76.136 is 1.03. Moreover, they conclude that the 
solution time of  a problem strongly depends on the 
number of  different products n but only slightly not on the 
range of  part requirements. 

The dynamic programming for multi-level min-max 
problem is modified for multi-level min-sum problem 
(Yeomans, 1997; Kubiak et al., 1997). 

 
The minimum total squared deviation for all products 

and parts over all partial schedules of  X is defined by φ(X). 
For the amount of  product produced X, let 2

2( )XΩ  
denoted by θ (X) be the squared sum of  the deviations of  
actual production from the desired one for all products and 
parts (see Section 2.1 for the definition of  Ω ). Then the 
following dynamic programming DPQSD recursion holds for φ 
(X) (Yeomans. 1997, Kubiak et al 1997): 

 
φ(Ø) = φ (X : xi = 0, i = 1, 2, ..., n1) = 0, 

 
φ (X) = ( ) ( ){ }min ii

eφ θ− +X X : xi ≥ 1, i = 1, 2, …, n1}. 

 
9. CONCLUDING REMARKS 

In this paper we reviewed some research in JIT 
sequencing that has been carried out till now. A number of  
outstanding and interesting questions have been explored 
which are still open and challenging. 

The single-level min-sum problems with any convex, 
symmetric, nonnegative functions which take the value 
zero only at zero deviation are solvable by reduction to the 
assignment problem. This approach applies to min-max 
problems as well. 

A pseudo-polynomial binary search for a feasible 
B-bounded sequence obtained through perfect matching in 
bipartite graph solves the single-level min-max 
absolute-deviation problem. This approach can be applied 
to other convex, symmetric, nonnegative functions.  

Regardless of  the methods, obtaining common solutions 
to different objective functions would significantly save the 
complexity cost. However, the 1-bounded solutions 

obtained via incomplete bipartite graphs does not 
guarantee an optimal solution for min-sum problems. The 
question, what is minimum B such that optimal solution 
for min-sum problem is B-bounded?, remains open. 

Although most of  the single-level JIT problems had 
been efficiently solved by pseudo-polynomial algorithms 
depending on the input size of  the demands, their 
complexity status is not yet clear. Even the basic min-max 
absolute-deviation problem is Co-NP but it is still open 
whether the problem is Co-NP-Complete or polynomially 
solvable. 

The multi-level problems for two or more levels are 
strongly NP-hard. However, they are efficiently solvable if  
either the products require approximately the same number 
and mix of  parts or the pegging assumptions are imposed. 
Therefore, searching for special properties in this class of  
problems for which efficient algorithms exist or looking 
for good approximation algorithms would be an interesting 
direction of  research in this area.  

The existence of  optimal schedules that are cyclic 
considerably reduces the computational requirements for 
any type of  JIT optimization problem. This problem has 
been resolved for single-level problems. We conjecture that 
cyclic Just-in-Time sequences in multi-level are optimal as 
well. 

One way to deal with JIT problems is the elegant 
concept of  balanced words. However, 1-balanced words 
cannot be obtained for some rates. The set of  all 
3-balanced words always contains an optimal sequence for 
AMDJIT. It is an open question whether there always 
exists a 2-balanced word that is optimal for any given 
instance of  AMDJIT. Characterizations of  balance words 
to min-max squared-deviation and min-sum problems 
would be an interesting problem for further research. 
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