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Abstract⎯A typical data mining project uses data collected for various purposes, ranging from routinely gathered data, to 
process improvement projects, and to data required for archival purposes. In some cases, the set of  considered features 
might be large (a wide data set) and sufficient for extraction of  knowledge. In other cases the data set might be narrow and 
insufficient to extract meaningful knowledge or the data may not even exist. Mining wide data sets has received attention in 
the literature, and many models and algorithms for feature selection have been developed for wide data sets. Determining 
features for which data should be collected in the absence of  an existing data set or when a data set is partially available has 
not been sufficiently addressed in the literature. Yet, this issue is of  paramount importance as the interest in data mining is 
growing.  The methods and process for the definition of  the most appropriate features for data collection, data 
transformation, data quality assessment, and data analysis are referred to as data farming. This paper outlines the elements 
of  a data farming discipline.  
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1. INTRODUCTION 

Data farming is concerned with methods and processes 
used to define the most appropriate features for data 
collection, data transformation, data quality assessment, 
and data analysis. The experience indicates that the 
magnitude of  a data farming effort often outweighs the 
data mining task, especially in an industrial setting. This 
might be due to the fact that the industrial data is often 
collected for reasons other than decision-making. This data 
may involve a wide range of  attributes (features) that go 
beyond traditional models. The lack of  analysis tools, the 
limited awareness of  data mining and data farming tools, 
and the cost reduction initiatives have contributed to 
scaling down some data collection efforts. Data farming 
mitigates this “loss” of  information by enhancing the data 
on hand and determining the most relevant data that need 
to be collected. 

Many data mining projects are based on data sets 
collected for various purposes, ranging from routinely 
collected data to process improvement projects and data 
required for archival purposes. In some cases, the set of  
considered features might be large (a wide data set) and 
sufficient for extraction of  knowledge. In other cases the 
data set might be narrow and insufficient to extract 
meaningful knowledge, or the data may not even exist.  

The mining of  wide data sets has received the most 
attention in the literature. Numerous feature selection 
models and algorithms have been developed for such data 
sets. The feature selection methods can be divided into two 
classes: 
• Open-loop methods. These methods are also called filter, 

preset bias, and front-end methods (Cios et al., 1998) 
Features are selected based on between-class separabilty 

criteria, e.g., covariance defined for different classes 
(Duda and Hart, 1973, and Fukunaga, 1990). 

• Closed-loop methods. These methods are also referred 
to as wrapper, performance bias, and classifier feedback 
methods (John et al., 1994). Features are selected based 
on the performance criteria, e.g., classification accuracy. 
 
Examples of  methods for feature selection include the 

principle component analysis (Duda and Hart, 1973) and a 
branch-and-bound algorithm (Fukunaga, 1990). The 
feature selection problem is computationally complex as 
the total number of  subsets for a set with n features is 2n, 
and the number of  subsets with m features is n!/(n – m)!m! 
(Cios et al., 1998). 

Determining the most appropriate features for which 
data should be collected in the absence of  a data set or its 
partial availability (a narrow set) has not been sufficiently 
addressed in the literature. Yet, this issue is of  paramount 
importance as the interest in data mining is growing. 
Feature selection and data farming cover the opposite ends 
of  the data spectrum. The former deals with a redundant 
number of  features and the latter begins with a potentially 
empty set of  features that gradually leads to a set of  
features satisfying the selected performance criteria. 
Feature extraction supports a push approach to data 
mining as the selected features determine the quality of  the 
extracted knowledge. On the other hand, data farming 
pulls the data necessary for knowledge extraction.  

One of  the goals of  data farming is to define metrics 
capturing the quality of  the data in terms of  the 
performance criteria, e.g., the prediction accuracy. Some of  
these metrics are listed next. 

Section 2 of  this paper outlines elements of  data 
farming methods. The data farming process is discussed in 
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Section 3. The case study of  Section 4 illustrates the 
benefits of  data farming. Conclusions are drawn in Section 
5.  
 
2. DATA FARMING METHODS  

The most important criteria of  data farming are to 
define features that: 
• Maximize performance measures (e.g., prediction 

accuracy, knowledge utility),  and  
• Minimize the data collection cost. 

 
The two criteria directly translate into cost savings and 

other tangible or non-tangible benefits.  
 
The basic methods of  data farming are categorized as 

follows: 
• Feature evaluation 
• Data transformation 
• Knowledge transformation 
• Outcome definition 
• Feature definition 

 
Each of  these data farming methods is discussed next. 

 
2.1 Feature evaluation 

The appropriateness of  data sets for knowledge 
extraction can be directly evaluated by the following 
metrics: 
• Upper and lower approximation measures (defined in 

Pawlak, 1991).  
• Classification quality (Pawlak, 1991).  
• Entropy measure (Quinlan, 1986).  
• Gini index (Breiman et al., 1984).  
• Correlation, distribution type, and so on. 
• Other metrics such as percentage of  missing values, data 

error, discretization parameters, and so on.  
 

Cross-validation (Stone, 1974) is a widely used indirect 
method for feature evaluation. However, this method is 
computationally expensive, as it requires multiple uses of  
learning and decision-making algorithms (Vafaie and De 
Jong, 1998).  

The feature evaluation metrics are of  interest to data 
farming as they assess the quality of  the data set without 
knowledge extraction, which is computationally complex. 
An ideal direct feature evaluation method should be able to 
determine whether a given data set will satisfy the required 
classification accuracy or any other performance measure 
without the repetitive knowledge extraction process. 
 
2.2 Data Transformation 

Data sets can be mined in their raw collected form or 
they can be transformed. The following transformation 
methods can be used:  
• Filling in missing values 
• Discretization 

• Feature content modification (generalization, 
specialization) 

• Feature transformation 
• Data evolution 
 

The data engineering methods are illustrated next. The 
first three data engineering methods have received some 
coverage in the data mining literature.  
 
2.2.1 Filling in missing values 

Examples of  methods and algorithms for filling in 
missing values include: 
• The removal of  examples with missing values. 
• The most common value method. The missing values 

are replaced with the most frequent values. 
• The data set decomposition method. The data set is 

partitioned into subsets without missing values that are 
in turn used for mining (Ragel and Cremilleux, 1998; 
Kusiak, 2000). 

Other methods for handling missing values are surveyed in 
Han and Kamber (2001). 
 
2.2.2 Discretization 

The most widely referenced discretization methods (also 
referred to as binning methods) are as follows: 
• Equal width interval. The range of  observed values is 

divided into k intervals of  equal size. This method is 
vulnerable to outliers that may dramatically skew the 
value range, e.g., accidental typo of  one value may 
significantly change the range. 

• Equal frequency interval. The continuous values are 
grouped into k intervals with each interval containing 
m/k (possibly duplicated) adjacent values, where m is the 
number of  examples. This method may lead to the 
inclusion of  the same values in adjacent intervals. Both 
methods, the latter and the former fall into the category 
of  unsupervised discretization methods as they do not 
consider decision values (Dugherty et al., 1995). 

• Clustering. The intervals are created by clustering the 
examples (Tou and Gonzalez, 1974).  

• Recursive minimal entropy. The intervals are established 
by considering the class information entropy (Carlett, 
1991; Fayyad and Irani, 1993).  

• Recursive minimal Gini index. Similar to the entropy, the 
Gini index characterizes the impurity of  an arbitrary 
collection of  examples (Breiman et al., 1984). 

• Recursive minimal deviance: The deviance measure aims 
at selecting the best binary split (Venables and Ripley, 
1998). 
 

Other discretization methods are discussed in Cios et al. 
(1998) and Han and Kamber ( 2001). 
 
2.2.3 Feature content modification 

The feature content modification method is illustrated 
with the data set in Figure 1, which is representative of  
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numerous data sets considered in medical and industrial 
applications. 
 
Example 1 
 

Consider the data set with five features and the decision 
shown in Figure 1. 

 
 
Number Index Color Material Time Temperature Decision

1 TN-01 Blue C-O-01 12 289.5 Good 

2 NM-02 Red C-R-30 78 333 Bad 

3 NM-05 Orange C-R-12 123 228 Bad 

4 TN-04 Orange C-O-02 15 321.7 Good 

5 TN-14 Red C-O-03 45 423 Good 

6 NM-03 Red C-R-11 77 630 Bad 

  
Figure 1. A data set with five features. 

 
A set of  decision rules extracted from the data set in 

Figure 1 is shown in Figure 2. 
 

Rule 1. IF (Index = TN-01) THEN (Quality = Good);  
[1, 33.33%, 100.00%][1] 
Rule 2. IF (Index = TN-04) THEN (Quality = Good);  
[1, 33.33%, 100.00%][4] 
Rule 3. IF (Index = TN-14) THEN (Quality = Good);  
[1, 33.33%, 100.00%][5] 
Rule 4. IF (Index = NM-02) THEN (Quality = Bad); 
[1, 33.33%, 100.00%][2] 
Rule 5. IF (Index = NM-05) THEN (Quality = Bad);  
[1, 33.33%, 100.00%][3] 
Rule 6. IF (Index = NM-03) THEN (Quality = Bad);  
[1, 33.33%, 100.00%][6] 

Figure 2. Rule set obtained from the data set in Figure 1. 
 
The decision rules in Figure 2 are presented in the 
following format: 
 
IF (Condition) THEN (Outcome); [Rule support, 
Relative rule strength, Confidence] [Objects represented by 
the rule]. 
The metrics characterizing each rule are defined next: 
 
• Rule support is the number of  all objects in the data set 

that share the property described by the conditions of  
the rule; 

• Rule strength is the number of  all objects in the data set 
that have the property described by the conditions and 
the action of  the rule; 

• Relative rule strength is the ratio of  the rule strength and 
the number of  all objects in a given class; 

• Confidence is the ratio of  the rule strength and the rule 
support.  

 
The support of  each rule in Figure 2 is only 1. These 

rules can be easily generalized by modifying the content of  

the feature “Index” in Figure 1 from TN-xx to TN and 
NM-xx to NM (see Figure 3). 
 

 Number Index Color Material Time Temperature Decision

1 TN Blue C-O-01 12 289.5 Good 

2 NM Red C-R-30 78 333 Bad 

3 NM Orange C-R-12 123 228 Bad 

4 TN Orange C-O-02 15 321.7 Good 

5 TN Red C-O-03 45 423 Good 

6 NM Red C-R-11 77 630 Bad 

 
Figure 3. Modified data set with five features. 

 
The rules in Figure 4 have been extracted from the 

modified data set in Figure 3. 
 

Figure 4. Two rules generated from data set of  Figure 3. 
 

The feature generalization method is of  interest to 
mining temporal data sets as the value of  generalized 
features tend to be time invariant. The one-out-of  n (n = 5) 
cross-validation scheme has been applied to the data sets in 
Figures 1 and 3.  The results of  cross-validation are 
presented in Figure 5.  

As it is visible in Figures 5(c) and (d) the average 
classification accuracy for the data set in Figure 1 is 0% 
while for the modified data set of  Figure 3 is 100%.   
 
2.2.4 Feature transformation 

Constructive induction is a process of  describing objects 
for improved classification (Wnek and Michalski, 1994;  
Bloedorn and Michalski, 1998).  New features are built 
from the existing ones, and some features (attributes) of  
objects are modified or deleted. It should be noted that the 
deletion of  features is related to the feature selection 
problem (Yang and Honavar, 1998).  

In this paper, the data transformation aspect of  
constructive induction will be emphasized in order to 
improve usability, transparency, and the decision-making 
accuracy of  the extracted rules.  

While traditional data mining concentrates on 
establishing associations among feature values, temporal 
data farming is to determine the nature of  feature behavior 
in time. In some cases, the temporal behavior of  a singular 
feature might be difficult to capture and may not be 
appropriate for making predictions. Rather than 

Rule 1:  

IF (Index = TN) THEN (Quality = Good);  

[3, 100.00%, 100.00%][1, 4, 5] 

Rule 2: 

IF (Index = NM) THEN (Quality = Bad);  

[3, 100.00%, 100.00%][2, 3, 6] 
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concentrating on individual features, the data mining 
approach presented in this paper advocates capturing 
relationships among feature functions. 
 

Figure 5. Cross-validation results: (a) Confusion matrix for 
the data set in Figure 1, (b) Confusion matrix for 
the modified data set of  Figure 3 cross-validation 
results: (c) Classification accuracy for the data set 
in Figure 1, (d) Classification accuracy for the 
data set of  Figure 3. 

 
Most data mining algorithms establish associations 

among individual feature values. The approach proposed in 
this paper captures relationships among features in the 
form of  feature functions. Examples of  feature functions 
include Kusiak (2001): 
• Logic expression of  features Fi, Fj, ...., Fn, where the 

<logic operator> = {AND, OR, NOT,  EXOR}. Note 
that an ordered set of  features linked by the AND 
operator becomes a sequence, e.g., the expression F2 
AND F9 AND F4 is denoted as the sequence 
F2_F9_F4. 

• Arithmetic expression of  features Fi, Fj, ...., Fn, where 
the <arithmetic operator> = {+, －, /, × , , n, |}, 
e.g., F3 – 4.5 ×  F8, |F3 – 4.2 × F8|, (.7 × F23 – 
F4)/(2.1 ×  F52 + .2 ×  F8). Note that the inequality 
relation Fi ≥  Fj is equivalent to the ratio Fi/Fj ≥  1. 
 
A rule involving two feature functions, a sequence 

5_7_2 (a set of  features F2_F4_F9), and an inequality 
relation is shown next. 

 
IF (F2_F4_F9 = 5_7_2) AND (F3 < F7) THEN (D = 

Hot) 
 
The feature transformation method is illustrated using 

Example 2. In this example the term classification quality 
will be used. Classification quality of  a feature is a measure 
used in rough set theory to expresses the degree of  
association between the feature values and the outcome.  
It can be loosely defined as the number of  objects with 
non-conflicting values to the total number of  object in the 
data set. For a formal definition of  the classification quality 
the reader may refer to Pawlak (1991). 
 
Example 2 

 
Consider the “as-is” data set in Figure 6. 
 

 
Figure 6. A data set with four features. 

 
The classification quality (CQ) of  each feature in Figure 

6 is as follows: CQ(F1) = 1/5 = 0.2, CQ(F2) = 2/5 = 0.4, 
CQ(F3) = 0/5 = 0, CQ(F4) = 3/5 = 0.6.  

The data set in Figure 6 has been transformed in the 
data set of  Figure 7, where two features F2, F4 have been 
replaced with the feature sequence F2_F4 denoted for 
short as F2_4. 
 

Figure 7. Transformed data set of Figure 6. 
 

The classification quality of  the feature sequence F2_4 
has the value CQ(F2_4) = .6, which is higher than that of  
the individual features F2 and F4. The one-out-of  n (n = 5) 
cross-validation scheme has been applied to the rules 
generated from the data sets in Figures 6 and 7. The 
cross-validation results of  the original data set (Figure 6) 
and the transformed data set (Figure 7) are presented in 
Figure 8. The average classification accuracy has increased 
from 20% for the rules extracted from the data set in 
Figure 6 to 60% for the transformed data in Figure 7. 

 
 
 
 

No. F1 F2 F3  F4 D
1 0 1 0 2 0 
2 1 1 0 2 2 
3 0 0 0 0 0 
4 0 1 1 1 1 
5 0 0 1 3 0 

No. F1 F2_4 F3 D 
1 0 1_2 0 0 
2 1 1_2 0 2 
3 0 0_1 0 0 
4 0 1_0 1 1 
5 0 0_3 1 0 

(c) 
 Correct Incorrect None  

Good 0% 66.67% 33.33%  
Bad 0% 66.67% 33.33%  
Average 0% 66.67% 33.33%  

(d) 
 Correct Incorrect None 
Good 100% 0% 0% 
Bad 100% 0% 0% 
Average 100% 0% 0% 

(a) 
 Good Bad None  
Good 0 2 1  
Bad 2 0 1  

(b) 
 Good Bad None 
Good 3 0 0 
Bad 0 3 0 
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(a) 
 Correct Incorrect None 

Average 20% 60% 0% 

 
(b) 

 Correct Incorrect None 

Average 60% 40% 0% 
 
 

Figure 8. Cross-validation results: (a) Average classification 
accuracy for the data set in Figure 6, (b) Average 
classification accuracy for the transformed data 
set of  Figure 7. 

 
Example 2 illustrates one of  many feature 

transformation methods involving sequences (sets) of  
features. The need for more elaborate feature 
transformations discussed earlier in this section leads to the 
evolutionary computation methods. Both, the feature 
transformation method and the previously discussed 
feature content modification method can be applied 
simultaneously. Moreover, numerous data farming methods 
can be combined for the same application. 
 
2.2.5 Evolution 

In a typical data mining process the knowledge is 
extracted from the historical data.  The values of  each 
feature can be described with various statistics, e.g., the 
probability density function as symbolically illustrated in 
Figure 9. The relationships between the features (columns 
F1−F4) themselves and the decision D can be also 
characterized by appropriate metrics, e.g., a correlation 
coefficient.  

Rather than extracting knowledge from the original data 
a derived data set could be used. The latter data set could 
be created by using the statistical and other properties of  
the original data set. Changing the parameter values of  
these measures would evolve the source data and the 
extracted knowledge. 
 
2.3 Knowledge transformation 

Structuring knowledge may result in the discovery of  
patterns useful in understanding the knowledge content 
and may lead to its generalization. The need for knowledge 
structuring is supported by the notion of  cognitive maps 
and mental models discussed in Caroll and Olson (1987) 
and Wickens et al. (1998). Structured decision rules are 
easier to evaluate by a user.  

As an alternative to evolving the source data, the 
knowledge extracted from such data could be evolved. 

One of  the main reasons for extracting knowledge from 
data sets is decision-making – an area that has not received 
sufficient attention in the literature in the context of  data 
mining. Most decision-making algorithms are rather 
simplistic and are usually based on partial or full matching 
schemes (Kusiak et al., 2000). Many users have difficulty 

accepting decision rules that are non-intuitive and 
algorithms making decisions based on non-transparent 
matching. Here we address a gap in the presentation of  
knowledge for effective decision-making.  

The rule-structuring concept illustrated in Example 3 
generates knowledge in a form that meets user 
expectations. 
 
 

F1 F2 F3 F4 D
0.150 66 2 2 0
0.175 78 2 2 1
0.182 78 1 0 0
0.249 68 1 1 2
0.174 54 2 2 0

 
 
Figure 9. Data set and the corresponding statistical 
distributions. 
 
Example 3 
 

Consider the eight rules R1 – R8 represented as the 
rule-feature matrix in Figure 10. 
 

F1_F6_F7 F2 F3 F4 F5 D Rule Algorithm 
B_C_D a  Low R1 A1 
C_ F <4   Medium R8 A1 

>2  Medium R5 A1 
(2, 9]  Medium R2 A2 

(2, 6] =<8 High R3 A2 
  <2 (2, 5] Low R7 A3 
E_ F_G b  Low R4 A3 

>=2 [1, 3] High R6 A3 
 

Figure 10. Rule-feature matrix with eight rules. 
 

Three different learning algorithms A1 – A3 were used 
to extract the eight decision rules R1 – R8 from a data set. 
To simplify our considerations the information pertinent to 
each rule such as support, classification quality, and so on 
has not been included. The first row (beside the header) in 
Figure 10 reads as follows: IF (F1_ F6_ F7 = B_ C_ D) 
AND (F2 = a) THEN (D = Low). The last entry of  this 
row indicates that this rule has been derived with algorithm 
A1. 

Though the rule set in Figure 10 is small, its analysis is 
not simple. Transforming the matrix in Figure 10 into the 
structured matrix in Figure 11 significantly improves 
interpretation and understanding of  this rule set.  Solving 
the model (1) – (5), presented later in this section, for the 
data in Figure 10 has resulted in the matrix of  Figure 11.  
Two rules, R7 and R8, have been removed from the 
structured matrix as they are dissimilar to the rules R1 
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through R6.  
 

F3 F5 F2 F1_F6_F7 F4 D Rule Algorithm 
(2, 6] =<8 High R3 A2 
>=2 [1, 3] High R6 A3 

a B_C_D Low R1 A1 
b E_ F_G Low R4 A3 

 >2 Medium R2 A2 
 (2, 9] Medium R5 A1 

 
Figure 11. Structured rule-feature matrix. 

 
The content of  the matrix in Figure 11 is structured and 

it allow drawing numerous conclusions, for example: 
• The decisions D = High, Medium, and Low are totally 

separated by features, i.e., decision D = High is made 
based on values of  two features F3 and F5 that do not 
appear in the other two decisions. 

• The rules R3 and R6 are good candidates for the 
following generalization IF (F3 ≥  2) AND (F5 ≤  8) 
THEN (D = High). 

• The decision D = Low can be reached in alternative 
ways, using the feature values F2 = a, or F1_F6_F7 = 
B_C_D, or F2 = b, or F1_F6_F7 = E_F_G. 

• Rule R2 is more general than rule R5. 
 

Example 3 illustrates only a few of  the users’ 
requirements that can be incorporated in the 
rule-structuring algorithm, such as: 
• Classification accuracy. The knowledge included in the 

structured matrix is cross validated and tested to ensure 
the required level of  classification accuracy. 

• Matrix structure. To help the user better understand the 
rule-feature matrix, different structures may be 
considered, e.g., a block-diagonal (see Figure 11), a 
block-diagonal matrix with overlapping features, the 
block-diagonal matrix with overlapping rules, a triangular 
(for dependency analysis among rules), an L-shape 
matrix, a T-shape matrix, etc. 

• Differentiation of  decisions on features. This occurs 
when each decision value is associated with an 
independent subset of  features.  

• Differentiation of  decisions on feature values. This 
occurs when any two decision values are discernable on 
a unique subset of  feature values. 

• Inclusion of  user preferences. To increase confidence in 
the rules, a user may wish to have her/his feature 
preferences included in the selected rules, to exclude 
some features, to establish a lower bound on the number 
of  features, and so on. 

• Contrasting positive rules against negative ones.  
 

The learning classifier systems (e.g., Wilson, 1995; 
Kovacs, 2001) and other learning concepts such as decision 
tree and decision rule algorithms are perceived as different. 
The former is based on concepts from evolutionary 
biology and the latter draws from information theory and 

mathematical logic. It appears that the two classes of  
algorithms share more commonality than indicated in the 
current literature.  This unifying view results from the fact 
that the “machine learning school” assumes that the 
learning data set remains static. Filling in missing data, 
discretization, and feature content modification are the 
only three methods of  data transformation. The two data 
transformation methods of  data engineering discussed in 
this paper (i.e., feature transformation and data evolution) 
involve the evolutionary computation concepts. For 
example, a typical learning algorithm produces a decision 
rule as follows: 

 
IF (F3 = 7) AND (F5 ∈ [7.1, 12.4]) AND (F6 = 4)  
THEN (D = No) 

 
Each term in the above rule is concerned with a single 

feature.  
The data and knowledge transformation concepts 

advocated in this paper lead to richer decision rules that 
may contain relationships between feature functions, in 
particular the feature sequence Seq illustrated by the 
following rule:  

 
IF (F3 < F4) AND (F5/F8 ≥ 3) AND (Seq = f7_f9_f11) 
THEN (D = No) 

 
The computational experience presented in Cattral et al. 

(2001) indicates that the classification accuracy of  the 
decision rules involving relationships between features 
exceeds those of  the traditional decision rules.  

To generate these robust and high quality results, the 
learning algorithms may remain essentially unchanged or in 
some cases require only minor modifications.  

A user is interested in viewing the context of  the 
knowledge used for decision-making from different 
perspectives, even if  a decision is reached autonomously.  
The variability among knowledge viewing preferences 
grows with the number of  users. Potential knowledge 
visualization patterns include a decision table, a decision 
rule, a decision tree, a graph, a bar chart, a pie chart, and a 
data cube that can be expressed with a Voronoi diagram, a 
Gabriel graph, Delaunay’s approach, a relative 
neighborhood graph, a minimum spanning tree (Preparata 
and Shamos, 1985). Note that one pattern, e.g., a decision 
tree, can be transformed into another pattern, e.g., a 
decision table. The decision table provides a multitude of  
knowledge visualization patterns (views) such as: 
• Rule – feature view (see Figure 11). 
• Rule – feature function view.  
• Object – feature view. 
• Cluster of  object – feature view. 
• Cluster of  object  – group of  features view. 
• Rule – rule view. 
• Chain of  rules view (for multistage decision processes). 
• Rule performance metric (e.g., rule strength, confidence, 

discrimination) view. 
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The rules themselves can be illustrated graphically. One possible representation of  a cluster of  two rules is shown in Figure 
12. 
 

Rule 1 & 2 1_2  OR  3-4
95%

YES

F1< F2    F3_F5 ConfidenceDecision

High

Context
 Select Me

  2 rules of cluster 1
  100% of cluster 1
  3 clusters total

 
Figure 12. Visual representation of  a cluster of  two rules. 

 
The above views call for knowledge structuring to be 

accomplished by solving various models. One of  such 
models, the generalized p–median model, is illustrated next 
(Kusiak, 2002).  

 
Define: 

n = the total number of  decision rules 
m = the number of  features (used to compute the 

distance dij) 
l = the number of  rule categories 
Fk = the set of  decision rules from source k, k = 

1, ..., l, where |∩Fk| = n 
p = the minimum number of  rule clusters k 
qk = the minimum number of  rules to be selected 

for rule category k 
dij = the distance between rules i and j 
cj = the performance index of  rule j 

,α β =  constants used in the objective function 
xij = 1, if  rules i and j are selected, otherwise xij = 0 
xj = 1, if  rules j is selected, otherwise xj = 0 
 
The objective of  the generalized p–median model is to 

minimize the total weighted distance between the rules and 
the rule performance index. The two constants α  and 
β  are used as the weights. 

 
   ij ij j jj

i j j

Min d x c xα β+∑∑ ∑                    (1) 

 

 

. .     for all 1, ..., ,  1, ...,
k

ij k
i F j

s t x q k l j n
∈

≥ = =∑∑       (2) 

 
  for all 1, ...,jj

j

x p j n≥ =∑                       (3) 

 
 for all 1, ...,   1, ...,ij jjx x i n j n≤ = =                 (4) 

 
= 0,  1  for all 1, ...,   1, ...,ijx i n j n= =                (5) 

 
Constraint (2) ensures that for each rule category at least 

qk rules are selected. Constraint (3) imposes a lower bound 
on the number of  rule clusters. Constraint (4) ensures that 
a pair of  rules, i and j, can be selected only when the 
corresponding cluster is formed.  Constraint (5) imposes 
the integrality of  the decision variable.  

The input to the p–median model is a set of  rules of  
different categories. For example, a rule category can be 
based on the learning algorithm type, decision type, rule 
type (positive, negative, etc.), feature transformation 
method, and so on.  

Solving the generalized p–median model for the data in 
Figure 10 has resulted in the structured matrix in Figure 11. 
The p–median model has been solved with the LINDO 
software (LINDO, 2003). 
 
2.4 Outcome definition 

Some outcomes may be either not defined or assigned in 
error, e.g., misclassified by one or two classes. For 
unsupervised learning (not defined outcomes), clustering 
methods can be applied to define and validate the outcome 
values. For cases with the outcomes assigned in error, 
unsupervised and supervised learning may be warranted.  
An outcome definition method is illustrated in Example 4. 
 
Example 4 
 

Consider the data in Figure 13 with five features (e.g., 
maximum torque, temperature, and number of  hours and 
corresponding rules (Figure 14) derived using a rough set 
algorithm). 

Figure 13. A data set with five features. 
 

Figure 14. Rules from the data set of  Figure 13. 

No. F1 F2 F3 F4 F5 D
1 0 0 1 0 2 0 
2 2 1 1 0 2 1 
3 0 0 0 0 1 0 
4 1 0 1 1 0 1 
5 0 0 0 1 3 0 

Rule 1:  
IF (F1 = 0) THEN (D = 0);  

[3, 100.00%, 100.00%][1, 3, 5] 
Rule 2:  
IF (F1 ∈  {1, 2}) THEN (D = 1);  

[2, 100.00%, 100.00%][2, 4] 
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Assume that some values of  the outcome D in Figure 13 
were assigned in error, e.g., the fault type was improperly 
coded. The analysis of  the data in Figure 13 and other 
background information has lead to changing the value of  
the decision for object 2 from D = 1 to D = 2. The rules 
extracted from the data set with the modified outcome are 
shown in Figure 15. 
 

 
Figure 15. Rules extracted from the transformed data set 

of  Figure 13. 
 

The one-out-n (n = 5 objects) cross-validation scheme 
was applied to the data set in Figure 13 and its transformed 
form.  The results of  cross-validation are shown in Figure 
16.  
 
 (a) 

 Correct Incorrect None 

Average 40% 0% 60% 

(b) 
 Correct Incorrect None 

Average 60% 0% 40% 
 

Figure 16. Cross-validation results: (a) average classification 
accuracy for the data set in Figure 13; (b) 
average classification accuracy of the data set 
with modified outcome. 

 
Figure 16, parts (a) and (b), shows that the data set with 

modified outcome provided better classification accuracy 
than the source data set of  Figure 13. 
 
2.5 Feature definition 

The previously discussed data farming methods enhance 
the data and knowledge of  an existing set of  features.  
The feature definition approach is concerned with the 
definition of  new features for which the data must be 
collected. In this setting, the maximization of  the 
performance of  the extracted knowledge and the 
minimization of  the data collection cost are extremely 
important. 
 
Methods of  defining candidate features include: 
• Parameters and variables of  equations 

• Object and environment descriptions 
• Design of  experiments 

The ultimate goal of  data farming is to extract useful 
knowledge that represents associations among features and 
decisions. Science offers expressions (e.g., reliability 
formula) that might be helpful in the definition of  new 
features. In some cases it may be useful to map the 
associations as a feature map that is similar to a process 
model created via any formal methodology, e.g., the 
process methodology presented in (Kruchten et al., 2000).  

The newly defined features should allow for building 
strong associations with the outcome. The data mining 
experience with numerous data sets indicates that the most 
promising feature types include: 
• Chemistry based features (e.g., calcium content)  
• Biology based features (e.g., genetics) 
• Time and frequency (e.g., number of  years in use, 

number of  tasks performed) 
• Control parameters (e.g., temperature) 
 
3. THE DATA FARMING PROCESS 

Data mining applications call for the definition of  
appropriate features and data collection at minimal cost. 
The data farming process includes the following steps: 

 
Step 1. Setting a data farming goal. 
Step 2. Definition of  candidate features and dependency 

analysis (discussed later in this section). 
Step 3. Selection and application of  suitable data farming 

methods. 
Step 4. Data mining process. 
Step 5. Evaluation of  the data farming goal. 

 
These steps can be implemented sequentially or in parallel. 

 
Step 2 above has not been discussed thus far. It involves 
determining a candidate set of  features and the 
identification of  the dependencies between them. These 
features may be targeted for data collection. Dependencies 
among features, though not absolutely essential in data 
farming, may be important for understanding the data set. 
Some of  the methods for feature dependency analysis are 
discussed in the following paragraphs. 

Numerous methods and tools have been developed for 
the analysis of  systems. The primary methods that can be 
used for feature dependency recording and analysis are as 
follows:      
• Feature map. For example, a graph showing relationships 

between features that may take different forms, e.g., a 
fish bone diagram used in statistics and a link analysis 
graph (Barry and Linoff, 1997). 

• Structure breakdown methods for a problem, a process, 
or a product. For example, a diagram visualizing 
hierarchical representation of  the studied phenomenon 
(a problem, a process, or a product). 

• Process models. Numerous process models and tools 
developed in the context of  process engineering can be 
used to analyze dependencies among features (see 

Rule 3: 
IF (F1 = 0) THEN (D = 0);   

[3, 100.00%, 100.00%][1, 3, 5] 
Rule 4: 
IF (F1 = 1) THEN (D = 1);   

[1, 100.00%, 100.00%][4] 
Rule 5: 
IF (F1 = 2) THEN (D = 2);   

[1, 100.00%, 100.00%][2] 
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Kusiak (1999) for review of  process modeling tools and 
methods). 

• Semantic networks. Though primarily used to represent 
knowledge, semantic networks can be applied to 
represent concepts, including the relationships between 
features.    
 
In addition to the above tools, methodologies and 

software used to model information systems or processes 
can be used to analyze dependencies among features, e.g., 
Yourdon, Gane-Sarson, Express-G, and Rumbaugh 
diagrams. 

 
The dependency among features can be analyzed in two 
modes: 
• Forward mode (feature – decision direction) 
• Reverse mode (decision – feature direction) 

 
Most often the two modes are combined while analyzing 
features. 

  
The type of  data farming method used depends on the 

purpose of  data mining. The main purposes of  data 
mining are as follows: 
• Gaining insights into the problem studied 
• Learning 
• Decision-making with the discovered knowledge 

 
While the first purpose may be accomplished with a 

rather small data set, the last two call for sufficiently wide 
and long data sets that are typically obtained at a higher 
cost. 
 
4. A CASE STUDY 

Some of  the data farming concepts discussed in this 
paper have been applied to an equipment diagnosis 
application. A database with the maintenance records in 
excess of  1 GB was available for analysis. The data 
collected on more than 300 features was distributed over 
26 different Microsoft Access tables. The number of  
objects in each table varied from twenty to about 100,000. 
The goal of  the study was to predict the duration 
MAINT_TIME of  a service action performed on different 
types of  equipment. The analysis of  the data with 
dependency diagrams has revealed that most features were 
irrelevant to the study as the data was collected over many 
years to meet operational requirements imposed over time.  

For the purpose of  prediction of  MAINT_TIME a data 
set with 644 objects was extracted by merging three data 
tables with maintenance related features. The length of  the 
shortest data set dictated the number of  objects. Some 
objects were missing most feature values and therefore the 
number of  objects was reduced to 599 and 17 features (15 
categorical and integer, and two continuous) and the 
decision MAINT_TIME which was continuous. The data 
set was discretized with three intervals resulting in the 
following classes (1, 2, and 3) for the decision 
MAINT_TIME: 

 
MAINT_TIME: (< 0.25) ~ 1, [0.25, 0.35) ~ 2, [> 0.35) ~ 
3, 

 
where (< 0.25) ~ 0 means that the maintenance time of  
less than .25 [hour] was labeled as category 0, the 
maintenance time in the interval [0.25, 0.35) was labeled as 
category 1, and the maintenance time greater than 0.35 
[hour] was labeled as category 2.  

Different learning algorithms have been applied to 
extract rules and the number of  rules was generally large. 
A rough set algorithm (Pawlak 1982, 1991) produced some 
of  the most interesting rules (102 exact and 19 
approximate rules).    

The k = 10 fold validation with the rough set algorithm 
has produced the results in Figure 17, which are 
encouraging considering the nature of  the data considered 
in this study. 

Figure 17. Average classification accuracy for the 
599-object data set. 

 
Further analysis of  the 599-object data set has revealed 

that some maintenance actions involved multiple 
elementary actions. The results in Figure 17 include both 
types of  actions. The MAINT_TIME for multiple 
maintenance actions in the 599-object data set were 
aggregated thus resulting in 525 objects. 

The 525-object data set was discretized with the 
previously used scheme and produced the cross validation 
results in Figure 18. These results are not substantially 
different from the results in Figure 17. 

Figure 18. Average classification accuracy for the 
525-object data set. 

 
Creating sequences of  two variables at a time produced 

some of  the most interesting results. Two such results are 
illustrated in Figure 19 for the following MAINT_TIME 
discretization scheme: 
MAINT_TIME: (<0.25) ~ 0, [0.25, 4.75) ~ 1, [>4.75) ~ 2 

Figure 19. Average classification accuracy for the 
525-object data set with the feature sequence. 

 
Please also notice that the results in Figure 19 indicate 

that the average classification accuracy is much better than 
that in Figure 18. 

Correct Incorrect None
Average 68.45% 31.38% 0.17%

Correct Incorrect None
Average 69.19% 30.61% 0.19%

Correct Incorrect None
Average 79.52% 20.48% 0.00%
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The main goal of  this case study was to prove that the 
maintenance data collected during regular operations 
contained some useful patterns that could be used to 
predict values of  parameters, including the maintenance 
time. Some of  the data farming methods applied in this 
study enhanced the value of  this data set.  Extensions of  
the classification quality measure and some statistical 
metrics will be used to define more relevant features for 
which the data should be collected. 
 
5. CONCLUSION 

The purpose of  knowledge discovery is to gain insights 
into the problem studied, or using the discovered 
knowledge for decision-making. These objectives can be 
realized, if  proper data is collected. The appropriateness of  
data and the data collection cost are the goals of  data 
farming that, among  others, offers tools for the 
definition of  appropriate features for which the data is to 
be collected at an acceptable cost.  The data farming 
methods presented in this paper are intended to enhance 
the data collection process, add value to the collected data, 
and define new features for which the data should be 
collected. The data farming concepts presented in this 
paper were illustrated with numerical examples and a case 
study. 
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