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Abstract⎯In this paper, we investigate the economic lot scheduling problem (ELSP) with fuzzy demands. We assume that 
the demand for each product i can be approximated using some triangular membership functions. In this study, we solve the 
fuzzy ELSP using two basic solution approaches, namely, the Independent Solution (IS) and the Common Cycle (CC) 
approach. For both approaches, we derive the optimal fuzzy replenishment cycles and secure closed-form formula for their 
crisp figures in fuzzy sense, respectively. Also, we derive the conditions that assert the CC approach to secure the optimal 
solution for the fuzzy ELSP in many realistic situations. For the cases that deviate from those optimal-situations, we give an 
upper bound for the maximum error of  the solution of  the CC approach from optimality. A 10-product example 
demonstrates how to secure the solutions for the IS and the CC approach for the fuzzy ELSP, and illustrates the error 
bound of  the CC approach. 
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1. INTRODUCTION 

In this paper, we investigate the economic lot scheduling 
problem (ELSP) with fuzzy demands. We assume that the 
demand for each product i can be approximated using 
some triangular membership functions. Later, we solve the 
fuzzy ELSP using two basic solution approaches, namely, 
the Independent Solution (IS) and the Common Cycle (CC) 
approach. For both approaches, we derive the optimal 
fuzzy replenishment cycles and secure closed-form 
formula for their crisp figures in fuzzy sense, respectively. 

In this section, we first provide some background 
knowledge on the ELSP and introduce our motivation to 
study the ELSP with fuzzy demands. 

 
1.1 The economic lot scheduling problem 

The Economic Lot Scheduling Problem (ELSP) is 
concerned with scheduling the cyclical production of  n ≥ 2 
products on a single facility in lots that differ in size and, 
consequently, differ in production times and cycles. (A 
production cycle is the time from the start of  production 
of  a lot to the start of  production of  the next lot of  the 
same product.) The cost items involved are two: setup cost 
and inventory holding cost (the cost of  production is fixed and 
therefore irrelevant to optimization). 

The conventional ELSP is characterized by the 
following assumptions:  
1. Only one product can be produced at a time on the 

facility, product demands are continuous, and 
production rates, demand rates, setup times, setup costs, 
and inventory holding costs are deterministic; 

2. The facility capacity is sufficient to meet all the demands 
of  the products; 

3. Setup times and costs are independent of  the production 

sequence and lot sizes; 
4. Inventory costs are directly proportional to inventory 

levels; 
5. No shortages are allowed;   
6. The planning horizon is continuous and infinite. 

The ELSP has been studied for some forty years since 
Roger (1958) published the first article. Since the ELSP is 
an NP-hard problem (Hsu, 1983), hundreds of  research 
articles have been addressed to the ELSP and its 
extensions. One may refer to Elmaghraby (1978), Lopez & 
Kingsman (1991) and Yao (1999) for the extensive 
literature on the solution methodologies for solving the 
ELSP.  

The objective function of  the conventional ELSP is 
given by  

 

Minimize ( ) ( )21 1
1h i

i

n n h di
i i i ipi i

i

a
C T d T

T= =

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∑ ∑    (1) 

 
where  
di = demand per unit time for product i, 
pi = production rate per unit time for product i (pi > di),  
ai = setup cost for product i, 
hi = unit-holding cost per unit time for product i, 
Ti = cycle time for product i.  

A production plan in the context of  ELSP usually 
schedules the items within “basic periods”, where a basic 
period, denoted by B, is an interval of  time that is devoted 
to the setup and production of  a subset (or all) of  the 
products. That is, Ti = kiB, and the replenishment 
frequency must be a positive integer. Therefore, the 
solution of  the ELSP is the set of  multipliers 

1( ) { | }n
i iK B k B ==  and the basic period in which each 

product is produced.  
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Depending on different ways in formulating the ELSP 
models, one may classify the conventional ELSP models 
into three categories: (1) two basic solution approaches, i.e., 
Independent solution (IS) and the Common Cycle (CC) 
approach, (2) the Basic Period (BP) approach, and (3) the 
Extended Basic Period (EBP) approach. The IS ignores the 
interference between products (which violates the 
assumption that only one product can be produced at a 
time on the facility). In the IS, the optimal cycle time for 
product i is given by 

 

( ) ( ){ }max 2 1 , 1IS
i i i i i i iT a h d sρ ρ= − −⎡ ⎤⎣ ⎦         (2) 

 
where i i id pρ = , si = the setup time and 

( )2 1i i i ia h d ρ−⎡ ⎤⎣ ⎦  is the Economic Production 

Quantity (EPQ) cost expressions for product i. The term 
( )1i is ρ−  results from the case when the EPQ 

expression is not long enough, feasibility requires that it 
must be increased to ( )1i is ρ− . The IS secures an 
obvious lower bound for the cost of  any feasible solution. 
The IS brings infeasible solutions in general. However, 
whenever the IS has a feasible production schedule, it 
secures the optimal solution for the conventional ELSP. 
The CC approach sets ki = 1 for all i, that is, all the n 
products share a common replenishment cycle. Therefore, 
the mathematical model for the CC approach is given by  
 

Minimize [ ]
1

1
2

n
i i

i i
i

a h
d T

T
ρ

=

+ −∑         (3) 

subject to 
1

n

i i
i

s T Tρ
=

+ ≤∑          (4) 

 
where si is the setup time for product i. Ineq. (4) requires 
that the sum of  the production time for all the products 
must be no longer than the common replenishment cycle. 
One could easily solve the optimal cycle time for the CC 
approach by a closed form, i.e.,  
 

( ){
( )}

*
1 1

1 1

max 2 1 ,

         1 ,

n n
CC i i i ii i

n n
i ii i

T a h d

s

ρ

ρ

= =

= =

= −⎡ ⎤⎣ ⎦

−

∑ ∑

∑ ∑
        (5) 

 
where si is the setup time for product i. (One may refer to 
Hanssmann’s, 1962 book for the derivation of  *

CCT .) Note 
that unlike the IS, the CC is always feasible, and the CC 
approach provides an upper bound (Grznar and Riggle, 
1997) for the objective value of  the conventional ELSP. 
On the other hand, the BP approach (Bomberger, 1966) 
admits differing product cycles by taking the integer 
multiples of  a fundamental cycle. The basic cycle must be 
long enough to accommodate the lot production for all 
products. Elmaghraby (1977) then extended the BP 
approach and established the extended basic period (EBP). 
One may refer to the following papers for the heuristics 

using the EBP approaches: Fujita (1978), Haessler (1979), 
Park and Yun (1984), Boctor (1987), and Yao (1999).  

Recall that the first assumption of  the conventional 
ELSP states that demand rates for all of  the products are 
deterministic (i.e., fixed and known) in the beginning of  
this paper. It is one of  the key assumptions in the 
conventional ELSP. Though perturbation occurs in 
demands every day, this assumption might bother most of  
the managers when they employ the conventional ELSP 
models in inventory decision-making. Next, we review 
previous research on embedding fuzzy demands in 
inventory problems in the literature. 
 
1.2 Fuzzy demands in inventory problems 

Recently, fuzzy models (e.g., EPQ/EOQ) have been 
proposed to cope with the fluctuation problems in human 
subjectively originated data in the planning stage of  an 
inventory problem. One may refer to the following articles 
for the review of  fuzzy inventory models: Roy and Maiti 
(1997), Lin and Yao (2000), Chang (1999), Vujosevic et al. 
(1996), Lee and Yao (1998), Park (1987), Sommer (1981), 
Kacprzyk and Staniewski (1982), Yao and Lee (1999), and 
Yao and Su (2000). And, these fuzzy inventory models can 
be classified into two categories: 
1. The total cost function is only a crisp mapping from 

some fuzzy variable (e.g., production quantity) and thus 
yields a fuzzy set (e.g., Chang, 1999; Lin and Yao, 2000); 
i.e., where the fuzziness originates only with the lot size; 

2. The mapping itself  is fuzzy with fuzzy parameters (e.g., 
Park, 1987; Vujosevic et al., 1996; Lee and Yao, 1998) 
and thus blurs the image of  some crisp argument (e.g., 
production quantity). 
Along the second line of  research, most models seemed 

to concern only with the fuzzy total cost function, and 
researchers directly defuzzified it to obtain a compromised 
crisp lot size. What is neglected in this direction may be 
that in these circumstances, the decisions of  lot sizes are 
also blurred. Advantages of  finding such fuzzy lot sizes 
and thus fuzzy total costs with exact membership functions 
(equivalently α-cuts) are obvious. This is because fuzzy 
data exist and because the final decisions can be elected by 
the decision-makers by participating in the determination 
of  the final crisp compromised one. In Vujosevic et al. 
(1996) paper, he proposed a fuzzy economic order quantity 
(EOQ). Apparently, it was a direct fuzzified version of  the 
conventional crisp EOQ formula instead of  deriving it 
from the fuzzy total cost function. Pappis and 
Karacapilidis (1995) also proposed to use fuzzy numbers 
for demands in the common cycle (CC) approach for 
solving the ELSP with fuzzy demands (abbreviated as 
fuzzy ELSP for the rest of  the paper). But, it obviously 
bears a similar shortcoming. To the best of  the authors’ 
knowledge, no other research efforts in the second 
category of  fuzzy inventory models have been addressed 
to the ELSP with fuzzy demands. Therefore, it leads our 
motivation to figure out the influence of  the fuzzy 
demands on the fuzzy total cost function and to secure the 
fuzzy replenishment cycle times for the fuzzy ELSP. 
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The organization of  the rest of  this article is as follows. 
In Section 2, we present two basic solution approaches for 
solving the fuzzy ELSP, namely, the independent solution 
(IS) and the Common Cycle (CC) approach. For both 
approaches, we derive the optimal fuzzy replenishment 
cycles and secure closed-form formula for their crisp 
figures in fuzzy sense, respectively. Then, we derive the 
conditions that assert the CC approach to secure the 
optimal for the fuzzy ELSP in many realistic situations in 
the third section. For the cases that deviate from those 
optimal-situations, we give an upper bound for the 
maximum error of  the solution of  the CC approach from 
optimality. A numerical example in Section 4 illustrates 
how to secure the IS and the solution of  the CC approach 
for the fuzzy ELSP. Finally, Section 5 gives some 
concluding remarks. 
 
2. TWO BASIC SOLUTION APPROACHES FOR 

SOLVING THE FUZZY ELSP 

In this section, we present two basic solution approaches 
for solving the fuzzy ELSP, namely, the Independent 
solution (IS) and the Common Cycle (CC) approach.  

 
2.1 Fuzzy demands in the ELSP 

The following procedure delineates the steps for the 
derivation of  the fuzzy replenishment cycle times for the 
fuzzy ELSP. 
Step 1. Embed the fuzzy demands in the objective function 

(4) using fuzzy arithmetic and derive the fuzzy total 
cost function. 

Step 2. Solve the fuzzy replenishment cycle times from the 
fuzzy total cost function. 

Step 3. Defuzzify the fuzzy replenishment cycle times to 
secure their corresponding crisp ones. 

In this study, the fuzzy demands (denoted as iD�  = (di1, 
di0, di2), i = 1, …, n) are given as “approximate di0” with 
triangular membership functions as follows:  

 

( )
( ) ( )
( ) ( )

1 0 1 1 0

2 2 0 0 2

, .

, .
0,

i

i i i i i i i

iD i i i i i i i

d d d d d d d
u d d d d d d d d

otherwise

− − ≤ ≤⎧
⎪= − − ≤ ≤⎨
⎪
⎩

�  (6) 

 
For fuzzy arithmetic, the exact approach (Mizumoto and 

Tanaka, 1979) is used as follows. 
 

Remark. For function y = g(a, b), if  a and b be replaced by 
fuzzy numbers A and B with α-cuts as Aα and Bα that are 
ordinary continuous bounded intervals, the fuzzy function 
via fuzzy arithmetic can be obtained: Y = g(A, B) with Yα 
= g(Aα, Bα), where g(⋅,⋅) reduces to an interval operation. 
 
Proof. It is quite straightforward that by extension 
principle, we have the membership function for Y = g(A, B) 
as 
 

[ ]
1

1

( , ) ( )
( , )

1

sup ( ) ( ) if ( ) ,
( )

0 if ( ) .

A B
a b g y

g A B

a b g y
y

g y

µ µ
µ −

−

∈

−

⎧ ∧ ≠ ∅⎪= ⎨
⎪ = ∅⎩

(7) 

 
Thus consider µg(A, B)(y) ≥ α > 0. There should exist {(a, 

b)∈g−1(y)} and only that with µA(a) ≥ α and µB(b) ≥ α need 
to be considered because of  the ‘∧’ operation. 
Furthermore, as the fuzzy numbers’ membership functions 
are continuous and convex, if  µg(A, B)(y) = α, {(a, b)∈g−1(y)} 
reduces to only that with µA(a) = α and µB(b) = α need to 
be concerned. Therefore, since µg(A, B)(y) ≥ α, µA(a) ≥ α, 
and µB(b) ≥ α define the α-cuts of  fuzzy numbers, the 
extension principle requires that Aα and Bα are considered 
for Yα, or Yα = g(Aα, Bα) and g(⋅,⋅) reduces to an interval 
operation. 

 
2.2 The independent solution  

Since the fuzzy demand for product i is given as 
“approximate di0” with a triangular membership function, 
we have the equivalent α-cut by 

 
( ) ( )0 1 1 2 2 0,i i i i i i iD d d d d d dα α α= − + − −⎡ ⎤⎣ ⎦       (8) 

 
Next, we employ fuzzy arithmetic to derive the IS with 

fuzzy demands. Before presenting our derivation, we first 
define some notation that greatly simplifies the expression 

in the following presentation. Let ( )1 i

i

D
i i i pH h D

αα α= −  

and ,i iL iUH H Hα α α⎡ ⎤= ⎣ ⎦ , where  

 

( )( ) ( )( )2 02
0 1 1 1 i ii

i i

d dd
iL i i i i p pH h d d dα α α−= − + − +        (9) 

 
and 
 

( )( ) ( )( )1 01
0 2 2 1 .i ii

i i

d dd
iU i i i i p pH h d d dα α α−= − + − +      (10) 

 
We discuss the details of  the three-step procedure (given 

at the beginning of  this section) as follows.  
(3) Derive the fuzzy average total cost function – Step 1 

The fuzzy average total cost function can be derived 
from (1) with fuzzy demands as follows. For product i, the 
fuzzy average cost function, denoted as ( , )i i iC D T� , can be 
expressed as follows. 

 

( , ) 1
2

i i i
i i i i i

i i

a h D
C D T D T

T p
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

�� �        (11) 

 
Therefore, the fuzzy average cost function can be given 

by its α-cut, as  
 

iy C α∈ = ,i i
iL i iU

i i

a a
H T H T

T T
α α⎡ ⎤

+ +⎢ ⎥
⎣ ⎦

,        (12) 
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iff  ( , ) ( )
i i iC D T yµ α≥� .  

 
For (2.7), we will denote iC α  as [ , ]L Uy yα α , 0 < α ≤ 1, 

for simplification. 
(2) Solve the fuzzy replenishment cycle times – Step 2 

Next, we solve the optimal fuzzy replenishment cycle time for 
each product i, denoted by IS

iT , from its fuzzy average 
cost function and its fuzzy feasibility constraint, 
respectively.  

First, from (11) and (12), the fuzzy average cost function 
for product i, the following differential equation holds:  

 
{ }( , ) |0 1i i i i i idC D T dT dC dTα α= < ≤�  

={ }, |0 1L i U idy dT dy dTα α α< ≤ .       (13) 

 
By setting the first-order derivative in (13) to zero, we 

derive the lower and upper bounds for the fuzzy average 
cost function for each product i by 2 i iUa Hα and 

2 i iLa Hα , respectively. Define as ,i iL iUT t tα α α⎡ ⎤= ⎣ ⎦  the 

fuzzy replenishment cycle time of  product i. Then, one can 
easily secure iT α  by 

,i iL iUT t tα α α⎡ ⎤= ⎣ ⎦= 2 2[ , ]i i

iU iL

a a
H Hα α         (14) 

 
The fuzzy feasibility constraint for product i in the IS 

leads to the following expression:  
 

( )( )( ) ( )( )( )0 1 0 21 2min [ 1 , 1 ]i i i ii i

i i i i

d d d dd d
i i ip p p pT s sα α− −= − + − +  

  (15) 
 
By (14) and (15), we have the optimal fuzzy 

replenishment cycle time of  product i for the IS by  
 

{ }minmax ,IS
i i iT T Tα= .          (16) 

 
(3) Defuzzify the fuzzy replenishment cycle times – Step 3 

Since the manager is unable to directly use iT α  in (14) 
for his/her decision making, we need to defuzzify the 
fuzzy replenishment cycle time of  product i. To avoid 
adding too much complexity, we utilize the method of  
centroid to secure the crisp values of  the replenishment 
cycle times for the IS.  

The value of  the centroid is given by  
 

 

( )i iM D�
( )
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T

T

u z zdz
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∞
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where  
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The closed-form expressions for L
iM , ilM , U

iM  and iuM  are given as follows. 
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2.3 The common cycle approach 

Recall that the fuzzy demand for product i is given as 
“approximate di0” with a triangular membership function, 
and we have (8) as the equivalent α-cut.  

Similar to the derivation in Section 2.2, we employ fuzzy 

arithmetic to derive the optimal solution for the CC with 
fuzzy demand using the three-step procedure as follows.  
(3) Derive the fuzzy total cost function – Step 1 
By plugging fuzzy demands iD�  into the models for the 
CC approach in (3) and (4), we may secure the lower and 
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upper bounds for the fuzzy average total cost function and 
the fuzzy feasibility constraints in a format of  α-cut as 
follows. 

 
Minimize  
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Then, the fuzzy average total cost function for the CC 

approach can be simplified by 
 

1 1 1

,
2 2

n n n
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C T T
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α α
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and the fuzzy feasibility constraint is given by 
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(2) Solve the fuzzy replenishment cycle times – Step 2 
Next, we solve the fuzzy replenishment cycle time for the CC 
approach, denoted by CCT , from its fuzzy average cost 
function and fuzzy feasibility constraint, respectively.  

First, from (19) and (20), the fuzzy average cost function 
for the CC approach, the following differential equation 
holds:  

 

1

|0 1
n

i
i

d C dTα α
=
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⎩ ⎭
∑ .        (23) 

 
By setting the first-order derivative in (23) to zero, we 

derive the lower and upper bounds for the fuzzy average 

cost function by  
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2
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i i
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∑ ∑  and 

1 1

2
n n

i iL
i i
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= =
∑ ∑ , respectively. 

Define as ,L UT t tα α α⎡ ⎤= ⎣ ⎦  the fuzzy replenishment cycle 

time from the fuzzy average total cost function of  the CC 
approach. Then, one can easily secure T α  by 
 

,L UT t tα α α⎡ ⎤= ⎣ ⎦  

=
1 1 1 1

2 , 2
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On the other hand, the fuzzy feasibility constraint gives 

the lower and upper bounds for the fuzzy replenishment 
cycle as follows.  
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By combining (24) and (25), we secure the optimal fuzzy 

replenishment cycle time for the CC approach, i.e., CCT , 
as follows. 

 
{ }minmax ,CCT T Tα= .         (26) 

 
(3) Defuzzify the fuzzy replenishment cycle times – Step 3 
Next, we utilize the method of  centroid to defuzzify the 
fuzzy replenishment cycle time from Step 2 to secure the 
crisp value of  the optimal replenishment cycle time for the 
CC approach.  

The value of  the centroid from the objective function is 
given by 
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where  
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The closed-form expressions for LM , lM , UM  and uM  are given as follows. 
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The value of  the centroid from the fuzzy feasibility constraint is given by 
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When it holds that minT T α≤ , one may secure the expression for the optimal fuzzy average total cost as follows. 
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3. THEORETICAL ANALYSIS ON THE ELSP 

WITH FUZZY DEMANDS 

Since the conventional ELSP is NP-hard, it is more 
difficult for us to secure an optimal solution for the ELSP 
with fuzzy demands. Recall that many heuristics are 
proposed to solve the conventional ELSP, and these 
heuristics usually involve partial enumeration and require 
extensive computation efforts in general. For such a reason, 
one might have to use heuristics or meta-heuristics (e.g., 
simulated annealing or genetic algorithms, etc) to obtain 
“good” and implementable solutions.  

On the other hand, it is worthwhile to investigate when 
the CC approach is nearly optimal in many real world 
situations since the solution of  the CC approach can be 
secured much more easily than other solution approaches.  

In the following discussion, we first study when the 
fuzzy ELSP is easy since the CC approach in fact secures 
the optimal solution. Then, we analyze the sensitivity of  
these conditions; that is, to investigate how the quality of  
the solution from the CC approach is affected when we 
deviate from these conditions. 

 
3.1 The optimality conditions 

First, we state Lemma 1 which in fact provides the 
conditions for the CC approach to secure the optimal 
solution for the fuzzy ELSP as follows. 

 
Lemma 1. If  the following two conditions hold, 

Condition 1: 1 2

1 2

n

n

aa a
H H Hα α α= = =…  

Condition 2: minT T α≤ ,  
Then, IS CC

iT T= , for all i=1…n。 
 
Proof. Please refer to Appendix A.1 for the details of  the 
proof.  

The proof  of  Theorem 1 in the following discussion 
needs Lemma 2 as follows. 

 
Lemma 2. The defuzzified value for ( )0 1i i iD d dα α= −⎡⎣  

( )1 2 2 0,i i i id d d dα+ − − ⎤⎦  is given by  

 
( )1

1 0 23 i i id d d+ + .              (30) 
 

Proof. Please refer to Appendix A.2 for the details of  the 
proof.  
 
Theorem 1. Whenever Conditions 1 and 2 in Lemma 1 
hold, the CC approach secures the same solution as the IS 
for the fuzzy ELSP.  
 
Proof. We know it from Lemma 1 that 1

CC IST T=  

2 3
IS IS IS

nT T T= = = =" , i.e., all the n products share the 
same replenishment cycle time. The processing time and 
the replenishment batch quantity for product i for the CC 
approach are CC

i iTτ ρ= ( )1
1 0 23

CC
i i i iT d d d p= + + , and 

( )1
1 0 23

CC
i i i iq d d d T= + + , respectively. And, those for the 

IS are ( )1
1 0 23

IS
i i i i i iT d d d pτ = + +  and 1

1 03 (i i iq d d= +  

2 ) IS
i id T+ , respectively. Obviously, when CC IS

iT T= , one 
may use the production schedule of  the CC approach to 
establish a feasible production schedule for the IS. 
Therefore, when Conditions 1 and 2 in Lemma 1 hold, the 
CC approach secures the same solution as the IS.  

The following corollary concludes our assertion on the 
optimality conditions. 

 
Corollary 1. Whenever Conditions 1 and 2 in Lemma 1 
hold, the CC approach secures the optimal solution for the 
fuzzy ELSP. 
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Proof. First, recall that the IS provide a lower bound for 
the average total cost function for the fuzzy ELSP. But, 
the IS usually secures infeasible solution since the IS ignore 
the constraint that only one product can be produced at 
one time point. On the other hand, recall that the solution 
from the CC approach is always feasible, and the when the 
solution of  the IS is feasible, it is also optimal. Therefore, 
when these two solutions coincide, both solutions must be 
feasible and optimal. By Theorem 1, when Conditions 1 
and 2 in Lemma 1 hold, the ELSP with fuzzy demand iD�  
for each product i, the CC approach secures the same 
solution as the IS. Therefore, whenever Conditions 1 and 2 
in Lemma 1 hold, the ELSP with fuzzy demand iD�  for 
each product i, the CC approach secures the optimal 
solution.  

We note that the optimality conditions discussed above 
commonly occur in industry. Whenever all the product’s 

i ia Hα  ratios are the same and the setup time is relatively 
short (so that Condition 2 holds), the CC approach 
provides the optimal solution. This case often happens 
when the single facility produces many mirror image parts 
which are used to assemble a final product.  

But, what if  the i ia Hα  ratios are not the same? We 
answer this question by presenting an error bound which 
results from our sensitivity analysis on the optimality 
conditions in the next section. 

 
3.2 Sensitivity analysis on the optimality conditions  

We are motivated to study how close to optimal the CC 
approach is when the i ia Hα  ratios are almost the same. 
Here, we assume that IS

i iT T α=  and CCT T α=  for 
clarity and the setup time is relatively short. Without loss 
of  generality, we sort the products in a descending order in 
their i ia Hα  ratios. Hence, product 1 has the largest ratio, 
and let iλ  be the ratio of  i ia Hα  over 1 1/a Hα , i.e., for 
i = 1, …, n,  
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i
i

i

a a
H Hα αλ= .              (31) 

 
Obviously, 1 1λ =  and 0 1iλ≤ ≤ , for i=2…n. When 

all the values of  ' 1i sλ = , it holds for Condition 1, the CC 
approach secures the optimal solution. 

Although we do not know the optimal average total cost 
when Conditions 1 and 2 in Lemma 1 do not hold, the 
average total cost of  the IS provides us an easy lower 
bound. On the other hand, the CC approach is always 
feasible, and it gives an obvious upper bound. Therefore, 
we may use ( )CC IS CCASIC ASIC ASIC−  as an index 

to evaluate the solution quality of  the CC approach. 
Importantly, we shall observe how 
( )CC IS CCASIC ASIC ASIC−  is bounded above by a 

function of  { }iλ .  

 
 

Theorem 2. For the fuzzy ELSP with minT T α≤  and min
i iT T α≤  for all i, 
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By plugging (33) into ISASIC  and CCASIC , we have 
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and 
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4. AN NUMERICAL EXAMPLE 

In this section, we employ a 10-product example to 
demonstrate how to secure the solution for the ELSP with 
fuzzy demands using the IS and the CC approach. We also 
use this example to validate our error bound derived in 
Theorem 2.  

In Table 1, we present the following data set (from 
Bomberger, 1966) for this 10-product example. We note 
that the third column is the crisp annual demand rate and 
the fourth to the sixth columns indicate the fuzzy demand 
rate “approximate 0id ” with triangular membership 
function.  

We first summarize the computation data needed for the 
IS solution in Table 2. For the IS, the optimal fuzzy average 
total cost is secured by ASICIS = [$7,529, $7,627]. For the 
conventional ELSP, we secure the optimal average total 

cost for the IS by $7,589. The fuzzy replenishment cycle 
times, i.e., (16), are listed in the 8th and the 9th columns of  
Table 2. The defuzzified replenishment cycle times from 
the method of  centroid, i.e., ( )i iM D� , are shown in the 
tenth column of  Table 2. 

For the CC approach, one can secure 
T α = [42.599,43.021] and minT = [29.040,33.200]. 
Therefore, we have CCT = [29.040,43.021], and the 
defuzzified replenishment cycle time, i.e., ( )iM D� , is 
secured by 29.68. The optimal fuzzy average total cost for 
the CC approach, is secured by ASICCC = [$9,818, $9,916]. 
On the other hand, for the conventional ELSP, we secure 
the crisp replenishment (common) cycle time and the 
optimal average total cost for the CC approach by 42.75 
and $9,880, respectively.  

 
 
 

Table 1. The data set for the 10 products in the example 
Product ia  id  1id  0id  2id  ip  is  ih  

Unit ($) (year) (year) (year) (year) (year) (days) (year) 
1 15 96000 92000 96000 100000 7200000 0.125 0.00065 
2 20 96000 92000 96000 104000 1920000 0.125 0.01775 
3 30 192000 132000 192000 200000 2280000 0.25 0.01275 
4 10 384000 320000 384000 400000 1800000 0.125 0.01 
5 110 19200 12000 19200 22000 480000 0.5 0.2785 
6 50 19200 14000 19200 20800 1440000 0.25 0.02675 
7 310 5760 4000 5760 7600 576000 1 0.15 
8 130 81600 76000 81600 84000 312000 0.5 0.59 
9 200 81600 78276 81600 86000 480000 0.75 0.09 
10 5 96000 80000 96000 104000 3600000 0.125 0.004 
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Table 2. The computation for the IS and the error bound 

Product iLHα  iUHα  iLtα  iUtα  min
iT  IS

iT  ( )i iM D�  i ia Hα
iλ  

1 0.255 0.258 10.791 10.837 0.127 0.127 0.127 10.837 0.698 58.472 0.673 
2 6.714 6.802 2.425 2.441 0.132 0.132 0.131 2.441 0.157 2.959 0.034 
3 9.046 9.407 2.526 2.575 0.272 0.273 0.272 2.575 0.273 3.252 0.037 
4 12.362 12.696 1.255 1.272 0.158 0.159 0.158 1.272 0.159 0.798 0.009 
5 20.574 21.735 3.182 3.270 0.520 0.521 0.520 3.270 0.521 5.200 0.060 
6 2.054 2.130 6.852 6.977 0.253 0.253 0.253 6.977 0.444 23.901 0.275 
7 3.454 3.679 12.982 13.398 1.010 1.010 1.010 13.398 1.010 86.920 1 
8 146.966 148.932 1.321 1.330 0.675 0.678 0.675 1.330 0.677 0.879 0.010 
9 25.267 25.556 3.956 3.979 0.903 0.905 0.903 3.979 0.904 7.870 0.091 
10 1.531 1.571 2.523 2.556 0.128 0.128 0.128 2.556 0.164 3.224 0.037 

 
 

Next, we verify our theoretical results derived in Section 
3. First, one should observe the values of  iλ  in the last 
column of  Table 2 are not close to 1 at all, and it does not 
meet the condition stated in Lemma 1. Clearly, in this 
instance, the CC approach is unable to secure a solution 
which is close to the optimal solution of  the fuzzy ELSP, 
and the additional effort of  using a sophisticated heuristic, 
e.g., using a genetic algorithm (Chang, et al, 2002), etc., is 
justified. Next, we secure the error bound from Theorem 2, 
i.e., (32), by [0.3471,0.3532]. We note that the optimal fuzzy 
average total costs for the IS and the CC approach are 
secured by ASICIS = [$7,529, $7,627] and ASICCC = 
[$9,818, $9,916], respectively. Therefore, the actual error 
from ASICIS and ASICCC is within the interval of  
[0.2873,0.3170] which is less than all the values in the error 
bound interval of  [0.3471,0.3532]. 

 
5. CONCLUDING REMARKS 

In this paper, we investigate the economic lot scheduling 
problem (ELSP) with fuzzy demands. We assume that the 

demand for each product i can be approximated using 
some triangular membership functions. In this study, we 
solve the fuzzy ELSP using two basic solution approaches, 
namely, using the Independent Solution (IS) and the 
Common Cycle (CC) approach. For both approaches, we 
derive the optimal fuzzy replenishment cycles and secure 
closed-form formula for their crisp figures in fuzzy sense, 
respectively. Also, we derive the conditions that assert the 
CC approach to secure the optimal solution for the fuzzy 
ELSP in many realistic situations. For the cases that deviate 
from those optimal-situations, we give an upper bound for 
the maximum error of  the solution of  the CC approach 
from optimality. 
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APPENDIX 

A.1 The Proof  of  Lemma 1 

Proof. First recall that by (15) and (16), we have ( )( )( ) ( )( )( )0 1 0 21 2min [ 1 , 1 ]i i i ii i

i i i i

d d d dd d
i i ip p p pT s sα α− −= − + − +  and  

( ) ( )0 1 0 2min 1 2

1 1 1 1

1 , 1
n n n n

i i i ii i
i i

i i i ii i i i

d d d dd dT s s
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α α
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= − + − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ ∑ ∑ .  
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1,...,i ii n

s s
=

≤ ∑  and ( ) ( )( )0 1 0 11 1

1,...
i i i ii i

i i i i

d d d dd d
p p p pi n

α α− −

=
+ ≤ +∑ , we have ( )( ) ( )( )0 1 0 11 1

1,...
1 1i i i ii i

i i i i

d d d dd d
p p p pi n

α α− −

=
− + ≥ − +∑  

and hence,  
 

( )( )( ) ( )( )( )0 1 0 11 1

1,... 1,...
1 1i i i ii i

i i i i

d d d dd d
i ip p p pi n i n

s sα α− −

= =
− + ≤ − +∑ ∑ .              (34) 

 

Similarly, since ( ) ( )( )2 0 2 02 2

1,...
i i i ii i

i i i i

d d d dd d
p p p pi n

α α− −

=
+ ≤ +∑ , we have ( )( ) ( )( )2 0 2 02 2

1,...
1 1i i i ii i

i i i i

d d d dd d
p p p pi n

α α− −

=
− + ≥ − +∑  and 

hence,  
 

( )( )( ) ( )( )( )2 0 2 02 2

1,... 1,...
1 1i i i ii i

i i i i

d d d dd d
i ip p p pi n i n

s sα α− −

= =
− + ≤ − +∑ ∑ .           (35) 
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Therefore, by (34) and (35), we assert that for all i=1,…,n,  
 
min min

iT T≤ .                   (36) 
 

Recall that 2 2[ , ]i i

iU iL

a a
i H HT α α
α =  and 

1 1 1 1

2 , 2
n n n n

i iU i iL
i i i i

T a H a Hα α α

= = = =

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑ . By Condition 1, we have 

1

1

i

i

aa
H Hα α= , for all i=1…n, i.e., 

 

1 1 1 1

1 1 11 1
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, U LL U
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Observing each term in (37), we have 1 2

1 2

i

U U iU

aa a
H H Hα α α= = ="  and 1 2

1 2

i

L L iL

aa a
H H Hα α α= = ="  for the lower and upper 

bounds, respectively. Then, the following expression holds for all i=2…n, 
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By plugging ia  in (38) into iT α  and T α , we have 1 1

1 1
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On the other hand,  
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Therefore, it holds that  
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1 nT T Tα α α= = =" .                         (41) 

 
By combining Condition 2, (36) and (41), we assert that min min

i iT T T Tα α≤ ≤ = , for all i=1…n. By (16) and (17), we 
have IS

i iT T α=  and CCT T α= , for all i=1…n. Therefore, IS CC
iT T= , for all i=1…n.  

 
A.2 The Proof  of  Lemma 2 

Proof. Recall that ( ) ( )0 1 1 2 2 0,i i i i i i iD d d d d d dα α α= − + − −⎡ ⎤⎣ ⎦ . Therefore, the cutα −  for the lower bound is given by 
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