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Abstract⎯In many industries, sellers have the opportunity to enhance their revenues through the dynamic pricing of  
their perishable products such as flight seats, hotel rooms, or seasonal fashion goods that become worthless if  they are not 
sold by a specific time. Therefore, how to dynamically adjust the prices of  perishable products through differentiating the 
purchased time and the amount of  unsold items to maximize the revenue is an important issue. Due to the immediate 
response and lower menu cost on the Internet, the application of  the dynamic pricing to the Internet market is especially 
appropriate. In this paper we construct a dynamic pricing model for selling a given stock of  identical perishable products 
over a finite time horizon on the Internet. We then propose three theorems to demonstrate the properties of  the expected 
revenue and the time thresholds in the model. A numerical example is presented to illustrate the model and its results. 
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1. INTRODUCTION 

In many industries, sellers and service providers have the 
opportunity to enhance their revenues through the 
dynamic pricing of  their perishable products that must be 
sold within a finite period of  time. The industry which is 
most commonly mentioned in terms of  its adopting 
dynamic pricing strategies is airline transportation. Similarly, 
items such as hotel rooms, sports tickets, and seasonal 
fashion goods that become worthless if  they are not sold 
by a specific time, are all suited to dynamic pricing because 
these perishable items must be sold prior to the time at 
which they are unsalable. In all of  these cases, the sellers 
can improve their revenue by dynamically adjusting the 
price of  the perishable products rather than adopting a 
fixed price throughout the product’s market life. Obviously, 
the price policies on perishable products are affected by the 
length of  time remaining before the products perish as well 
as by the numbers of  unsold inventory. Intuition suggests 
that when inventory is low or when there is plenty of  time 
before the product perishes, the seller can post a higher 
price than when inventory is high or when the end of  the 
product life draws near (Chatwin, 2000). In fact, how a 
retailer should dynamically adjust the prices of  perishable 
products through differentiating the time of  purchase and 
the number of  yet unsold items is an important issue.  

Due to the rapid growth of  the Internet, the practical 
application of  dynamic pricing to the Internet market 
provides the motivation for the research reported in this 
paper. The application of  the dynamic pricing to the 
Internet market is especially valuable, according to several 
factors: (1) immediate response on the Internet (Gallego 
and van Ryzin, 1994; Kannan and Kopalle, 2001); (2) lower 
menu costs on the Internet (Brynjolfsson and Smith, 2000; 
Gallego and van Ryzin, 1994); and (3) purchasing 
convenience on the Internet (Boston Consulting Group, 

2000; Brynjolfsson and Smith, 2000; Cao et al., 2003). 
These factors contribute to the development of  dynamic 
pricing strategies on the Internet market, and the Internet 
environment is also quite well suited to dynamic pricing 
strategies. Therefore, dynamic pricing has increasingly 
become a necessary mechanism for companies on the 
Internet to improve profitability, maintain competitiveness, 
balance supply and demand, and manage risks. 

Several researchers have addressed dynamic pricing 
models. Gallego and van Ryzin (1994) derive an optimal 
pricing policy when demand functions are exponential. For 
general demand functions, they analyze a deterministic 
version of  the problem and find an upper bound on the 
expected revenue. Gallego and van Ryzin (1997) extend the 
single-item model to allow time-varying demand and 
multi-items with a network structure. There are various 
studies of  pricing policies in the continuous-time revenue 
management. For example, Bitran and Mondschein (1997) 
present a continuous time model for the retailing industry 
and characterize the optimal pricing strategy as a function 
of  the inventory and the time left in the planning horizon. 
In addition, Feng and Gallego (1995) obtain an optimal 
timing for the model with two predetermined prices and a 
single price switch when the demand is price sensitive and 
stochastic. Feng and Xiao (2000) further extend the results 
by incorporating multiple price levels. Furthermore, Feng 
and Gallego (2000) extend the previous model by assuming 
time-dependent or Markovian demand and fares. Feng and 
Xiao (2000) construct a model in which reversible price 
changes are allowed. Chatwin (2000) presents some 
properties of  the dynamic pricing model in a finite set of  
prices, showing that the maximum expected revenue is 
nondecreasing and concave in both the remaining 
inventory and the time-to-go. 

Most models in the literature (e.g., Feng and Gallego 
(1995)) assume that demand is a homogeneous Poisson 
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process with a constant intensity. However, Zhao and 
Zheng (2000) study a dynamic pricing model where 
customers arrive according to a nonhomogeneous Poisson 
process and their reservation price distribution changes 
over time. On the other hand, by assuming that the 
customer’s demand is represented as a negative binomial 
distribution, Chun (2003) presents the optimal pricing 
policy based on the demand rate, customers’ preferences, 
and the length of  the sales period. Lin (2004) proposes a 
sequential dynamic pricing model where the seller sells a 
given stock to a random number of  customers. He also 
formulates the seller's problem as a stochastic dynamic 
programming model, and develops an algorithm to 
compute the optimal policy. 

The remainder of  this paper is organized as follows. In 
Section 2 we describe the problem statement along with 
the assumptions and notations in this study. The dynamic 
pricing model and formulation are given in Section 3. In 
Section 4 we show the properties of  the optimal pricing 
policy. A numerical example is presented in Section 5, and 
Section 6 concludes the paper.  

 
2. PROBLEM STATEMENT 

In this paper we will construct a dynamic pricing model 
for selling a given stock of  identical perishable products 
over a finite time horizon on the Internet. The sale ends 
either when the entire stock is sold out, or when the 
deadline is over. Moreover, the objective of  the seller is to 
find a dynamic pricing policy that maximizes the total 
expected revenue. Although the seller can use dynamic 
pricing policy to improve yield, it will have some negative 
effects on consumer’s trust of  the seller, especially in the 
nonperishable product categories (Kannan and Kopalle, 
2001). Therefore, we consider only perishable products 
here, such as airline seats, rental cars, concert tickets, and 
seasonal fashion goods that will be disposed of  with little 
salvage value left if  they are unsold at the end of  the 
horizon. In this study, demand can be modeled as a 
price-sensitive stochastic Poisson process with an intensity 
that is a known decreasing function of  the price. All 
customers are independent, and they will either purchase 
an item if  the current price is below their reservation price 
or leave empty-handed, where the reservation price of  a 
customer is the maximum price which he or she is willing 
to pay for the product. Generally, the reservation price has 
a continuous distribution over the population of  the 
customers. In addition, both the intensity of  the 
customers’ arrival rate and the reservation price 
distribution may vary with time. Furthermore, we assume 
that there are no other competitors on the Internet. That is, 
we neglect the effects of  other competition. Therefore, this 
is a single-product, single-retail store problem. 
Furthermore, the list price should be posted on the 
Internet in advance of  the sale by the seller and is not 
negotiable with customers.  

The assumptions of  this study are as follows: 
(1) There is a given inventory of  identical products to be 

sold in a given time horizon. 

(2) The demand is price-sensitive and a stochastic Poisson 
process. 

(3) Items left unsold at the end of  the horizon are disposed 
of  at a salvage value. For notational convenience, the 
salvage value of  the items is assumed to be zero. 

(4) The cost associated with price changes is ignored. 
(5) All costs related to the purchase or production of  items 

are considered sunk costs. 
(6) There are no holding costs. 
(7) We neglect the rate of  discount. 

On the other hand, there are some restrictions of  this 
study: 
(1) When the items are sold out or the deadline is over, 

sales must terminate immediately. 
(2) Initial stock is fixed. 
(3) Reordering or backlogging is not allowed during the 

sales horizon. 
(4) Customers cannot return products after they have 

purchased them (i.e., no cancellations).  
We have the notations below in this paper: 

PI: the price i at which the seller offers to sell 
items, where i denotes predetermined available 
prices over the sales horizon 

T : the length of  the sales horizon 
[0, T]: the time interval 
t: time, 0 t T≤ ≤  
M: initial amount of  items at time 0 
Ni(t): the number of  items sold up to time t at price 

pi 
n:  left amount of  unsold items 
λ(t): customers’ arrival rate at time t, t ∈ [0, T] 
f(x, t): probability density function of  the reservation 

price at time t 
F(x, t): cumulative probability distribution function of  

the reservation price at time t 
b(pi, t): probability that a customer arriving at time t 

would buy an item at price pi 
d(pi, t): demand intensity at time t and price pi 
ri(t): revenue rate at time t and price pi 
J(n, t): expected revenue over [t, T] when there are n 

unsold items at time t 
Vi(n, t): the maximum value of  the expected revenue 

over [t, T]  when there are n unsold items at 
time t, where i means the pricing policy at time 
t and it may be changed afterward according to 
n and s (s ＞ t) 

i
nz : time threshold when there are n unsold items 

 

3. MODEL FOMULATION 

Consider a seller who has M items of  perishable 
products to sell on the Internet market in a finite time 
interval [0, T]. At any time, the seller selects a price for the 
products from the set of  predetermined prices 

{ }1 2, , , kP p p p= , with 1 2 kp p p< < ⋅⋅ ⋅ < . In addition, 
assume that customers arrive according to a 
nonhomogeneous Poisson process with rate λ(t), t ∈ [0, T] 
Each arriving customer would buy an item if  the price 
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which the seller offers at that time is below his or her 
reservation price. In fact, the distribution of  the 
reservation price may vary with time. Let ( , )f x t denote the 
probability density function of  the reservation price at time 
t and ( , )F x t denote the cumulative probability distribution 
function of  the reservation price at time t. Thus, 

( , ) 1 ( , )i ib p t F p t= − is the probability that a customer 
arriving at time t would buy an item at price pi and is a 
decreasing function of  pi. As a result, the demand is a 
nonhomogeneous Poisson process with intensity 

( , ) ( ) ( , )i id p t t b p tλ= . Moreover, if  the seller adopts policy 
i to sell items at time t, that is, the price pi is chosen as a 
pricing policy, then the corresponding demand intensity is 

( , )id p t , which is also decreasing in price. Furthermore, we 
define revenue rate to be ( ) ( , )i i ir t p d p t= and assume that 

( )ir t  is a decreasing function of  pi, i.e., if j kp p< , then 
( ) ( )j kr t r t> . This assumption must hold; otherwise, the 

lower price pj would be dominated and would not be set.  
Let U  be the set of  all pricing policies, which satisfy 

 

( )
0

1

k T

i
i

dN s M
=

≤∑∫ .                             (1) 

 

Let ( )
      
     

1 if  is optimal at time ;
0 otherwise.                      

i
i

p t
S t ⎧

= ⎨
⎩

 

Then given a pricing policy u U∈ , when there are n 
unsold items at time t ( 0 t T≤ < ), the expected revenue 
over [t, T] can be expressed as 
 

( ) ( ) ( )
1

,
k T

u i i it
i

J n t E S s p dN s
=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑∫                (2) 

 
with boundary conditions ( , ) 0,uJ n T n= ∀  and 

(0, ) 0,uJ t t= ∀ . This means that no revenue can be earned 
when either time or stock is running out.  

The maximum of ( ),uJ n t over all policies u U∈  is 

denoted by ( ),V n t ; i.e., 
 

( ) ( ), max ,V n t J n tuu U
=

∈
.                         (3) 

 
Lemma 1. (1) V(n, t) is continuous and decreasing in t for 
a fixed n; (2) V(n, t) is increasing and concave in n for any 
fixed t (Chatwin, 2000, Feng and Xiao, 2000; Gallego and 
van Ryzin, 1994; Lee and Hersh, 1993; Zhao and Zheng, 
2000). 

Lemma 1 shows that more stock or more time leads to 
higher expected revenues. In fact, whether the demand is a 
homogeneous Poisson process or nonhomogeneous 
Poisson process, the properties in Lemma 1 always hold.  

Subsequently, consider a transaction over a small time 
interval t∆ . The seller sells one item over the next t∆  
with probability approximately ( ) ( ),it b p t tλ ∆  and no 

items with probability approximately ( ) ( )1 ,it b p t tλ− ∆ . 
Thus, we have 

 
( ) ( ) ( ) ( ){

1,2,...,
, max , 1,i ii k

V n t t b p t t p V n t tλ
=

= ∆ + − + ∆⎡ ⎤⎣ ⎦  

( ) ( ) ( )}1 , ,it b p t t V n t tλ+ − ∆ + ∆⎡ ⎤⎣ ⎦     (4) 

 
Letting ( ) ( ) ( ),i i ir t p t b p tλ=  and ( ), /V n t t∂ ∂ =  

( ) ( )( ), , /V n t t V n t t+ ∆ − ∆ , taking the limit as 0t∆ → , 
we can obtain 

 
( ) ( ) ( ) ( ) ( ){

1,2,...,

,
max , 1, ,ii k

V n t
t b p t V n t V n t

t
λ

=

∂
+ − −⎡ ⎤⎣ ⎦∂

  

}( )ir t+  = 0 1, 0n t∀ ≥ ∀ ≥                      (5) 
 

with boundary conditions ( ), 0,V n T n= ∀    and 

( )0, 0,V t t= ∀  . 
As we mentioned before, the demand is a 

nonhomogeneous Poisson process with intensity 
( ) ( ) ( ), ,i id p t t b p tλ= . Therefore, if  pi is the optimal 

policy at time t, from (5) we can get 
 

( ) ( ) ( ) ( ) ( ),
, 1, , 0i i

V n t
d p t V n t V n t r t

t
∂

+ − − + =⎡ ⎤⎣ ⎦∂
 (6) 

 
and 
 

( ) ( ) ( ) ( ) ( ),
, 1, , 0j j

V n t
d p t V n t V n t r t

t
∂

+ − − + ≤⎡ ⎤⎣ ⎦∂
,      

∀ ≠j i .                                       (7) 
 

Combining formulas (6) and (7) leads to (8): 
 

( ) ( )
( ) ( )

( ) ( )
, 1,

, ,
i j

i j

r t r t
V n t V n t

d p t d p t
−

− − ≤
−

, ∀ ≠j i .    (8) 

 
Lemma 2. The revenue rate ( )ir t is an increasing and 
concave function of  demand intensity ( , )id p t (Chatwin, 
2000; Feng and Xiao, 2000; Feng and Xiao, 2000; Gallego 
and van Ryzin, 1994). 

 
The revenue rate ( )ir t in Lemma 2 is the corresponding 

revenue rate of  the demand intensity ( , )id p t at time t. If  
the demand is a nonhomogeneous Poisson process, this 
means that at different time points there are different 
demands and with the corresponding revenue rates. 
However, the revenue rate ( )ir t is still an increasing and 
concave function of  demand intensity ( , )id p t at any time t.  

If  some prices fail to satisfy Lemma 2, then these prices 
will be automatically eliminated from the active price set. 
The proof  of  Lemma 2 can be found in (Feng and Xiao, 
2000). 

If  Lemma 2 holds, we can see  
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( ) ( )

( ) ( )
( ) ( )

( ) ( )
1 2

1 2, , , ,
i i i i

i i i i

r t r t r t r t
d p t d p t d p t d p t

+ +

+ +

− −
≤ ≤

− −
 

( ) ( )
( ) ( ), ,

i k

i k

r t r t
d p t d p t

−
≤

−
                          (9) 

and  
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2 2 3

1 2 2 3, , , ,
r t r t r t r t

d p t d p t d p t d p t
− −

≤ ≤
− −  

( ) ( )
( ) ( )

-1

-1 , ,
k k

k k

r t r t
d p t d p t

−
≤

−
.                       (10) 

 
Therefore, we have 

 

( ) ( ) ( ) ( )
( ) ( )

1

1

, 1,
, ,

i i

i i

r t r t
V n t V n t

d p t d p t
+

+

−
− − ≤

−
.         (11) 

 
Since (0, ) 0,  V t t= ∀ , we proceed with n = 1. Besides, 

with (1, ) 0V T = , when t T→ , then p1 is the optimal 
price. This is consistent with intuition. Indeed, with less 
time left, we should set the lowest price to stimulate sales. 
Therefore, the expected revenue when there is only one 
item left at time t ( t T→ ) can be solved for ( )1 1,  V t  in 
(5) as 
 

( ) ( ) ( )( )1 ,
1 11,

T d p t s t

t
V t r t e ds− −= ∫                     (12) 

 

where ( )( )1 ,T d p t s t

t
e ds− −∫  means the probability that exactly 

one item will be sold within the time interval [t, T]. Then 
substituting (12) into (11), we can find 
 

( ) ( ) ( )
( ) ( )

1 2
1

1 2

1,
, ,

r t r t
V t

d p t d p t
−

≤
−

.                    (13) 

 
According to Lemma 1, 1(1, )V t is continuous and 

decreasing with respect to t. Hence, if  1(1, 0)V >  

1 2 1 2( ( ) ( )) ( ( , ) ( , ))r t r t d p t d p t− − , then there must exist a 
time point t, 0 < t < T, at that time 1(1, )V t =  

1 2 1 2( ( ) ( )) ( ( , ) ( , ))r t r t d p t d p t− − . Therefore, we can define 
a time threshold as: 
 

( ) ( ) ( )
( ) ( )

1 1 2
1 1

1 2

inf 0 : 1,
, ,

r t r t
z t T V t

d p t d p t
⎧ ⎫−⎪ ⎪= ≤ ≤ =⎨ ⎬−⎪ ⎪⎩ ⎭

.  (14) 

 
If 1

10 z T< < , then it partitions the sale period into two 

intervals, )1
10,z⎡⎣ and 1

1 ,z T⎡ ⎤⎣ ⎦ . When there is only one 

unsold item left, the price p1 is offered if  1
1z t T≤ ≤ . On 

the other hand, if  1
1t z< , then the seller can offer a higher 

price p2. That is, 1
1z  is the switching time from p2 

markdown to p1 if  one item remains on hand.  

Because p2 is the optimal price for 1
1t z<  ( 1

1t z→ ), 

2(1, )V t  can be modeled as 
 

( ) ( ) ( )( ) ( ) ( )( )1 11 2 12
,, 1

2 2 1 11,  1,
z d p t z td p t s t

t
V t r t e ds V z e− −− −= +∫  (15) 

 

where ( )( )
1
1

2 ,z d p t s t

t
e ds− −∫  means the probability that exactly 

one item will be sold within the time interval 1
1,t z⎡ ⎤⎣ ⎦  and 

( )( )1
2 1,d p t z te− −  means the probability that no items will be 

sold within the time interval 1
1,t z⎡ ⎤⎣ ⎦ . 

Similarly, substituting (15) to (11), we can have 
 

( ) ( ) ( )
( ) ( )

2 3
2

2 3

1,
, ,

r t r t
V t

d p t d p t
−

≤
−

.                    (16) 

 
According to Lemma 1, if  2 2 3(1, 0) ( ( ) ( ))V r t r t> −  

2 3( ( , ) ( , ))d p t d p t− , then there must exist a time point t, 
1
10 t z< < , at the time ( ) ( ) ( )( )2 2 31,V t r t r t= −  

( ) ( )( )2 3, ,d p t d p t− . Again, we can define a time 

threshold as: 
 

( ) ( ) ( )
( ) ( )

2 1 2 3
1 1 2

2 3

inf 0 : 1,
, ,

r t r t
z t z V t

d p t d p t
⎧ ⎫−⎪ ⎪= ≤ < =⎨ ⎬−⎪ ⎪⎩ ⎭

.   (17) 

 
Accordingly, once 1

1 , 2, ,iz i k− =  have been defined, we 
can continue to solve ( )1,iV t  for 1

1
it z −< , which is 

given by 
 

( ) ( ) ( )( ) ( ) ( )( )1 11 1,, 1
1 11, 1,

i i
ii

z d p t z td p t s t i
i i it

V t r t e ds V z e
− −− −− − −

−= +∫ . 

                              (18) 
 
Furthermore, the time threshold can be defined as:  
 

( ) ( ) ( )
( ) ( )

-1 1
1 1

1

inf 0 : 1,
, ,

i i i i
i

i i

r t r t
z t z V t

d p t d p t
+

+

⎧ ⎫−⎪ ⎪= ≤ < =⎨ ⎬−⎪ ⎪⎩ ⎭
. (19) 

 
The procedure is repeated until either 1 0iz =  for 
1 1i k≤ ≤ −  or -1

1 0kz > . 
By letting ( ) ( ) 1, , , i i

i n nV n t V n t for z t z −= ≤ <   , i = 

1, …, k, where 0 ,nz T=  0k
nz = , the procedure of  

constructing V(1, t) can be extended to V(n, t), for n ≥ 2. 
As we described above, when t T→ , p1 is the optimal 
price. Therefore, the expected revenue when there are n 
unsold items at time t can be modeled as 
 

( ) ( ) ( )( )

( ) ( ) ( )( )

1

1

,
1 1

,
1

,

, 1,

T d p t s t

t
T d p t s t

t

V n t r t e ds

d p t V n s e ds

− −

− −

=

+ −

∫
∫                

.       (20) 
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Similar to the case of  n = 1, we need to show the existence 
of  the time threshold 1

nz , which is a switching time point 
from p2 markdown to p1 when there are n unsold items. As 
a result, Lemma 3 must hold. 

 
Lemma 3. If  ( )1,V n t−  and Vi(n, t) are both concave 

and decreasing in t, then ( ) ( ), 1,iV n t V n t− −  is strictly 
decreasing in t (Chatwin, 2000; Feng and Xiao, 2000; Feng 
and Xiao, 2000; Zhao and Zheng, 2000). 

 
Lemma 4. The marginal expected revenue is decreasing 
with inventory level. Namely, ( ) ( )1, ,V n t V n t+ −  

( ) ( ), 1,V n t V n t< − − , for 0 t T≤ <  (Feng and Xiao, 
2000). 

 
Lemma 3 and Lemma 4 are consistent with intuition. 
Indeed, when there is less time left, the expected revenue 
of  adding one additional item is less than when there is 
more time left. Additionally, when more items are left, the 
marginal expected revenue will be reduced. The proofs of  
Lemma 3 and Lemma 4 can be found in Feng and Xiao 
(2000).  

According to Lemma 3, the time threshold can be 
defined as:  

 

1 1 2
1

1 2

( ) ( )inf 0 : ( , ) ( 1, )
( , ) ( , )n

r t r tz t T V n t V n t
d p t d p t

⎧ ⎫−
= ≤ ≤ − − =⎨ ⎬−⎩ ⎭

.                             (21) 
 
Again, when 1

nt z<  ( 1
nt z→ ), the seller can offer the 

effective price p2. Thus, ( )2 ,V n t  can be modeled as 
 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )( )

1

2

1

2

1
2

,
2 2

,
2

,1
1

,

              , 1,

              ,

n

n

n

z d p t s t

t

z d p t s t

t

d p t z t
n

V n t r t e ds

d p t V n s e ds

V n z e

− −

− −

− −

=

+ −

+

∫

∫ .       (22) 

 
In addition, the time threshold can be defined as: 

 

2 1 2 3
2

2 3

( ) ( )
inf 0 : ( , ) ( 1, )

( , ) ( , )n n
r t r t

z t z V n t V n t
d p t d p t

⎧ ⎫−
= ≤ < − − =⎨ ⎬

−⎩ ⎭
 (23) 

 
Similarly, once 1 , 2, ,i

nz i k− =  have been defined, we can 
continue to solve ( ),iV n t  for 1i

nt z −< , which is given by 
 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )( )

1

1

1

,

,

,1
1

,

              , 1,

              ,

i
n i

i
n

i

i
i n

z d p t s t
i i t

z d p t s t
it

d p t z ti
i n

V n t r t e ds

d p t V n s e ds

V n z e

−

−

−

− −

− −

− −−
−

=

+ −

+

∫

∫        (24) 

 

and 
 

( ) ( )

( ) ( )
( ) ( )

1

1

1

inf 0 : , 1,

               
, ,

i i
n n i

i i

i i

z t z V n t V n t

r t r t
d p t d p t

−

+

+

⎧
= ≤ < − −⎨

⎩
⎫− ⎪= ⎬− ⎪⎭

.        (25) 

 
Accordingly, the procedure is repeated until either 0i

nz =  
for 1 1i k≤ ≤ −  or 1 0k

nz − > .  
 

 
4. STRUCTURE OF THE TIME THRESHOLDS 

We further discuss some properties of  the time 
thresholds in this section. The nature of  the optimal 
policies shows some common features, which demonstrate 
the fundamental relationships among price, demand, 
inventory, and time. As a result, we propose three theorems 
about the time thresholds. 

 
Theorem 1. In the time interval where demand is a 
homogeneous Poisson process, for a given inventory level, 
the time thresholds , 1, ..., 1i

nz i k= −  are decreasing in the 
policy i, i.e., 1i i

n nz z −≤ . 
 
Proof. 
When we compute the time thresholds, we first solve 1

1z  
from (14) and [ ]1

1 0,z T∈ . Then we solve 2
1z  from (17) 

and )2 1
1 10,z z⎡∈ ⎣ . Therefore, we can see from (25) that 

1i i
n nz z −≤ . 
For a given inventory, these threshold points partition 

the whole time period into k price zones, 
0 1 0k
n n nT z z z= ≥ ≥ ≥ = . Within the time interval 

)1,i i
n nz z −⎡⎣ , the best pricing policy is pi. Lemma 5 shows 

that for a given inventory level, with more time remaining 
to make the sales, we can choose higher prices for the 
items. In contrast, if  the deadline is approaching, then the 
lower prices should be selected.  

 
Theorem 2. In the time interval where demand is a 
homogeneous Poisson process, at any given policy, the 
time thresholds , 1i

nz n ≥  are decreasing in the number of  
items remaining unsold, i.e., 1 1, 2, ..., 1i i

n nz z i k−≤ ∀ = −   .  
 
Proof. 
From (14) 1

1z  is the time point when ( )1 1,V t =  

( ) ( )( ) ( ) ( )( )1 2 1 2, ,r t r t d p t d p t− − . Similarly, from (21) 

we can observe that 1
2z  is the time point when 

( ) ( )1 2, 1,V t V t− ( ) ( )( ) ( ) ( )( )1 2 1 2, ,r t r t d p t d p t= − − . 

Since the right hand sides of  these two equations are equal, 
therefore if 1 1

1 2z z= , then ( )1 1,V t must equal 
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( ) ( )1 2, 1,V t V t− . However, Lemma 4 demonstrates that 

( ) ( ) ( )2, 1, 1,V t V t V t− < . Consequently, according to 

Lemma 3, 1
2z  must be less than 1

1z  in order for the two 
equations to both be satisfied. Furthermore, i

nz  can be 
extended by the same procedure. 
 

Theorem 2 shows that at a given time point, with more 
inventory remaining, a lower pricing policy should be used. 
In addition, while inventory rises, the time thresholds are 
approaching to 0. That is, if  the volume of  the items goes 
to infinity, then p1 is the only effective price. 

 
Theorem 3. If  demand is a nonhomogeneous Poisson 
process, then the higher the demand is, the larger i

nz will be, 
for the same policy i and inventory n.  
 
Proof.  
Combining (12) and (14) leads to (26), as follows: 

 

( ) ( ) ( )( )

( ) ( )
( ) ( )

1 ,1
1 1 1

1 2

1 2

inf 0 : 1,

                                                .
, ,

T d p t s t

t
z t T V t r t e ds

r t r t
d p t d p t

− −⎧
= ≤ ≤ =⎨

⎩
⎫− ⎪= ⎬− ⎪⎭

∫
 

 (26) 
 

The length of  the sales horizon T is fixed in (26). 
Furthermore, with higher demand, then there is larger 
probability that one item will be sold in a time interval, and 
there will be less time needed to sell exactly one item. 
Therefore, 1

1t z=  is larger. Furthermore, this process can 
also be used to compute for i

nz . 
In order to investigate i

nz , we must first determine the 
initial stock, the price set, and the length of  the sales 
horizon. Then we collect information about customers’ 
arrival rate and the distribution of  their reservation price. 
Next, given these data, we can compute ( )1 1,V t  and 1

1z  
by (12) and (14) respectively. And then based on a 
known ( )1 1,V t , we can compute ( )2 1,V t  and 2

1z  by 
(15) and (17) respectively. This procedure can be used to 
compute all expected revenues according to (24) and time 
thresholds by (25). Finally, we can sell items on the Internet 
market by dynamically adjusting prices according to the 
calculated time thresholds. 

For example, if  there are currently n unsold items, then 
we can check time thresholds , 1, , 1i

nz i k= −  to see 
that t is in which time interval. If 1i i

n nz t z −≤ < , 1, ,i k= ⋅⋅⋅ , 
then ip is the optimal pricing policy. Subsequently, if  a sale 
occurs, namely, inventory drops to 1n − , then we should 
inspect the current time thresholds 1 , 1, , 1i

nz i k− = −  to 
see which time interval that the current time t is within and 
then offer the optimal price. On the other hand, if  there 
are no transactions prior to 1i

nz − , then the price is switched 

from ip markdown to 1ip − at the time threshold 1i
nz − . 

Therefore, the optimal pricing policy can be found at any 
state of  time and level of  inventory.  
 
5. NUMERICAL EXAMPLE 

In this section we present a numerical example to 
illustrate how to use the proposed model to compute the 
time thresholds and how to apply the calculated time 
thresholds to adjust prices dynamically. Moreover, we 
discuss some properties of  the time thresholds in this 
example. 

 
Example 1: Ticket pricing policy 
A seller has 300 baseball game tickets to be sold on the 
Internet beginning 30 days before the game. To maximize 
the total revenue, he plans to use three different prices (200, 
400, 600) based on unsold tickets and elapsed time. 
Furthermore, customers arrive according to a 
nonhomogeneous Poisson process. These parameters are 
given in Table 1. 

 
Table 1. Data in Example 1 

t 0 ≤ t < 10 10 ≤ t < 25 25 ≤ t < 30
λ(t) 10 6 20 

b(p1, t) 0.9 0.8 0.95 
b(p2, t) 0.4 0.3 0.45 
b(p3, t) 0.2 0.15 0.25 
 
In short, this is a case with M = 300, T = 30, P1 = 200, 

P2 = 400, P3 = 600. From Table 1, we can solve demand 
( ),id p t with ( ) ( ) ( ), ,i id p t t b p tλ= and revenue rate 

( )ir t with ( ) ( ),i i ir t p d p t= . The results are shown in 
Table 2. Moreover, we can observe that the demand is 
medium in time period 0~10, low in time period 10~25 
and high in time periods 25~30. 

 
Table 2. Demand and revenue in Example 1 

t 0 ≤ t < 10 10 ≤ t < 25 25 ≤ t < 30 
b(p1,t) 9 4.8 19 
b(p2,t) 4 1.8 9 
b(p3,t) 2 0.9 5 
r1(t) 1800 960 3800 
r2(t) 1600 720 3600 
r3(t) 1200 540 3000 
 

Subsequently, we can calculate all expected revenues and 
time thresholds based on the formulas developed in 
Sections 3 and 4. Some computed optimal time thresholds 

i
nz in high, low and medium demand are listed in Tables 3, 

4, and 5, respectively.  
Figure 1 illustrates all optimal time thresholds for three 

different demand levels in the entire period. Therefore, the 
seller can sell tickets on the Internet market and 
dynamically adjust prices according to the calculated time 
thresholds to maximize total revenue. Because the demand 
is according to a nonhomogeneous Poisson process, we 
can observe that the entire horizon is partitioned into three 
time periods, 0~10, 10~25, and 25~30. At each time 
interval, there are two time sequences separating the 
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pricing policies into p1, p2, and p3. Therefore, at any state of  
time and inventory level, we can inspect the calculated time 

thresholds and adopt the optimal pricing policy. 

 
Table 3. Optimal time thresholds i

nz  during high demand 

n 1
nz  2

nz  n 1
nz  2

nz  n 1
nz  2

nz  n 1
nz  2

nz  
1 29.994 29.947 15 29.380 28.264 29 28.757 26.576 60 27.377 22.837
2 29.965 29.837 16 29.336 28.144 30 28.712 26.455 65 27.155 22.234
3 29.921 29.715 17 29.291 28.023 31 28.668 26.335 70 26.932 21.631
4 29.872 29.591 18 29.247 27.902 32 28.623 26.214 75 26.710 21.028
5 29.818 29.467 19 29.202 27.782 33 28.579 26.093 80 26.487 20.425
6 29.781 29.350 20 29.158 27.661 34 28.534 25.973 85 26.265 19.822
7 29.736 29.229 21 29.113 27.541 35 28.490 25.852 90 26.042 19.219
8 29.692 29.108 22 29.069 27.420 36 28.445 25.732 95 25.820 18.616
9 29.647 28.988 23 29.024 27.299 37 28.401 25.611 100 25.597 18.013
10 29.603 28.867 24 28.980 27.179 38 28.356 25.490 105 25.375 17.410
11 29.558 28.747 25 28.935 27.058 40 28.267 25.249 110 25.152 16.807
12 29.514 28.626 26 28.891 26.938 45 28.045 24.646 111 25.108 16.687
13 29.469 28.505 27 28.846 26.817 50 27.822 24.043 112 25.063 16.566
14 29.425 28.385 28 28.801 26.696 55 27.600 23.440 113 25.019 16.445

 
Table 4. Optimal time thresholds i

nz  during low demand (Example 1) 

n 1
nz  2

nz  n 1
nz  2

nz  n 1
nz  2

nz  n 1
nz  2

nz  
1 29.894 29.633 15 26.371 20.461 29 22.849 11.277 43 19.327 2.093 
2 29.650 29.002 16 26.120 19.805 30 22.597 10.621 44 19.075 1.437 
3 29.382 28.338 17 25.868 19.149 31 22.346 9.965 45 18.823 0.781 
4 29.132 27.674 18 25.617 18.493 32 22.094 9.309 46 18.572 0.125 
5 28.895 27.017 19 25.365 17.837 33 21.843 8.653 47 18.320 0 
6 28.636 26.365 20 25.113 17.181 34 21.591 7.997 48 18.069 0 
7 28.384 25.709 21 24.862 16.525 35 21.339 7.341 49 17.817 0 
8 28.133 25.053 22 24.610 15.869 36 21.088 6.685 50 17.565 0 
9 27.881 24.397 23 24.359 15.213 37 20.836 6.029 55 16.307 0 
10 27.629 23.741 24 24.107 14.557 38 20.585 5.373 60 15.049 0 
11 27.378 23.085 25 23.855 13.901 39 20.333 4.717 65 13.791 0 
12 27.126 22.429 26 23.604 13.245 40 20.081 4.061 70 12.533 0 
13 26.875 21.773 27 23.352 12.589 41 19.830 3.405 75 11.275 0 
14 26.623 21.117 28 23.101 11.933 42 19.578 2.749 80 10.017 0 

 
Table 5. Optimal time thresholds i

nz  during medium demand (Example 1) 

n 1
nz  2

nz  n 1
nz  2

nz  n 1
nz  2

nz  n 1
nz  2

nz
1 29.975 29.828 71 22.313 8.647 85 20.779 4.410 210 7.079 0 
2 29.886 29.530 72 22.204 8.344 90 20.231 2.897 215 6.531 0 
3 29.770 29.220 73 22.094 8.042 95 19.683 1.384 220 5.983 0 
4 29.660 28.920 74 21.985 7.739 100 19.135 0 225 5.435 0 
5 29.540 28.620 75 21.875 7.436 184 9.929 0 230 4.887 0 
6 29.437 28.316 76 21.765 7.134 185 9.819 0 235 4.339 0 
7 29.328 28.013 77 21.656 6.831 186 9.709 0 240 3.791 0 
8 29.218 27.711 78 21.546 6.529 187 9.600 0 245 3.243 0 
9 29.109 27.408 79 21.437 6.226 188 9.490 0 250 2.695 0 
10 28.999 27.105 80 21.327 5.923 189 9.381 0 255 2.147 0 
67 22.752 9.857 81 21.217 5.621 190 9.271 0 260 1.599 0 
68 22.642 9.555 82 21.108 5.318 195 8.723 0 265 1.051 0 
69 22.533 9.252 83 20.998 5.016 200 8.175 0 270 0.503 0 
70 22.423 8.949 84 20.889 4.713 205 7.627 0 275 0.000 0 

 
For example, the seller has 300 tickets to be sold in 30 days 
in the beginning stage. That is, he should use price p1 at 
time 0 to sell the tickets because at that level of  inventory 

1
300t z≥ . Furthermore, if  there are 200 unsold tickets at 

time 8, then he should offer price p2 in that 2 1
200 200z t z< < . 

Subsequently, if  there are no transactions prior to 1
200z , i.e., 

8.175, then the price is switched from p2 markdown to p1 at 
1
200z . 
We further discuss some properties of  the time 

thresholds and demonstrate the results in Example 1 as 
follows. 
1. Theorem 1 states that for a given inventory level, the 
time thresholds ,  1, ..., 1i

nz i k= − are decreasing in the 
policy i, i.e., 1i i

n nz z −≤ . Figure 2 shows that all 2 1 ,n nz z≤ n = 1, 
2, …, 5. In addition, for a given inventory, these threshold 
points partition the whole time period into three price 
zones, 0 1 2 330 0n n n nT z z z z= = ≥ ≥ ≥ = . We can also observe 
that when there is more time remaining to make the sales, 
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we can choose higher ticket prices. In contrast, if  the 
deadline is approaching, lower prices should be selected. 
That is, in the interval )1 0,n nz z⎡⎣ , the best pricing policy is p1. 

 

 
 

Figure 1. All time thresholds in the entire period. 
 
2. Theorem 2 states that at any given policy, the time 

thresholds , 1i
nz n ≥ are decreasing in the number of  

items remaining unsold, i.e., 1
i i
n nz z −≤  ∀i = 1, 2, …, k − 

1. Accordingly, Figure 2 displays that 1 2 3
i i iz z z> >  

4 5
i iz z> > , 1,  2i = . In addition, when n →∞ , 0i

nz = . 
3. According to Theorem 3, if  demand is a 

nonhomogeneous Poisson process, then the higher the 
demand is, the larger i

nz  will be, for the same policy i 
and inventory n. Figure 3 demonstrates that the time 
thresholds in high demand are larger than those in low 
demand. Furthermore, since the demand in time period 
8~10 is larger than that in time period 10~12, then the 
time thresholds in time period 10~12 shift to the left 
(see in Figure 4). That is, in a high-to-low demand case, 
when there is no transaction, a lower pricing policy is 
usually used. In fact, we may reduce price whether a sale 
occurs or not because the demand in the future is lower. 
For example, as shown in Figure 4, if  there are 81 
unsold tickets at time 9.9, then we should offer price p2. 
Subsequently, if  no sales occur, then the price is 
switched from p2 markdown to p1 at time 10. On the 
other hand, if  a sale occurs, i.e., 80 tickets left, then we 
can still offer price p2 at time 10. On the other hand, 
since the demand in time period 25~26 is larger than 
that in time period 23~25, then the time thresholds in 
time period 25~26 shift to the right (see in Figure 5). In 
other words, in a low-to-high demand case, the price 
may go up when there are no transactions. This 
situation may happen because at that time point, the 
demand is rising from low to high and the time 
thresholds are shifting to the right. Therefore, we may 
use higher pricing policy after that time point. For 
instance, as shown in Figure 5, if  there are 50 unsold 
tickets at time 24.9, then we should offer price p1. 
However, whether or not a sale occurs, the price is 
switched from p1 markup to p2 at time 25. 
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Figure 2. Time thresholds with only 5 tickets left. 
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Figure 3. Comparisons of  high demand and low demand. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Time thresholds in time periods 8 to 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Time thresholds in time periods 23 to 26. 
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6. CONCLUSIONS 

In this paper we construct a dynamic pricing model for 
selling a given stock of  identical perishable products over a 
finite time horizon on the Internet. Here, the objective of  
the seller is to find a dynamic pricing policy that maximizes 
the total expected revenue. We assume that perishable 
items are priced at a finite set of  the predetermined levels, 
and that the demand obeys a nonhomogeneous Poisson 
process. According to the proposed model, we can 
compute all optimal time thresholds. Moreover, we can 
determine the optimal price level based on the length of  
the remaining sales time and the unsold inventory level, 
and make switches among the prices by the calculated time 
thresholds. Furthermore, we present a numerical example 
to demonstrate the model and its results. 

Dynamic pricing policy adjusts the price of  the 
perishable products in response to market changes. The 
proposed model is particularly suitable for perishable 
products such as airline seats, sports tickets, and hotel 
rooms. Furthermore, the application of  the dynamic 
pricing to the Internet market is especially valuable because 
of  minimal menu cost in price update. It is possible that 
several customers make transactions at the same time on 
the Internet market. In fact, when one customer purchases 
multiple products once or there are several customers 
coming to buy items simultaneously, the computed time 
thresholds still perform adequately.  

Directions for further research could investigate several 
extensions where overbooking, re-supply and cancellations 
are allowed. Besides, in order to demonstrate the 
practicability of  the proposed model, it would be 
important to implement an empirical study for a further 
investigation.  
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